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L-functions

L-functions generalizes the Riemann zeta-function:

L(s, f ) =
∞∑

n=1

af (n)
ns =

∏

p prime

Lp (s, f )
−1 , Re(s) > 1.

Explicit Formula: Relates sums over zeros to sums over
primes.
Functional Equation:

Λ(s, f ) = Λ∞(s, f )L(s, f ) = Λ(1 − s, f ).

Generalized Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+ iγ.
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Measures of Spacings: n-Level Density

n-level density for one function

Dn,f (φ) =
∑

j1,...,jn
distinct

φ1

(
Lfγ

(j1)
f

)
· · ·φn

(
Lfγ

(jn)
f

)

Test function φ(x) :=
∏

i φi(xi), φi is even Schwartz
function.

Fourier Transforms φ̂ has compact support: (−σ, σ).

Zeros scaled by Lf .

Most of contribution is from low zeros.
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Katz-Sarnak Conjecture

Conjecture (Katz-Sarnak)

(In the limit) Scaled distribution of zeros near central point
agrees with scaled distribution of eigenvalues near 1 of a
classical compact group.

Need to average n-level density over a family and take the limit
of this parameter; as |N| → ∞,

1
|FN |

∑

f∈FN

Dn,f (φ) →
∫

· · ·
∫

φ(x)Wn,G(F)(x)dx .
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Cuspidal Maass Forms
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Maass Forms

Definition: Maass Forms
A Maass form on a group Γ ⊂ PSL(2,R) is a function f : H → R

which satisfies:
1 f (γz) = f (z) for all γ ∈ Γ,
2 f vanishes at the cusps of Γ, and
3 ∆f = λf for some λ = s(1 − s) > 0, where

∆ = −y2
(

∂2

∂x2 +
∂2

∂y2

)

is the Laplace-Beltrami operator on H.

Coefficients contain information about partitions.
For full modular group, s = 1/2 + itj with tj ∈ R.
Test Katz-Sarnak conjecture.
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L-function associated to Maass forms

Write Fourier expansion of Maass form uj as

uj(z) = cosh(tj)
∑

n 6=0

√
yλj(n)Kitj (2π|n|y)e2πinx .
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L-function associated to Maass forms

Write Fourier expansion of Maass form uj as

uj(z) = cosh(tj)
∑

n 6=0

√
yλj(n)Kitj (2π|n|y)e2πinx .

Define L-function attached to uj as

L(s, uj) =
∑

n≥1

λj(n)
ns =

∏

p

(
1 − αj(p)

ps

)−1(
1 − βj(p)

ps

)−1

where αj(p) + βj(p) = λj(p), αj(p)βj(p) = 1, λj(1) = 1.
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L-function associated to Maass forms

Write Fourier expansion of Maass form uj as

uj(z) = cosh(tj)
∑

n 6=0

√
yλj(n)Kitj (2π|n|y)e2πinx .

Define L-function attached to uj as

L(s, uj) =
∑

n≥1

λj(n)
ns =

∏

p

(
1 − αj(p)

ps

)−1(
1 − βj(p)

ps

)−1

where αj(p) + βj(p) = λj(p), αj(p)βj(p) = 1, λj(1) = 1.
Also,

λj(p) ≪ p7/64.
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n-level over a family

Recall for Katz-Sarnak Conjecture,

1
|FN |

∑

f∈FN

Dn,f (φ) =
1

|FN |
∑

f∈FN

∑

j1,...,jn
ji 6=±jk

∏

i

φi

(
Lfγ

(ji )
E

)

→
∫

· · ·
∫

φ(x)Wn,G(F)(x)dx .
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n-level over a family

Recall for Katz-Sarnak Conjecture,

1
|FN |

∑

f∈FN

Dn,f (φ) =
1

|FN |
∑

f∈FN

∑

j1,...,jn
ji 6=±jk

∏

i

φi

(
Lfγ

(ji )
E

)

→
∫

· · ·
∫

φ(x)Wn,G(F)(x)dx .

For Dirichlet/cuspidal newform L-functions, there are many
with a given conductor.

Problem: For Maass forms, expect at most one with a
given conductor.
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n-level over a family, continued

Solution: Average over Laplace eigenvalues λf = 1/4 + t2
j .
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n-level over a family, continued

Solution: Average over Laplace eigenvalues λf = 1/4 + t2
j .

two choices for the weight function hT :

h1,T (tj) = exp (−t2
j /T 2),

which picks out eigenvalues near the origin,
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n-level over a family, continued

Solution: Average over Laplace eigenvalues λf = 1/4 + t2
j .

two choices for the weight function hT :

h1,T (tj) = exp (−t2
j /T 2),

which picks out eigenvalues near the origin, or

h2,T (tj) = exp (−(tj − T )2/L2) + exp (−(tj + T )2/L2),

which picks out eigenvalues centered at ±T .
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n-level over a family, continued

Solution: Average over Laplace eigenvalues λf = 1/4 + t2
j .

two choices for the weight function hT :

h1,T (tj) = exp (−t2
j /T 2),

which picks out eigenvalues near the origin, or

h2,T (tj) = exp (−(tj − T )2/L2) + exp (−(tj + T )2/L2),

which picks out eigenvalues centered at ±T .
Weighted 1-level density becomes

1
∑

j
hT (tj )
‖uj‖2

∑

j

hT (tj)
‖uj‖2 Dn,uj (φ)

=
1

∑
j

hT (tj )
‖uj‖2

∑

j

hT (tj)
‖uj‖2

∑

j1,...,jn
ji 6=±jk

∏

i

φi

(
γ

2π
log R

)
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Results
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1-Level Density

1-level density for one function

D(uj ;φ) =
∑

γ

φ
( γ

2π
log R

)
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1-Level Density

1-level density for one function

D(uj ;φ)

= Terms involving Γ +
2

log R

∑

p

log p
p

φ̂

(
2 log p
log R

)

−
∑

p

2λj(p) log p

p
1
2 log R

φ̂

(
log p
log R

)
−
∑

p

2λj(p2) log p
p log R

φ̂

(
2 log p
log R

)

+O
(

1
log R

)

1 Explicit formula.
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1-Level Density

1-level density for one function

D(uj ;φ)

= φ̂(0)
log(1 + t2

j )

log R
+

2
log R

∑

p

log p
p

φ̂

(
2 log p
log R

)

−
∑

p

2λj(p) log p

p
1
2 log R

φ̂

(
log p
log R

)
−
∑

p

2λj(p2) log p
p log R

φ̂

(
2 log p
log R

)

+O
(

1
log R

)

1 Explicit formula.
2 Gamma function identities
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1-Level Density

1-level density for one function

D(uj ;φ)

= φ̂(0)
log(1 + t2

j )

log R
+

φ(0)
2

+ O
(

log log R
log R

)

−
∑

p

2λj(p) log p

p
1
2 log R

φ̂

(
log p
log R

)
−
∑

p

2λj(p2) log p
p log R

φ̂

(
2 log p
log R

)

1 Explicit formula.
2 Gamma function identities
3 Prime Number Theorem
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Average 1-level density

The weighted 1-level density becomes:

1
∑

j
hT (tj )
‖uj‖2

∑

j

ht(tj)
‖uj‖2 D(uj ;φ)

=
φ(0)

2
+ O

(
log log R

log R

)
+

1
∑

j
ht (tj )
‖uj‖2

∑

j

ht(tj)
‖uj‖2 φ̂(0)

log(1 + t2
j )

log R

− 1
∑

j
hT (tj )
‖uj‖2

∑

p

2 log p

p
1
2 log R

φ̂

(
log p
log R

)∑

j

hT (tj)
‖uj‖2 λj(p)

− 1
∑

j
hT (tj )
‖uj‖2

∑

p

2 log p
p log R

φ̂

(
2 log p
log R

)∑

j

hT (tj)
‖uj‖2 λj(p

2)
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Average 1-level density

The weighted 1-level density becomes:

1
∑

j
hT (tj )
‖uj‖2

∑

j

ht(tj)
‖uj‖2 D(uj ;φ)

=
φ(0)

2
+ O

(
log log R

log R

)
+

1
∑

j
ht (tj )
‖uj‖2

∑

j

ht(tj)
‖uj‖2 φ̂(0)

log(1 + t2
j )

log R

− 1
∑

j
hT (tj )
‖uj‖2

∑

p

2 log p

p
1
2 log R

φ̂

(
log p
log R

)∑

j

hT (tj)
‖uj‖2 λj(p)

− 1
∑

j
hT (tj )
‖uj‖2

∑

p

2 log p
p log R

φ̂

(
2 log p
log R

)∑

j

hT (tj)
‖uj‖2 λj(p

2)
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Kuznetsov Trace Formula

To tackle terms with λj(p) and λj(p2) we need the Kuznetsov
Trace Formula:
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Kuznetsov Trace Formula

To tackle terms with λj(p) and λj(p2) we need the Kuznetsov
Trace Formula:

∑

j

h(tj)
‖uj‖2λj(m)λj(n)

= some function that depends just on h, m, and n
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Kuznetsov Trace Formula

∑

j

h(tj)
‖uj‖2

λj(m)λj(n) +
1

4π

∫

R

τ(m, r)τ(n, r)
h(r)

cosh(πr)
dr =

δn,m

π2

∫

R

r tanh(r)h(r)dr +
2i
π

∑

c≥1

S(n,m; c)
c

∫

R

Jir

(

4π
√

mn
c

)

h(r)r
cosh(πr)

dr

where
τ(m, r) = π

1
2+irΓ(1/2 + ir)−1ζ(1 + 2ir)−1n− 1

2
∑

ab=|m|

(a
b

)ir .

S(n,m; c) =
∑

0≤x≤c−1,gcd(x ,c)=1

e2πi(nx+mx∗)/c

Jir (x) =
∞∑

m=0

(−1)m

m!Γ(m + ir + 1)

(
1
2

x
)2m+ir

.
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Kuznetsov Formula

∑

j

h(tj)
‖uj‖2

λj(m)λj(n) +
1

4π

∫

R

τ(m, r)τ(n, r)
h(r)

cosh(πr)
dr =

δn,m

π2

∫

R

r tanh(r)h(r)dr +
2i
π

∑

c≥1

S(n,m; c)
c

∫

R

Jir

(

4π
√

mn
c

)

h(r)r
cosh(πr)

dr
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Kuznetsov Formula

∑

j

h(tj)
‖uj‖2

λj(m)λj(n) +
1

4π

∫

R

τ(m, r)τ(n, r)
h(r)

cosh(πr)
dr =

δn,m

π2

∫

R

r tanh(r)h(r)dr +
2i
π

∑

c≥1

S(n,m; c)
c

∫

R

Jir

(

4π
√

mn
c

)

h(r)r
cosh(πr)

dr
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Kuznetsov Formula

∑

j

h(tj)
‖uj‖2

λj(m)λj(n) +
1

4π

∫

R

τ(m, r)τ(n, r)
h(r)

cosh(πr)
dr =

δn,m

π2

∫

R

r tanh(r)h(r)dr +
2i
π

∑

c≥1

S(n,m; c)
c

∫

R

Jir

(

4π
√

mn
c

)

h(r)r
cosh(πr)

dr
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Kuznetsov Formula

∑

j

h(tj)
‖uj‖2

λj(m)λj(n) +
1

4π

∫

R

τ(m, r)τ(n, r)
h(r)

cosh(πr)
dr =

δn,m

π2

∫

R

r tanh(r)h(r)dr +
2i
π

∑

c≥1

S(n,m; c)
c

∫

R

Jir

(

4π
√

mn
c

)

h(r)r
cosh(πr)

dr

The only λ(m)λ(n) term that contributes is when
m = n = 1.

The m = 1, n = p and m = 1, n = p2 terms do not
contribute because of the δm,n function.
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Result: 1-level density

Theorem (AILMZ, 2011)

If hT = h1,T or h2,T , T → ∞ and L ≪ T/ log T , and σ < 1/6
then 1-level density is

1
∑

j
hT (tj )
‖uj‖2

∑

j

hT (tj)
‖uj‖2 D(uj ;φ) =

φ(0)
2

+ φ̂(0) + O
(

log log R
log R

)

+ O(T 3σ/2−1/4+ǫ + T σ/2−1/4+ǫ).
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Result: 1-level density

Theorem (AILMZ, 2011)

If hT = h1,T or h2,T , T → ∞ and L ≪ T/ log T , and σ < 1/6
then 1-level density is

1
∑

j
hT (tj )
‖uj‖2

∑

j

hT (tj)
‖uj‖2 D(uj ;φ) =

φ(0)
2

+ φ̂(0) + O
(

log log R
log R

)

+ O(T 3σ/2−1/4+ǫ + T σ/2−1/4+ǫ).

This matches with the orthogonal family density as
predicted by Katz-Sarnak.
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Support

Main reason support so small due to bounds on
Bessel-Kloosterman piece.
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Support

Main reason support so small due to bounds on
Bessel-Kloosterman piece.

Can distinguish unitary and symplectic from the 3 orthogonal
groups, but 1-level density cannot distinguish the orthogonal
groups from each other if support in (−1, 1).
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Support

Main reason support so small due to bounds on
Bessel-Kloosterman piece.

Can distinguish unitary and symplectic from the 3 orthogonal
groups, but 1-level density cannot distinguish the orthogonal
groups from each other if support in (−1, 1).

2-level density can distinguish orthogonal groups with arbitrarily
small support; additional term depending on distribution of
signs of functional equations.
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2- Level Density

To differentiate between even and odd in orthogonal family, we
calculated the 2-level density:

D∗
2(φ) :=

1
∑

j
hT (tj )
‖uj‖2

∑

j

hT (tj)
‖uj‖2

∑

j1,j2

φ1(γ
(j1))φ2(γ(j2))

=
1

∑
j

hT (tj )
‖uj‖2

∑

j

hT (tj)
‖uj‖2

2∏

i=1

∣∣∣∣∣
φi(0)

2
+ φ̂i(0)

log(1 + t2
j )

log R
+ O

(
log log R

log R

)

−
∑

p

2λj(p) log p

p
1
2 log R

φ̂i

(
log p
log R

)
−
∑

p

2λj(p2) log p
p log R

φ̂i

(
2 log p
log R

)∣∣∣∣∣ .
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2- Level Density

To differentiate between even and odd in orthogonal family, we
calculated the 2-level density:

D∗
2(φ) :=

1
∑

j
hT (tj )
‖uj‖2

∑

j

hT (tj)
‖uj‖2

∑

j1,j2

φ1(γ
(j1))φ2(γ(j2))

=
1

∑
j

hT (tj )
‖uj‖2

∑

j

hT (tj)
‖uj‖2

2∏

i=1

∣∣∣∣∣
φi(0)

2
+ φ̂i(0)

log(1 + t2
j )

log R
+ O

(
log log R

log R

)

−
∑

p

2λj(p) log p

p
1
2 log R

φ̂i

(
log p
log R

)
−
∑

p

2λj(p2) log p
p log R

φ̂i

(
2 log p
log R

)∣∣∣∣∣ .

25 terms, handled by Cauchy-Schwarz or Kuznetsov.
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Result: 2-level density

Theorem (AILMZ, 2011)

Same conditions as before, for σ < 1/12 have

D∗
2,F =

2∏

i=1

[
φi(0)

2
+ φ̂i(0)

]
+ 2

∫ ∞

−∞
|z|φ̂1(z)φ̂2(z)dz

−φ1(0)φ1(0)− 2φ̂1φ2(0) + (φ1φ2)(0)N (−1)

+O
(

log log R
log R

)
.

Note that N (−1) is the weighted percent that have odd sign in
functional equation.
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Conclusion
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Recap

We calculated 1-level for σ < 1/6.

Calculated 2-level densities for σ < 1/12 in order to
distinguish the orthogonal families.

We showed agreement with Katz-Sarnak conjecture.

Thank you!
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