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Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at
t, b, tg, ...

Question: What rules govern the spacings between the t;?

Examples:
@ Spacings b/w Energy Levels of Nuclei.
@ Spacings b/w Eigenvalues of Matrices.
@ Spacings b/w Primes.
@ Spacings b/w nka mod 1.
@ Spacings b/w Zeros of L-functions.
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Sketch of proofs

In studying many statistics, often three key steps:
© Determine correct scale for events.

@ Develop an explicit formula relating what we want to
study to something we understand.

© Use an averaging formula to analyze the quantities
above.

It is not always trivial to figure out what is the correct
statistic to study!
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Background Material: Linear Algebra

Eigenvalue, Eigenvector

Say v ;é 0 isan eigenvector of A with eigenvalue X if
AV = )\V.
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Background Material: Linear Algebra

Eigenvalue, Eigenvector

S@)/ v ;é_)ﬁ) is an eigenvector of A with eigenvalue X if
AV =)v.

Example:
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Background Material: Probability

Probability Density

A random variable X has a probability density p(x) if
° p(x) > 0;
o [ p(x)dx =1;
@ Prob(X € [a,b]) = [ p(x)dx.
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Background Material: Probability

Probability Density

A random variable X has a probability density p(x) if
° p(x) > 0;
o [ p(x)dx =1;
@ Prob(X € [a,b]) = [ p(x)dx.

Examples:
@ Exponential: p(x) = e*/*/x for x > 0;
(X—p)2 /262
@ Normal: p(x) = e~ ¢z,
© Uniform: p(x) = ;. fora < x < b and 0 otherwise.
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Background Material: Probability (cont)

Key Concepts
@ Mean (average value): = [ xp(x)dx.
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Background Material: Probability (cont)

Key Concepts
@ Mean (average value): = [ xp(x)dx.
@ Variance (how spread out): 02 = [~ (x — u)p(x)dx.
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Background Material: Probability (cont)

Key Concepts
@ Mean (average value): = [ xp(x)dx.
@ Variance (how spread out): 02 = [~ (x — u)p(x)dx.
o k™ moment: = [ x*p(x)dx.
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Background Material: Probability (cont)

Key Concepts
@ Mean (average value): = [ xp(x)dx.
@ Variance (how spread out): 02 = [~ (x — u)p(x)dx.
o k™ moment: = [ x*p(x)dx.

Key observation

As a nice function is given by its Taylor series, a nice
probability density is determined by its moments.
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.
Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into
nucleus, see what comes out.

Fundamental Equation:

H wn = Enz/fn

H : matrix, entries depend on system
E, : energy levels
1 . energy eigenfunctions

A7
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Origins (continued)

@ Statistical Mechanics: for each configuration,
calculate quantity (say pressure).

@ Average over all configurations — most configurations
close to system average.

@ Nuclear physics: choose matrix at random, calculate
eigenvalues, average over matrices (real Symmetric

A = AT, complex Hermitian A' = A).
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Random Matrix Ensembles

dj1 dip a3z -+ AN
djp dpp dpz -+ AN
T
A = : : : .. : = A, aj=aj
aiNn don A3n o AnN
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dj1 dip a3z -+ AN
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T
A = : : : .. : = A, aj=aj
aiNn don A3n o AnN
Fix p, define

Prob(A) = H p(a).

1<i<j<N
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Random Matrix Ensembles

dj1 dip a3z -+ AN
djp dpp dpz -+ AN
T
A = : : : .. : = A, aj=aj
aiNn don A3n o AnN
Fix p, define

Prob(A) = H p(a).

1<i<j<N

This means

Bi
Prob (A : g € [Oéij,ﬁij]) = H /X p(Xij)dXij-

1<i<j<N A=
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Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but it is the
matrix elements that are chosen randomly and
independently.
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Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but it is the
matrix elements that are chosen randomly and
independently.

Eigenvalue Trace Lemma
Let A be an N x N matrix with eigenvalues Aj(A). Then

Trace(A*) = > A(A)K,

where
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Eigenvalue Distribution

d(X — Xp) is a unit point mass at Xo:
S22 F(x)0(x — Xo)dx = f(Xo).
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Eigenvalue Distribution

d(X — Xp) is a unit point mass at Xo:
S22 F(x)0(x — Xo)dx = f(Xo).

To each A, attach a probability measure:
1 Ai(A)
pan(X) = N;é (X - ﬂ)
b #{n: 2R € [ab]f
| it -

N
St M(A) Trace(A¥)

K" moment = . = —
2kN 2+l 2kNz+1
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Wigner’s Semi-Circle Law

Wigner’s Semi-Circle Law

N x N real symmetric matrices, entries i.i.d.r.v. from a
fixed p(x) with mean 0, variance 1, and other moments
finite. Then for almost all A, as N — ~©

x) 2V/1-x2 if|x] <1
HAN 0 otherwise.
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SKETCH OF PROOF: Correct Scale

N

Trace(A?) = > N(A).

i=1

By the Central Limit Theorem:

N N N N
Trace(A?) = ZZaijaji - ZZaﬁ ~ N2

N

Gives NAve( )\ (A)?) ~ NZ2or Ave()(A)) ~ vN.
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SKETCH OF PROOF: Averaging Formula

Recall k-th moment of pan(X) is Trace(Ak)/2XNk/2+1,

Average k-th moment is
Trace(A¥)
/ / kN K/2+1 Hp(a”)da”'

Proof by method of moments: Two steps

@ Show average of k-th moments converge to moments
of semi-circle as N — oo;

@ Control variance (show it tends to zero as N — o0).
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SKETCH OF PROOF: Averaging Formula for Second Moment

Substituting into expansion gives

22N2 / / 2| -p(az1)day; - - - p(ann )dann

Iljl

Integration factors as

[e.o]
/ arp(a;)da;
ajj=—00

Higher moments involve more advanced combinatorics
(Catalan numbers).

H / p(aw)day = 1.
a

k')#IJ) K=7—00
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Numerical example: Gaussian density

Distribution of eigenvalues--Gaussian, N=400, 500 matrices
0.025 T T T

0.015

0.005

0
-15 -1 -0.5 0 0.5 1 15

500 Matrices: Gaussian 400 x 400
p(x) = e/
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Numerical example: Cauchy density p(x) = 1/7(1 + x?)
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Numerical example: Cauchy density p(x) = 1/7(1 + x?)

2500

The eigenvalues of the Cauchy
distribution are NOT semicirular.

Y
-300 -200 -100 0 100 200 300

Cauchy Distribution: p(x) = riXZ)
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GOE Conjecture

GOE Conjecture:

As N — oo, the probability density of the spacing b/w
consecutive normalized eigenvalues approaches a limit
independent of p.
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GOE Conjecture

GOE Conjecture:

As N — oo, the probability density of the spacing b/w
consecutive normalized eigenvalues approaches a limit
independent of p.

Only known if p is a Gaussian.

GOE(x) ~ Ixe ™/4,
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Numerical Experiment: Uniform Distribution

Let p(x) = 1 for x| < 1.

35

T T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 uniform matrices, normalized in batches
of 20.

0 L L L
0 0.5 1 15 2 25 3 35 4 45 5

5000: 300 x 300 uniform on [—1,1]
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Cauchy Distribution

Let p(X) = —+=

m(1+x2) "

12000 T T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 100x100 Cauchy matrices, normalized in batches
of 20.

0 05 1 15 2 25 3 35 4 4.5 5

5000: 100 x 100 Cauchy

e EEEETOSTSTSTSSSSSSS D ——
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Cauchy Distribution

Let p(x) = m

35

T T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 Cauchy matrices, normalized in batches
of 20.
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Random Graphs

, @

Degree of a vertex = number of edges leaving the vertex.
Adjacency matrix: a; = number edges b/w Vertex i and
Vertex j.

Pk OO
ol _NoelNel
NORBEF
ONOPR

These are Real Symmetric Matrices.

A
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McKay'’s Law (Kesten Measure) with d = 3

Density of Eigenvalues for d-regular graphs

fx) - {mﬁud—n—xz ¥ < 2Va =1

0 otherwise.

A1
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McKay'’s Law (Kesten Measure) with d = 6

Fat Thin: fat enough to average, thin enough to get
something different than Semi-circle.

A
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3-Regular, 2000 Vertices and GOE

Spacings between eigenvalues of 3-regular graphs and
the GOE:

A
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Riemann Zeta Function

AT
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Riemann Zeta Function

((s) = Z% = 1] (1—%) ., Re(s) > 1.

n=1 p prime

Unique Factorization: n = pil ...pMm

m -

AR
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Riemann Zeta Function

((s) = Z% = 1] (1—%) ., Re(s) > 1.

n=1 p prime

Unique Factorization: n = pil ...pMm

m -

1 1\? 1.4 12
1+ s+ (%) + +3st 5

A




Intro to L-Functions
°

Riemann Zeta Function (cont)

(s) = Z%:H(l—%), Re(s) > 1

n p
n(x) = #{p:pisprime,p < x}

Properties of ((s) and Primes:

AR
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Riemann Zeta Function (cont)

(s) = Z%:H(l—%), Re(s) > 1

n p
n(x) = #{p:pisprime,p < x}

Properties of ((s) and Primes:

@ lims_1+ ((S) = o0, m(X) — 0.

AQ




Intro to L-Functions
°

Riemann Zeta Function (cont)

(s) = Z%:H(l—%), Re(s) > 1

n p
n(x) = #{p:pisprime,p < x}

Properties of ((s) and Primes:
@ limg_q+ ( ) = o0, w(X) — 0.
@ ((2) = F’ 7T(X) — 00.
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Riemann Zeta Function

n=1 p prime

Functional Equation:
S\ _s
§(s) = T(3)75c(s) = ¢ —s).
Riemann Hypothesis (RH):
- 1 : 1 .
All non-trivial zeros have Re(s) = > can write zeros as §+w.

Observation: Spacings b/w zeros appear same as b/w
eigenvalues of Complex Hermitian matrices A — A
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Zeros of ¢(s) vs GUE

06

04 P

02

0.0

0.0 0.5 1.0 15 20 2.5 3.0

70 million spacings b/w adjacent zeros of ((s), starting at
the 10%°"" zero (from Odlyzko)
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