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Summary

History of the problem.

Examples.

Main results and proofs.

Describe open problems.

This is joint work with Peter Hegarty, Brooke Orosz and
Dan Scheinerman.
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Introduction
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Statement

A finite set of integers, |A| its size. Form

Sumset: A + A = {ai + aj : aj , aj ∈ A}.
Difference set: A − A = {ai − aj : aj , aj ∈ A}.
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Statement

A finite set of integers, |A| its size. Form

Sumset: A + A = {ai + aj : aj , aj ∈ A}.
Difference set: A − A = {ai − aj : aj , aj ∈ A}.

Definition
We say A is difference dominated if |A − A| > |A + A|,
balanced if |A − A| = |A + A| and sum dominated (or an
MSTD set) if |A + A| > |A − A|.
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Questions

Expect generic set to be difference dominated:
addition is commutative, subtraction isn’t:
Generic pair (x , y) gives 1 sum, 2 differences.
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Questions

Expect generic set to be difference dominated:
addition is commutative, subtraction isn’t:
Generic pair (x , y) gives 1 sum, 2 differences.

Questions
Do there exist sum-dominated sets?
If yes, how many?
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Examples
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Examples

Conway: {0, 2, 3, 4, 7, 11, 12, 14}.

Marica (1969): {0, 1, 2, 4, 7, 8, 12, 14, 15}.

Freiman and Pigarev (1973): {0, 1, 2, 4, 5, 9, 12, 13,
14, 16, 17, 21, 24, 25, 26, 28, 29}.

Computer search of random subsets of {1, . . . , 100}:
{2, 6, 7, 9, 13, 14, 16, 18, 19, 22, 23, 25, 30, 31, 33, 37, 39,
41, 42, 45, 46, 47, 48, 49, 51, 52, 54, 57, 58, 59, 61, 64, 65,
66, 67, 68, 72, 73, 74, 75, 81, 83, 84, 87, 88, 91, 93, 94, 95,
98, 100}.

Recently infinite families (Hegarty, Nathanson).
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Infinite Families

Key observation

If A is an arithmetic progression, |A + A| = |A − A|.
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Infinite Families

Key observation

If A is an arithmetic progression, |A + A| = |A − A|.

Proof:

WLOG, A = {0, 1, . . . , n} as A → αA + β doesn’t
change |A + A|, |A − A|.
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Infinite Families

Key observation

If A is an arithmetic progression, |A + A| = |A − A|.

Proof:

WLOG, A = {0, 1, . . . , n} as A → αA + β doesn’t
change |A + A|, |A − A|.

A + A = {0, . . . , 2n}, A −A = {−n, . . . , n}, both of size
2n + 1. �
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Previous Constructions

Most constructions perturb an arithmetic progression.

Example:

MSTD set A = {0, 2, 3, 4, 7, 11, 12, 14}.

A = {0, 2} ∪ {3, 7, 11} ∪ (14 − {0, 2}) ∪ {4}.
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Example (Nathanson)

Theorem
m, d , k ∈ N with m ≥ 4, 1 ≤ d ≤ m − 1, d 6= m/2, k ≥ 3 if
d < m/2 else k ≥ 4. Let

B = [0, m − 1]\{d}.
L = {m − d , 2m − d , . . . , km − d}.
a∗ = (k + 1)m − 2d.
A∗ = B ∪ L ∪ (a∗ − B).
A = A∗ ∪ {m}.

Then A is an MSTD set.
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New Construction: Notation

[a, b] = {k ∈ Z : a ≤ k ≤ b}.

A is a Pn-set if its sumset and its difference set
contain all but the first and last n possible elements
(and of course it may or may not contain some of
these fringe elements).
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New Construction

Theorem (Miller-Scheinerman ’09)

A = L ∪ R be a Pn, MSTD set where L ⊂ [1, n],
R ⊂ [n + 1, 2n], and 1, 2n ∈ A.
Fix a k ≥ n and let m be arbitrary.
M any subset of [n + k + 1, n + k + m] st no run of
more than k missing elements. Assume
n + k + 1 6∈ M.
Set A(M) = L ∪ O1 ∪ M ∪ O2 ∪ R′, where
O1 = [n + 1, n + k ], O2 = [n + k + m + 1, n + 2k + m],
and R′ = R + 2k + m.

Then A(M) is an MSTD set, and ∃C > 0 st the
percentage of subsets of {0, . . . , r} that are in this family
(and thus are MSTD sets) is at least C/r4.
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Generalization: Miller-Orosz-Scheinerman

Can we find A so that:

|ǫ1A + · · ·+ ǫnA| > |ǫ̃1A + · · · + ǫ̃nA| , ǫi , ǫ̃i ∈ {−1, 1}.

Consider the generalized sumset

fj1, j2(A) = A + A + · · ·+ A − A − A − · · · − A,

where there are j1 pluses and j2 minuses, and set
j = j1 + j2.

P j
n-set

Let A ⊂ [1, k ] with 1, k ,∈ A. We say A is a P j
n-set if any

fj1, j2(A) contains all but the first n and last n possible
elements. (Note that a P2

n -set is the same as what we
called a Pn-set earlier.)
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Generalization: Miller-Orosz-Scheinerman

Conjecture (MOS)
For any fj1, j2 and fj ′1, j ′2

, there exists a finite set of integers A

which is (1) a P j
n-set; (2) A ⊂ [1, 2n] and 1, 2n ∈ A; and (3)

|fj1, j2(A)| > |fj ′1, j ′2
(A)|.

Problem is finding an A with |fj1, j2(A)| > |fj ′1, j ′2
(A)|;

once we find such a set, we can mirror previous
construction and construct infinitely many.
Theorem: The conjecture is true for j ∈ {2, 3}.
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Proof of Generalization

Needed input set for j = 3: A =
{1, 2, 5, 6, 16, 19, 22, 26, 32, 34, 35, 39, 43, 48, 49, 50}.
Found by taking elements in {2, . . . , 49} to be in A
with probability 1/3; it took about 300000 sets to find
the first one satisfying our conditions. To be a P3

25-set
we need to have A + A + A ⊃ [n + 3, 6n − n] =
[28, 125] and A + A − A ⊃ [−n + 2, 3n − 1] =
[−23, 74]. Have A + A + A = [3, 150] (all possible
elements), while A + A − A = [−48, 99]\{−34} (i.e.,
all but -34). Thus A is a P3

25-set satisfying
|A + A + A| > |A + A − A|, and have the needed
example.

Could also take A = {1, 2, 3, 4, 8, 12, 18,
22, 23, 25, 26, 29, 30, 31, 32, 34, 45, 46, 49, 50}.
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Results

20
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Probability Review

X random variable with density f (x) means

f (x) ≥ 0;∫ ∞

−∞
f (x) = 1;

Prob(X ∈ [a, b]) =
∫ b

a f (x)dx .

Key quantities:
Expected (Average) Value: E[X ] =

∫
xf (x)dx .

Variance: σ2 =
∫

(x − E[X ])2f (x)dx .
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Binomial model

Binomial model, parameter p(n)

Each k ∈ {0, . . . , n} is in A with probability p(n).

Consider uniform model (p(n) = 1/2):

Let A ∈ {0, . . . , n}. Most elements in {0, . . . , 2n} in
A + A and in {−n, . . . , n} in A − A.

E[|A + A|] = 2n − 11, E[|A − A|] = 2n − 7.
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Martin and O’Bryant ’06

Theorem
Let A be chosen from {0, . . . , N} according to the
binomial model with constant parameter p (thus k ∈ A
with probability p). At least kSD;p2N+1 subsets are sum
dominated.
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Martin and O’Bryant ’06

Theorem
Let A be chosen from {0, . . . , N} according to the
binomial model with constant parameter p (thus k ∈ A
with probability p). At least kSD;p2N+1 subsets are sum
dominated.

kSD;1/2 ≥ 10−7, expect about 10−3.
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Martin and O’Bryant ’06

Theorem
Let A be chosen from {0, . . . , N} according to the
binomial model with constant parameter p (thus k ∈ A
with probability p). At least kSD;p2N+1 subsets are sum
dominated.

kSD;1/2 ≥ 10−7, expect about 10−3.

Proof (p = 1/2): Generically |A| = N
2 + O(

√
N).

⋄ about N
4 − |N−k |

4 ways write k ∈ A + A.
⋄ about N

4 − |k |
4 ways write k ∈ A − A.

⋄ Almost all numbers that can be in A ± A are.
⋄ Win by controlling fringes.
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Notation

X ∼ f (N) means ∀ǫ1, ǫ2 > 0, ∃Nǫ1,ǫ2 st ∀N ≥ Nǫ1,ǫ2

Prob (X 6∈ [(1 − ǫ1)f (N), (1 + ǫ1)f (N)]) < ǫ2.
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Notation

X ∼ f (N) means ∀ǫ1, ǫ2 > 0, ∃Nǫ1,ǫ2 st ∀N ≥ Nǫ1,ǫ2

Prob (X 6∈ [(1 − ǫ1)f (N), (1 + ǫ1)f (N)]) < ǫ2.

S = |A + A|, D = |A − A|,
Sc = 2N + 1 − S, Dc = 2N + 1 −D.

27



Introduction Examples Results Proofs Open Problems Programs Bibliography

Notation

X ∼ f (N) means ∀ǫ1, ǫ2 > 0, ∃Nǫ1,ǫ2 st ∀N ≥ Nǫ1,ǫ2

Prob (X 6∈ [(1 − ǫ1)f (N), (1 + ǫ1)f (N)]) < ǫ2.

S = |A + A|, D = |A − A|,
Sc = 2N + 1 − S, Dc = 2N + 1 −D.

New model: Binomial with parameter p(N):
1/N = o(p(N)) and p(N) = o(1);
Prob(k ∈ A) = p(N).

Conjecture (Martin-O’Bryant)
As N → ∞, A is a.s. difference dominated.
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Main Result

Theorem (Hegarty-Miller)

p(N) as above, g(x) = 2e−x−(1−x)
x .

p(N) = o(N−1/2): D ∼ 2S ∼ (Np(N))2;

p(N) = cN−1/2: D ∼ g(c2)N, S ∼ g
(

c2

2

)
N

(c → 0, D/S → 2; c → ∞, D/S → 1);
N−1/2 = o(p(N)): Sc ∼ 2Dc ∼ 4/p(N)2.

Can generalize to binary linear forms, still have critical
threshold.
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Inputs

Key input: recent strong concentration results of Kim and
Vu (Applications: combinatorial number theory, random
graphs, ...).
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Inputs

Key input: recent strong concentration results of Kim and
Vu (Applications: combinatorial number theory, random
graphs, ...).

Example (Chernoff): ti iid binary random variables,
Y =

∑n
i=1 ti , then

∀λ > 0 : Prob
(
|Y − E[Y ]| ≥

√
λn

)
≤ 2e−λ/2.
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Inputs

Key input: recent strong concentration results of Kim and
Vu (Applications: combinatorial number theory, random
graphs, ...).

Example (Chernoff): ti iid binary random variables,
Y =

∑n
i=1 ti , then

∀λ > 0 : Prob
(
|Y − E[Y ]| ≥

√
λn

)
≤ 2e−λ/2.

Need to allow dependent random variables.
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Inputs

Key input: recent strong concentration results of Kim and
Vu (Applications: combinatorial number theory, random
graphs, ...).

Example (Chernoff): ti iid binary random variables,
Y =

∑n
i=1 ti , then

∀λ > 0 : Prob
(
|Y − E[Y ]| ≥

√
λn

)
≤ 2e−λ/2.

Need to allow dependent random variables.
Sketch of proofs: X ∈ {S,D,Sc,Dc}.

1 Prove E[X ] behaves asymptotically as claimed;
2 Prove X is strongly concentrated about mean.
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Proofs
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Setup

Note: only need strong concentration for N−1/2 = o(p(N)).
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Setup

Note: only need strong concentration for N−1/2 = o(p(N)).

Will assume p(N) = o(N−1/2) as proofs are elementary
(i.e., Chebyshev: Prob(|Y − E[Y ]| ≥ kσY ) ≤ 1/k2)).
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Setup

Note: only need strong concentration for N−1/2 = o(p(N)).

Will assume p(N) = o(N−1/2) as proofs are elementary
(i.e., Chebyshev: Prob(|Y − E[Y ]| ≥ kσY ) ≤ 1/k2)).

For convenience let p(N) = N−δ, δ ∈ (1/2, 1).

IID binary indicator variables:

Xn;N =

{
1 with probability N−δ

0 with probability 1 − N−δ.

X =
∑N

i=1 Xn;N , E[X ] = N1−δ.
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Proof

Lemma

P1(N) = 4N−(1−δ),
O = #{(m, n) : m < n ∈ {1, . . . , N}

⋂
A}.

With probability at least 1 − P1(N) have
1 X ∈

[
1
2N1−δ, 3

2N1−δ
]
.

2
1
2 N1−δ( 1

2 N1−δ−1)

2 ≤ O ≤
3
2 N1−δ( 3

2 N1−δ−1)

2 .
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Proof

Lemma

P1(N) = 4N−(1−δ),
O = #{(m, n) : m < n ∈ {1, . . . , N}

⋂
A}.

With probability at least 1 − P1(N) have
1 X ∈

[
1
2N1−δ, 3

2N1−δ
]
.

2
1
2 N1−δ( 1

2 N1−δ−1)

2 ≤ O ≤
3
2 N1−δ( 3

2 N1−δ−1)

2 .

Proof:

(1) is Chebyshev: Var(X ) = NVar(Xn;N) ≤ N1−δ.
(2) follows from (1) and

(r
2

)
ways to choose 2 from r .
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Concentration

Lemma

f (δ) = min
(

1
2 , 3δ−1

2

)
, g(δ) any function st

0 < g(δ) < f (δ).
p(N) = N−δ, δ ∈ (1/2, 1), P1(N) = 4N−(1−δ),
P2(N) = CN−(f (δ)−g(δ)).

With probability at least 1 − P1(N) − P2(N) have
D/S = 2 + O(N−g(δ)).
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Concentration

Lemma

f (δ) = min
(

1
2 , 3δ−1

2

)
, g(δ) any function st

0 < g(δ) < f (δ).
p(N) = N−δ, δ ∈ (1/2, 1), P1(N) = 4N−(1−δ),
P2(N) = CN−(f (δ)−g(δ)).

With probability at least 1 − P1(N) − P2(N) have
D/S = 2 + O(N−g(δ)).

Proof: Show D ∼ 2O + O(N3−4δ), S ∼ O + O(N3−4δ).

As O is of size N2−2δ with high probability, need
2 − 2δ > 3 − 4δ or δ > 1/2.
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Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.
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Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.

Difficulty: (m, n) and (m′, n′) could yield same differences.
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Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.

Difficulty: (m, n) and (m′, n′) could yield same differences.

Notation: m < n, m′ < n′, m ≤ m′,

Ym,n,m′,n′ =

{
1 if n − m = n′ − m′

0 otherwise.
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Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.

Difficulty: (m, n) and (m′, n′) could yield same differences.

Notation: m < n, m′ < n′, m ≤ m′,

Ym,n,m′,n′ =

{
1 if n − m = n′ − m′

0 otherwise.

E[Y ] ≤ N3 · N−4δ + N2 · N−3δ ≤ 2N3−4δ. As δ > 1/2,
expectednumberbad pairs ≪ |O|.
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Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.

Difficulty: (m, n) and (m′, n′) could yield same differences.

Notation: m < n, m′ < n′, m ≤ m′,

Ym,n,m′,n′ =

{
1 if n − m = n′ − m′

0 otherwise.

E[Y ] ≤ N3 · N−4δ + N2 · N−3δ ≤ 2N3−4δ. As δ > 1/2,
expectednumberbad pairs ≪ |O|.

Claim: σY ≤ N r(δ)with r(δ) = 1
2 max(3 − 4δ, 5 − 7δ). This

and Chebyshev conclude proof of theorem.
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Proof of claim

Cannot use CLT as Ym,n,m′,n′ are not independent.

47



Introduction Examples Results Proofs Open Problems Programs Bibliography

Proof of claim

Cannot use CLT as Ym,n,m′,n′ are not independent.

Use Var(U + V ) ≤ 2Var(U) + 2Var(V ).
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Proof of claim

Cannot use CLT as Ym,n,m′,n′ are not independent.

Use Var(U + V ) ≤ 2Var(U) + 2Var(V ).

Write
∑

Ym,n,m′,n′ =
∑

Um,n,m′,n′ +
∑

Vm,n,n′

with all indices distinct (at most one in common, if so must
be n = m′).

Var(U) =
∑

Var(Um,n,m′,n′)+2
∑

(m,n,m′,n′) 6=
(m̃,ñ,m̃′,ñ′)

CoVar(Um,n,m′,n′, Um̃,ñ,m̃′,ñ′)
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Analyzing Var(Um,n,m′,n′)

At most N3 tuples.

Each has variance N−4δ − N−8δ ≤ N−4δ.

Thus
∑

Var(Um,n,m′,n′) ≤ N3−4δ.
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Analyzing CoVar(Um,n,m′,n′ , Um̃,ñ,m̃′,ñ′)

All 8 indices distinct: independent, covariance of 0.

7 indices distinct: At most N3 choices for first tuple, at
most N2 for second, get

E[U(1)U(2)]−E[U(1)]E[U(2)] = N−7δ−N−4δN−4δ ≤ N−7δ.

Argue similarly for rest, get ≪ N5−7δ + N3−4δ.
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Open Problems
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Probability k in an MSTD set (uniform model)

γ(k , n) := Prob(k ∈ A : A ⊂ [1, n] is an MSTD set)

20 40 60 80 100
k

0.45

0.50

0.55

0.60

Observed ΓHk,nL

Figure: Observed γ(k , 100), random sample 4458 MSTD sets.

Conjecture

Fix a constant 0 < α < 1. Then limn→∞ γ(k , n) = 1/2 for
⌊αn⌋ ≤ k ≤ n − ⌊αn⌋.
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Generalization of main result

Theorem (Hegarty-M): Binomial model with parameter p(N) as
before, u, v be non-zero integers with u ≥ |v |, gcd(u, v) = 1 and
(u, v) 6= (1, 1). Put f (x , y) := ux + vy and let Df denote the random
variable |f (A)|. Then the following three situations arise:

1 p(N) = o(N−1/2) : Then

Df ∼ (N · p(N))2.

2 p(N) = c · N−1/2 for some c ∈ (0,∞) : Define the function
gu,v : (0,∞) → (0, u + |v |) by

gu,v (x) := (u + |v |)− 2|v |
(

1 − e−x

x

)
− (u − |v |)e−x .

Then

Df ∼ gu,v

(
c2

u

)
N.

3 N−1/2 = o(p(N)) : Let Dc
f := (u + |v |)N −Df . Then Dc

f ∼ 2u|v |
p(N)2 .

54



Introduction Examples Results Proofs Open Problems Programs Bibliography

Generalization of main results (cont)

Let f , g be two binary linear forms. Say f dominates g for the
parameter p(N) if, as N → ∞, |f (A)| > |g(A)| almost surely when A is
a random subset (binomial model with parameter p(N)).
Theorem (Hegarty-M): f (x , y) = u1x + u2y and g(x , y) = u2x + g2y ,
where ui ≥ |vi | > 0, gcd(ui , vi) = 1 and (u2, v2) 6= (u1,±v1). Let

α(u, v) :=
1
u2

( |v |
3

+
u − |v |

2

)
=

3u − |v |
6u2 .

The following two situations can be distinguished :

u1 + |v1| ≥ u2 + |v2| and α(u1, v1) < α(u2, v2). Then f dominates
g for all p such that N−3/5 = o(p(N)) and p(N) = o(1). In
particular, every other difference form dominates the form x − y
in this range.

u1 + |v1| > u2 + |v2| and α(u1, v1) > α(u2, v2). Then there exists
cf ,g > 0 such that one form dominates for p(N) < cN−1/2

(c < cf ,g) and other dominates for p(N) > cN−1/2 (c > cf ,g).

55



Introduction Examples Results Proofs Open Problems Programs Bibliography

Open Problems

One unresolved matter is the comparison of arbitrary difference
forms in the range where N−3/4 = O(p) and p = O(N−3/5).
Note that the property of one binary form dominating another is
not monotone, or even convex.

A very tantalizing problem is to investigate what happens while
crossing a sharp threshold.

One can ask if the various concentration estimates can be
improved (i.e., made explicit).
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Programs
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Mathematica Code: Computing Sum/Difference Set

setA = {1, 2, 5, 7, 11, 13, 17, 19};
sumset = {};
diffset = {};
n = Length[setA];
For[i = 1, i <= n, i++,
For[j = 1, j <= n, j++,
{
sum = setA[[i]] + setA[[j]];
diff = setA[[i]] - setA[[j]];
If[MemberQ[sumset, sum] == False, sumset = AppendTo[sumset, sum]];
If[MemberQ[diffset, diff] == False, diffset = AppendTo[diffset, diff]];
}]];
sumset = Sort[sumset];
diffset = Sort[diffset];
Print[sumset];
Print[diffset];
Print["Size of sumset = ", Length[sumset], " and size of difference set = ",
Length[diffset], "."];
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Bibliography
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