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Summary

@ History of the problem.

@ Examples.

@ Main results and proofs.

@ Describe open problems.

This is joint work with Peter Hegarty, Brooke Orosz and
Dan Scheinerman.
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Statement

A finite set of integers, |A| its size. Form
@ Sumset: A+ A= {a +a;:a,a €A}
o Difference set: A— A= {a —a; : a;,a € A}.
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Statement

A finite set of integers, |A| its size. Form
@ Sumset: A+ A= {a +a;:a,a €A}
o Difference set: A— A= {a —a; : a;,a € A}.

Definition

We say A is difference dominated if |A — A| > |A+ A,
balanced if |A — A| = |A + A| and sum dominated (or an
MSTD set) if A+ A] > |A—A|.
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Questions

Expect generic set to be difference dominated:
@ addition is commutative, subtraction isn’t:
@ Generic pair (x,y) gives 1 sum, 2 differences.
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Questions

Expect generic set to be difference dominated:
@ addition is commutative, subtraction isn’t:
@ Generic pair (x,y) gives 1 sum, 2 differences.

@ Do there exist sum-dominated sets?

o If yes, how many?
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Examples
@ Conway: {0,2,3,4,7,11,12 14}.
@ Marica (1969): {0,1,2,4,7,8,12,14,15}.

@ Freiman and Pigarev (1973): {0,1,2,4,5, 9,12, 13,
14,16,17, 21,24,25,26, 28, 29}.

@ Computer search of random subsets of {1, ...,100}:
{2,6,7,9,13,14,16, 18,19, 22, 23, 25, 30, 31, 33, 37, 39,
41,42, 45 46,47,48,49. 51, 52,54,57,58,59,61, 64, 65,
66,67,68,72,73,74,75,81,83,84,87,88,91, 93,94, 95,
98, 100}.

@ Recently infinite families (Hegarty, Nathanson).
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Infinite Families

Key observation
If A is an arithmetic progression, |A+ A| = |A —A|.
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Infinite Families

Key observation
If A is an arithmetic progression, |A+ A| = |A —A|.

Proof:

@ WLOG,A={0,1,....,n} as A — oA+ [ doesn't
change [A+A|, |A—A|.
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Infinite Families

Key observation
If A is an arithmetic progression, |A+ A| = |A —A|.

Proof:

@ WLOG,A={0,1,....,n} as A — oA+ [ doesn't
change [A+A|, |A—A|.

o A+A={0,....2n},A—A={—n,...,n}, both of size
2n + 1. O
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Previous Constructions

Most constructions perturb an arithmetic progression.

Example:
@ MSTD set A=1{0,2,3,4,7,11,12 14}.

o A={0,2}U{3,7,11} U (14 — {0,2}) U {4}.
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Example (Nathanson)

Theorem

m,d,k e Nwithm >4,1<d<m-1,d #m/2, k > 3if
d <m/2elsek > 4. Let

o B=[0,m—1]\{d}.
oeL={m-d,2m—-d,... ., km—d}.
o a*=(k+1)m —2d.
@ A*=BULU (a*—B).
o A=A"U{m}.

Then Ais an MSTD set.
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New Construction: Notation

o [a,b]={keZ:a<k <b}.

@ Alis a P,-set if its sumset and its difference set
contain all but the first and last n possible elements
(and of course it may or may not contain some of
these fringe elements).
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New Construction

Theorem (Miller-Scheinerman '09)

@ A=LUR be aP,, MSTD set where L C [1,n],
R cC[n+1,2n],and 1,2n € A.

@ Fixak > n and let m be arbitrary.

@ M any subset of [n + k +1,n +k 4+ m] st no run of
more than k missing elements. Assume
n+k+1¢&M.

@ SetA(M)=LUO; UM UO, UR’, where
Or=n+1n+k],0,=[n+k+m+1n+ 2k +mj,
and R" =R + 2k + m.

Then A(M) is an MSTD set, and 3C > 0 st the
percentage of subsets of {0, ..., r} that are in this family
(and thus are MSTD sets) is at least C /r.
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Generalization: Miller-Orosz-Scheinerman

Can we find A so that:
lelA+ -+ enA| > A+ -+ &GA], 6,6 € {11}
Consider the generalized sumset
fi, ,(A) = A+A+- - +A-A-A—-- - — A

where there are j; pluses and j, minuses, and set
j=l1+]2

Let A C [1,k] with 1,k, € A. We say A is a P}-set if any
fi,, ,(A) contains all but the first n and last n possible
elements. (Note that a P2-set is the same as what we
called a P,-set earlier.)
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Generalization: Miller-Orosz-Scheinerman

Conjecture (MOS)

For any fj, j, and f;; j;, there exists a finite set of integers A

which is (1) a Pj-set; (2) A C [1,2n] and 1,2n € A; and (3)
Ifie, 2 (A > [fiz, 7 (A)].

@ Problem is finding an A with [f;, j,(A)] > [f; i (A)[;
once we find such a set, we can mirror previous
construction and construct infinitely many.

@ Theorem: The conjecture is true for j € {2, 3}.
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Proof of Generalization

@ Needed input setforj =3: A=
{1,2,5,6,16,19,22,26,32,34,35,39,43,48,49,50}.
Found by taking elements in {2,...,49} to be in A
with probability 1/3; it took about 300000 sets to find
the first one satisfying our conditions. To be a P3.-set
we need to have A+ A+AD[n+3,6n—n|=
[28,125] and A+ A—AD[-n+2,3n—-1] =
[—23,74]. Have A + A + A = [3,150] (all possible
elements), while A+ A — A =[-48,99]\{—34} (i.e.,
all but -34). Thus A is a P3.-set satisfying
|A+A+A| >|A+ A—A| and have the needed
example.

@ Could also take A = {1,2,3,4,8,12, 18,
22,23,25,26, 29,30, 31,32,34,45, 46,49,50}.
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Probability Review

X random variable with density f(x) means
o f(x) >0;
o [T f(x)=1;
@ Prob(X € [a,b]) = [ f(x)dx.

Key quantities:
@ Expected (Average) Value: E[X] = [ xf(x)dx.
@ Variance: o2 = [(x — E[X])?f(x)dx.
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Binomial model

Binomial model, parameter p(n)
Each k € {0,...,n} is in A with probability p(n).

Consider uniform model (p(n) = 1/2):

o LetAc {0,...,n}. Most elements in {0,...,2n} in
A+Aandin{—n,....n}in A—A.

o E[[A+A]]=2n—11,E[A—A]] =2n—7.
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Martin and O’Bryant '06

Let A be chosen from {0, ...,N} according to the
binomial model with constant parameter p (thus k € A
with probability p). At least ksp,,2V+* subsets are sum
dominated.
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Let A be chosen from {0, ...,N} according to the
binomial model with constant parameter p (thus k € A
with probability p). At least ksp,,2V+* subsets are sum
dominated.

@ kgp;1/2 > 1077, expect about 1073.
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Martin and O’Bryant '06

Let A be chosen from {0, ...,N} according to the
binomial model with constant parameter p (thus k € A
with probability p). At least ksp,,2V+* subsets are sum
dominated.

@ kgp;1/2 > 1077, expect about 1073.

@ Proof (p = 1/2): Generically |A| = ¥ + O(VN).
o about ¥ — K ways write k € A + A,
o about ¥ — K ways write k € A — A.
o Almost all numbers that can be in A + A are.

© Win by controlling fringes.
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Notation

@ X ~ f(N) means Ve, e; > 0, IN stVN > N

€1,€2 €1,€2

Prob (X ¢ [(1 — e1)f(N), (1 + e1)f(N)]) < eo.
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Notation

@ X ~ f(N) means Ve, e; > 0, IN stVN > N

€1,€2 €1,€2

Prob (X ¢ [(1 — e1)f(N), (1 + e1)f(N)]) < eo.

—|A+A,D=|A—A|
50 2N +1-8,D°=2N+1—D.
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Notation

@ X ~ f(N) means Ve, e; > 0, IN stVN > N

€1,€2 €1,€2

Prob (X ¢ [(1 — e1)f(N), (1 + e1)f(N)]) < eo.

—|A+A,D=|A—A|
50 2N +1-8,D°=2N+1—D.

New model: Binomial with parameter p(N ):

® 1/N = o(p(N)) and p(N) = o(1);
@ Prob(k € A) = p(N).

Conjecture (Martin-O’Bryant)
As N — oo, A is a.s. difference dominated.
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Main Result

p(N) as above, g(x) = 281X,
@ p(N) = o(N~¥2): D~ 25 ~ (Np(N))?;
@ p(N)=cN¥2 D~ g(c®)N,S~g (%) N
(c—0,D/S —2;c—o00,D/S— 1)
@ N2 =0o(p(N)): 8¢~ 2D ~ 4/p(N)>.

Can generalize to binary linear forms, still have critical
threshold.
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Example (Chernoff): t; iid binary random variables,
Y =" t, then

YA >0: Prob (|Y ~E[Y]| > \//\n) < 2e72,
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Key input: recent strong concentration results of Kim and
Vu (Applications: combinatorial number theory, random
graphs, ...).

Example (Chernoff): t; iid binary random variables,
Y =" t, then

YA >0: Prob (|Y ~E[Y]| > \//\n) < 2e72,

Need to allow dependent random variables.




Results

Key input: recent strong concentration results of Kim and
Vu (Applications: combinatorial number theory, random
graphs, ...).

Example (Chernoff): t; iid binary random variables,
Y =" t, then

YA >0: Prob (|Y ~E[Y]| > \//\n) < 2e72,

Need to allow dependent random variables.
Sketch of proofs: X € {S, D, S¢, D°}.

@ Prove E[X] behaves asymptotically as claimed;
@ Prove X is strongly concentrated about mean.
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Note: only need strong concentration for N=1/2 = o(p(N)).




Note: only need strong concentration for N=1/2 = o(p(N)).

Will assume p(N) = o(N~%/2) as proofs are elementary
(i.e., Chebyshev: Prob(|Y — E[Y]| > koy) < 1/k?)).




Note: only need strong concentration for N=%/2 = o(p(N)).

Will assume p(N) = o(N~%/2) as proofs are elementary
(i.e., Chebyshev: Prob(|Y — E[Y]| > koy) < 1/k?)).

For convenience let p(N) = N9, 6 € (1/2,1).
lID binary indicator variables:

5 1 with probability N—°
"N 7 10 with probability 1 — N~°.

X =S Xons E[X] = N9,




Proof

Lemma

P1(N) = 4N~(-9),
O=#{(mn):m<ne{l,....,N}A}L
With probability at least 1 — P;(N) have
Q X e [N 3N,

1NL1—6(1n1—6_
e 2N (2N 1) SOS

BNTTOENITO)
. :
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Proof

Lemma

P1(N) = 4N~(-9),
O=#{(mn):m<ne{l,....,N}A}L
With probability at least 1 — P;(N) have
Q X e [N 3N,

lNl—é(;Nl—é_l) §N1—6(§N1—6_1)
2 2 2 2

Proof:
@ (1) is Chebyshev: Var(X) = NVar(Xnn) < N2,
@ (2) follows from (1) and (3,) ways to choose 2 fromr.




Concentration

Lemma

@ f(4) = min (2 3-1), g(8) any function st

0 < g(9) <f(9).
o p(N)=N"°,d€e(1 (/2, 1), Py(N) = 4N-(@-9),

Po(N) = CN (f(5)-9(9))

With probability at least 1 — P;(N) — P»(N) have
D/S =2+ O(N-9@),

A
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Concentration

o f(d) = mlrl(2 3-1) g(s) any function st
0 < g(d) <f(9).
o p(N)=N"°,d€e(1 (/2, 1), Py(N) = 4N-(@-9),

Po(N) = N o,

With probability at least 1 — P;(N) — P»(N) have
D/S =2+ O(N-9@),

Proof: Show D ~ 20 + O(N3%), S ~ O + O(N3~%),

As O is of size N?~2% with high probability, need
2—-20>3—46o0ro6>1/2.
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Contribution from ‘diagonal’ terms lower order, ignore.
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Notation: m<n,m' <n’,m<m/,

v )1 fn—m=n"—-m’
m,n.men 0 otherwise.
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Difficulty: (m,n) and (m’,n’) could yield same differences.

Notation: m<n,m' <n’,m<m/,

v )1 fn—m=n"—-m’
m,n.men 0 otherwise.

E[Y] < N3 . N~% 4 N2.N-% < 2N3% As§>1/2,
expectednumberbad pairs << |O|.
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Analysis of D

Contribution from ‘diagonal’ terms lower order, ignore.
Difficulty: (m,n) and (m’,n’) could yield same differences.

Notation: m<n,m' <n’,m<m/,

v )1 fn—m=n"—-m’
m,n.men 0 otherwise.

E[Y] < N3 . N~% 4 N2.N-% < 2N3% As§>1/2,
expectednumberbad pairs << |O|.

Claim: oy < N"@with r(§) = 1 max(3 — 44,5 — 74). This
and Chebyshev conclude proof of theorem.

A




Proof of claim

Cannot use CLT as Ymnm o are not independent.
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Proof of claim

Cannot use CLT as Ymnm o are not independent.

Use Var(U + V) < 2Var(U) + 2Var(V).
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Proof of claim

Cannot use CLT as Ymnm o are not independent.
Use Var(U + V) < 2Var(U) + 2Var(V).
Write

E Ym,n,m’,n’ - E Um,n,m’,n"f‘g Vm,n,n’

with all indices distinct (at most one in common, if so must
be n =m’).

Var(U) = > Var(Unnmwa)+2 Y CoVar(Umna.n Ui )

(m,n,m’,n")z
(M,n,m’,n’)

A



Analyzing Var(Um nm n)

At most N3 tuples.
Each has variance N=% — N—80 < N—49,

ThUS ZVar(Um7n7m/7n/) S N3_46.




Analyzing COV&F(Umjnjm/’n/, Urﬁ,ﬁ,rﬁ’,ﬁ’)

@ All 8 indices distinct: independent, covariance of 0.

@ 7 indices distinct: At most N2 choices for first tuple, at
most N2 for second, get

EUnU@)] —E[UnEU@z] = NP —N"*N"% < N7

@ Argue similarly for rest, get < N5770 4 N3-49,
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Open Problems
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Probability k in an MSTD set (uniform model)

~v(k,n) := Prob(k € A: A C [1,n]is an MSTD set)

Observed y(k,n)

) \
osof| | [\
Il | “
0ssf | | ‘
|| |
| |
U A A \ ||
0s0F | ANMAAA AN kR |
/ V
| / \ |
L / \
045 \‘ P \ |
|/ Ll
i . . . . L g
I 2 ) 60 80 T 100

Figure: Observed ~(k,100), random sample 4458 MSTD sets.

Fix a constant 0 < o < 1. Then limp_, y(k,n) = 1/2 for
lan] <k <n-— |an].
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Generalization of main result

Theorem (Hegarty-M): Binomial model with parameter p(N) as
before, u, v be non-zero integers with u > |v|, gcd(u,v) = 1 and
(u,v) # (1,1). Putf(x,y) := ux 4+ vy and let D; denote the random
variable |f(A)|. Then the following three situations arise:

© p(N) =0o(N-1/2): Then
Dy ~ (N -p(N))>.

@ p(N) =c- N2 for some ¢ € (0, 0) : Define the function
Ouy : (0,00) — (O,u + |v|) by

G (x) = (0 V) = 2v] (S5 ) = (= e

Then
CZ
Dt ~ Quyv (U) N.

© N-Y2=0(p(N)): Let Df := (u + |v|)N — Ds. Then Df ~ s(“,\“‘;lz
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Generalization of main results (cont)

Let f, g be two binary linear forms. Say f dominates g for the
parameter p(N) if, as N — oo, |f(A)| > |g(A)| almost surely when A is
a random subset (binomial model with parameter p(N)).

Theorem (Hegarty-M): f(x,y) = uix + upy and g(x,y) = Uxx + gay,
where u; > |vi| > 0, gcd(u;,vi) = 1 and (uz, Vo) # (ug, £vy). Let

(uv)-—i M+u—|v| _ 3u—|v|
TP N 2 )7 Teuw -

The following two situations can be distinguished :

@ U + |vi| > Uz + |v2] and a(ug, Vi) < a(uz,Vvz). Then f dominates
g for all p such that N=3/5 = o(p(N)) and p(N) = o(1). In
particular, every other difference form dominates the form x —y
in this range.

@ Uy + |vi| > Uz + |v2| and a(uy, Vi) > a(uz,Vv2). Then there exists
ctg > 0 such that one form dominates for p(N) < cN~—1/2
(c < crg) and other dominates for p(N) > cN~/2 (¢ > ¢y g).

|~ -~ S
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Open Problems

@ One unresolved matter is the comparison of arbitrary difference
forms in the range where N—3/4 = O(p) and p = O(N—3/%),
Note that the property of one binary form dominating another is
not monotone, Or even Convex.

@ A very tantalizing problem is to investigate what happens while
crossing a sharp threshold.

@ One can ask if the various concentration estimates can be
improved (i.e., made explicit).
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Mathematica Code: Computing Sum/Difference Set

setA ={1,2,5,7,11,13,17,19};

sumset = {};

diffset = {};

n = Length[setA];

For[i=1,i<=n, i++,

For[j=1,j<=n, j++,

{

sum = setA[[i]] + setA[[j]];

diff = setA[[i]] - setA[[j]];

IffMemberQ[sumset, sum] == False, sumset = AppendTo[sumset, sum]];
IffMemberQIdiffset, diff] == False, diffset = AppendTo[diffset, diff]];

HI

sumset = Sort[sumset];

diffset = Sort[diffset];

Print[sumset];

Print[diffset];

Print["Size of sumset =", Length[sumset], " and size of difference set ="
Length[diffset], "."];

[ =3 = 5 ""'''”””™”™”™*
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