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L-functions

L-functions generalizes the Riemann zeta-function:

L(s,f) = iafn(?) = J] L(s;H)™, Re(s)>1.
n=1 p prime

Explicit Formula: Relates sums over zeros to sums over
primes.
Functional Equation:

A(s,f) = Ax(s,f)L(s,f) = A(1—s,f).

Generalized Riemann Hypothesis (RH):

. 1 _ 1 .
All non-trivial zeros have Re(s) = > can write zeros as > +i7.
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Measures of Spacings: n-Level Density

n-level density for one function

J15--+5n
distinct

@ Test function ¢(x) := []; ¢i(xi), ¢i is even Schwartz
function.

@ Fourier Transforms ¢ has compact support: (—a, o).
@ Zeros scaled by L.
@ Most of contribution is from low zeros.
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Katz-Sarnak Conjecture

Conjecture (Katz-Sarnak)

(In the limit) Scaled distribution of zeros near central point
agrees with scaled distribution of eigenvalues near 1 of a
classical compact group.

Need to average n-level density over a family and take the limit
of this parameter; as |[N| — oo,

’f Zan(¢> —>/ /¢ Wi g7 (x)dx.

feFN
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Maass Forms

Definition: Maass Forms

A Maass form on a group I' € PSL(2,R) is a function f : H — R
which satisfies:

Q f(yz)=f(z)forallyeT,
@ f vanishes at the cusps of I, and
@ Af = \f for some A\ = s(1 —s) > 0, where

2
A=—y?2 (2
<8X2 " 8y2>

is the Laplace-Beltrami operator on #.

@ Coefficients contain information about partitions.
@ For full modular group, s = 1/2 + itj with t; € R.
@ Test Katz-Sarnak conjecture.
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L-function associated to Maass forms

Write Fourier expansion of Maass form u; as

j(2) = cosh(t) > VN (K (2rInly )e?™.
n£0
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L-function associated to Maass forms

Write Fourier expansion of Maass form u; as

j(2) = cosh(t) > VN (K (2rInly )e?™.
n#0
Define L-function attached to u; as

o)~ 3 A,-n(:) 11 <1 B ajp(sp)>—1 (1 B 6,-p(§)>—1

n>1 p

where oj(p) + 5i(P) = Aj(P), o(P)B(P) =1, XA(1)=1.
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L-function associated to Maass forms

Write Fourier expansion of Maass form u; as

j(2) = cosh(t) > VN (K (2rInly )e?™.
n#0
Define L-function attached to u; as

o)~ 3 A,-n(:) 11 <1 B ajp(sp)>—1 (1 B 6,-p(§)>—1

n>1 p

where oj(p) + 5i(P) = Aj(P), o(P)B(P) =1, XA(1)=1.
Also,

Aj(p) < p7/®.
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n-level over a family

@ Recall for Katz-Sarnak Conjecture,

1
Fu 2 Puel9) = W > Z H¢. (Lw(">

feFn feFn 11 -----

o [ [ W g (X)ax
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n-level over a family

@ Recall for Katz-Sarnak Conjecture,

1
Fu 2 Puel9) = W > Z H¢. (Lw(">

feFn feFn 11 -----

o [ [ W g (X)ax

@ For Dirichlet/cuspidal newform L-functions, there are many
with a given conductor.

@ Problem: For Maass forms, expect at most one with a
given conductor.
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n-level over a family, continued

@ Solution: Average over Laplace eigenvalues \s = 1/4 + tjz.
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n-level over a family, continued

@ Solution: Average over Laplace eigenvalues \s = 1/4 + tjz.
@ two choices for the weight function ht:

hit(t) = exp (—t7/T?),
which picks out eigenvalues near the origin,
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n-level over a family, continued

@ Solution: Average over Laplace eigenvalues \s = 1/4 + tjz.
@ two choices for the weight function ht:

hiT () = exp (—t7/T?),
which picks out eigenvalues near the origin, or
ho.7 () = exp (—(t — T)?/L?) +exp (—(4 + T)?/L?),
which picks out eigenvalues centered at =T .
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n-level over a family, continued

@ Solution: Average over Laplace eigenvalues \s = 1/4 + tjz.
@ two choices for the weight function ht:
hy 7 (t) = exp (_tjz/Tz)a
which picks out eigenvalues near the origin, or
ho.7 () = exp (—(t — T)?/L?) +exp (—(4 + T)?/L?),
which picks out eigenvalues centered at =T .
@ Weighted 1-level density becomes

0 hTm 2y 200

ujl|?
1 hr(t)
:Zh )ZHLHJZ ZH@(VIOQR)
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1-Level Density

1-level density for one function
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1-Level Density

1-level density for one function

D(uj; ¢)

_ . . 2 logp » /2logp

= Terms involving I + o9 R Z % < oo R

B 2)\j(p)logp(§<logp> _ZZ)\j(pz)IogpA<2logp)
~ pzlogR logR plogR logR

1
© <IogR>

© Explicit formula.
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1-Level Density

1-level density for one function

D(uj; ¢)

~log(1 +t?) 2 logp ~ /2logp

= ¢(0 logR +Iongp: p ¢<IogR>
Z p)logp - <I09p>_ZZAj(pz)logp(g(ZIogp)
> p2 IogR log R 5 plogR logR

1
0 (IogR>

© Explicit formula.
© Gamma function identities

’
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1-Level Density

1-level density for one function

D(uj; ¢)
o log(1+t7)  g(0) loglog R
= (0) Iog R 2 © ( logR )
Iogp <Iogp> B 2Aj(p2)logpﬂ<2Iogp)
Zp: szogR logR Zp: plogR ¢ logR

© Explicit formula.
© Gamma function identities
© Prime Number Theorem

y
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Average 1-level density

The weighted 1-level density becomes:

hT () Z u 2
S Tz | H

2
_ ¢(0) 40 loglogR Z ht(tjg ~ log(1+t7)
2 logR ht(tj [luj ] logR

HUJ

1 Z 2logp A<Iogp> hT(tJ
ZJ TIL(“ ~“pzlogR  \logR luj 12 N
1 2Iogp (2Iogp> hr( tJ
o« hr(g Z Z 2
> ”Lj(sz) 5 plogR logR [y
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Average 1-level density

The weighted 1-level density becomes:

1 he ()
D(uj; ¢)
hr(4) Z 2=\
Tz [ujl
2
#(0) (IoglogR) 1 h(tj) ~, .. 109(1 +t7)
= +0 + Z 0
2 logR > FLT?\Z Mk log R

iT(tJ) 3 21logp (g(logp) Z hr(t) (p)

T3 4 phiogr” \ogR ) 2 2

1 2Iogp 2logp hr( tJ
_Zj hr (1)) Z plogR ( logR ) Z HuJH2
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Kuznetsov Trace Formula

To tackle terms with \j(p) and \j(p?) we need the Kuznetsov
Trace Formula:

DA
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Kuznetsov Trace Formula

To tackle terms with \j(p) and \j(p?) we need the Kuznetsov
Trace Formula:

= some function that depends just on h, m, and n

7=
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Kuznetsov Trace Formula

—_ h(r
Znuuz M + g [T g =

6;'“ /rtanh(r)h( ar+ = & Z %C) /RJ" (47“5%) coz(f:();r)dr

c>1

where - L i
7(m,r) =72 T(1/2+ir) 21+ 2ir) "2 30 ("

S(n,m;c) = > g2 (mx+mx*)/c
0<x<c—1,gcd(x,c)=1

- (—l)m 1 2m-ir
Jir(X):mz::om!r(erirJrl) <2X> .

’
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Kuznetsov Formula

Z i Hz/\, (M)A () + %/RT(m,r)T(n,r)icozr(]E;r)dr _

5;m /rtanh(r)h( ar + = - Z = cm;C) /RJ" (M\/ﬁ) coz(r:();r)dr

Cc
c>1

)
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Kuznetsov Formula

h(t) SW T I By hr) .
zj: Hujth,-(m)Aj(nHE/Rf(m,r)r(n,r)icosh(mdr _
Y N (S

c>1

RS SEBEEZDmZm.
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Kuznetsov Formula

Zlh(i))\j(m)w-&- %/Wﬂn,r)%dr =

R

6;"” /1\:rtanh(r)h(r)dr-&-2?i 7S(n,m;c)/RJir (47“/%) h(r)r

c cosh(rr)

2Q
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Kuznetsov Formula

5 8 mn @ + & [ 7o o)

cosh(wr)

6:; '/Artanh rydr + = 2i Z S(n, m; C)/ (4Wr) h(nr_g,

= cosh(xr)

@ The only A\(m)X(n) term that contributes is when
m=n=1.

@ Them=1,n=pandm=1,n = p? terms do not
contribute because of the oy, n function.
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Result: 1-level density

Theorem (AILMZ, 2011)

If ht = h17'|' or h27'|', T > ocandL <« T/lOgT, and o < 1/6
then 1-level density is

hr () _9(0) - loglogR
> T“'zjzlluuz )= 13+ +0 (Pgn )

+ O(T30/271/4+e + To/271/4+e)‘
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Result: 1-level density

Theorem (AILMZ, 2011)

If ht = h17'|' or h27'|', T > ocandL <« T/lOgT, and o < 1/6
then 1-level density is

hr () _9(0) - loglogR
> T“'zjzlluuz )= 13+ +0 (Pgn )

+ O(T30/271/4+e + To/271/4+e)‘

@ This matches with the orthogonal family density as
predicted by Katz-Sarnak.




Results
ooe

Support

Main reason support so small due to bounds on
Bessel-Kloosterman piece.
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Support

Main reason support so small due to bounds on
Bessel-Kloosterman piece.

Can distinguish unitary and symplectic from the 3 orthogonal
groups, but 1-level density cannot distinguish the orthogonal
groups from each other if supportin (-1, 1).
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Support

Main reason support so small due to bounds on
Bessel-Kloosterman piece.

Can distinguish unitary and symplectic from the 3 orthogonal
groups, but 1-level density cannot distinguish the orthogonal
groups from each other if supportin (-1, 1).

2-level density can distinguish orthogonal groups with arbitrarily
small support; additional term depending on distribution of
signs of functional equations.
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2- Level Density

To differentiate between even and odd in orthogonal family, we
calculated the 2-level density:

) 1 hr(t)
D2(¢) == 0 Z ”L ”12 Z¢1(7(h) $2(70))
2 Tal? ] 112
Z hr ( 13[ #i(0) La0 Iog(1+t,-2) loglog R
hL ) < |uJ||2 1 il logR logR
il

plogR logR

B 2)\, Iogp <Iogp)_ 2)\j(p2)logpA_(2Iogp>
Z p¥logR logR zp: o '




Results

2- Level Density

To differentiate between even and odd in orthogonal family, we
calculated the 2-level density:

) 1 hr(t)
D2(¢) == 0 Z ”L ”12 Z¢1(7(h) $2(70))
2 Tal? ] i1
Zh ﬁ #i(0) L a0 |09(1+th) loglogR
hT : ugl12 23 il logR logR
LI] 2
B Z 2)\, Iogp logp) Z 2)j(p?) log pdA)_ 2logp
p?logR logR —~  plogR "\logR /|’

25 terms, handled by Cauchy-Schwarz or Kuznetsov.
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Result: 2-level density

Theorem (AILMZ, 2011)

Same conditions as before, for o < 1/12 have

oir = 1122 +50)] +2 [ L@

i=1

—~$1(0)¢1(0) — 26165(0) + ($162)(OIN (1)
loglogR
+0 <|og 0 ) .
Note that A/(—1) is the weighted percent that have odd sign in
functional equation.
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Conclusion

@ We calculated 1-level for o < 1/6.

@ Calculated 2-level densities for o < 1/12 in order to
distinguish the orthogonal families.

@ We showed agreement with Katz-Sarnak conjecture.

Thank you!
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