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Introduction
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Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at
t1, t2, t3, . . . .

Question: What rules govern the spacings between the ti?

Examples:

Spacings b/w Energy Levels of Nuclei.
Spacings b/w Eigenvalues of Matrices.
Spacings b/w Primes.
Spacings b/w nkα mod 1.
Spacings b/w Zeros of L-functions.
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Sketch of proofs

In studying many statistics, often three key steps:

1 Determine correct scale for events.

2 Develop an explicit formula relating what we want to
study to something we understand.

3 Use an averaging formula to analyze the quantities
above.

It is not always trivial to figure out what is the correct
statistic to study!
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Background Material: Linear Algebra

Eigenvalue, Eigenvector

Say −→v 6= −→
0 is an eigenvector of A with eigenvalue λ if

A−→v = λ
−→v .
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Background Material: Linear Algebra

Eigenvalue, Eigenvector

Say −→v 6= −→
0 is an eigenvector of A with eigenvalue λ if

A−→v = λ
−→v .
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Background Material: Probability

Probability Density

A random variable X has a probability density p(x) if
p(x) ≥ 0;
∫ ∞
−∞ p(x)dx = 1;

Prob(X ∈ [a, b]) =
∫ b

a p(x)dx .
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Background Material: Probability

Probability Density

A random variable X has a probability density p(x) if
p(x) ≥ 0;
∫ ∞
−∞ p(x)dx = 1;

Prob(X ∈ [a, b]) =
∫ b

a p(x)dx .

Examples:
1 Exponential: p(x) = e−x/λ/λ for x ≥ 0;
2 Normal: p(x) = 1√

2πσ2
e−(x−µ)2/2σ2

;

3 Uniform: p(x) = 1
b−a for a ≤ x ≤ b and 0 otherwise.
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Background Material: Probability (cont)

Key Concepts

Mean (average value): µ =
∫ ∞
−∞ xp(x)dx .
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Background Material: Probability (cont)

Key Concepts

Mean (average value): µ =
∫ ∞
−∞ xp(x)dx .

Variance (how spread out): σ2 =
∫ ∞
−∞(x − µ)2p(x)dx .
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Background Material: Probability (cont)

Key Concepts

Mean (average value): µ =
∫ ∞
−∞ xp(x)dx .

Variance (how spread out): σ2 =
∫ ∞
−∞(x − µ)2p(x)dx .

k th moment: µk =
∫ ∞
−∞ xkp(x)dx .
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Background Material: Probability (cont)

Key Concepts

Mean (average value): µ =
∫ ∞
−∞ xp(x)dx .

Variance (how spread out): σ2 =
∫ ∞
−∞(x − µ)2p(x)dx .

k th moment: µk =
∫ ∞
−∞ xkp(x)dx .

Key observation
As a nice function is given by its Taylor series, a nice
probability density is determined by its moments.
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Classical
Random Matrix Theory
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.

Heavy nuclei (Uranium: 200+ protons / neutrons) worse!
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.

Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into
nucleus, see what comes out.
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.

Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into
nucleus, see what comes out.

Fundamental Equation:

Hψn = Enψn

H : matrix, entries depend on system
En : energy levels
ψn : energy eigenfunctions
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Origins (continued)

Statistical Mechanics: for each configuration,
calculate quantity (say pressure).
Average over all configurations – most configurations
close to system average.
Nuclear physics: choose matrix at random, calculate
eigenvalues, average over matrices (real Symmetric
A = AT , complex Hermitian A

T
= A).
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Random Matrix Ensembles

A =









a11 a12 a13 · · · a1N

a12 a22 a23 · · · a2N
...

...
...

. . .
...

a1N a2N a3N · · · aNN









= AT , aij = aji
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Random Matrix Ensembles

A =









a11 a12 a13 · · · a1N

a12 a22 a23 · · · a2N
...

...
...

. . .
...

a1N a2N a3N · · · aNN









= AT , aij = aji

Fix p, define

Prob(A) =
∏

1≤i≤j≤N

p(aij).
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Random Matrix Ensembles

A =









a11 a12 a13 · · · a1N

a12 a22 a23 · · · a2N
...

...
...

. . .
...

a1N a2N a3N · · · aNN









= AT , aij = aji

Fix p, define

Prob(A) =
∏

1≤i≤j≤N

p(aij).

This means

Prob (A : aij ∈ [αij , βij ]) =
∏

1≤i≤j≤N

∫ βij

xij=αij

p(xij)dxij .
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Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but it is the
matrix elements that are chosen randomly and
independently.
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Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but it is the
matrix elements that are chosen randomly and
independently.

Eigenvalue Trace Lemma

Let A be an N × N matrix with eigenvalues λi(A). Then

Trace(Ak ) =
N

∑

n=1

λi(A)k ,

where

Trace(Ak) =
N

∑

i1=1

· · ·
N

∑

ik=1

ai1i2ai2i3 · · ·aiN i1.
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Eigenvalue Distribution

δ(x − x0) is a unit point mass at x0:
∫ ∞
−∞ f (x)δ(x − x0)dx = f (x0).
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Eigenvalue Distribution

δ(x − x0) is a unit point mass at x0:
∫ ∞
−∞ f (x)δ(x − x0)dx = f (x0).

To each A, attach a probability measure:

µA,N(x) =
1
N

N
∑

i=1

δ

(

x − λi(A)

2
√

N

)

∫ b

a
µA,N(x)dx =

#
{

λi : λi(A)

2
√

N
∈ [a, b]

}

N

kth moment =

∑N
i=1 λi(A)k

2kN
k
2 +1

=
Trace(Ak )

2k N
k
2 +1

.
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Density of States
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Wigner’s Semi-Circle Law

Wigner’s Semi-Circle Law

N × N real symmetric matrices, entries i.i.d.r.v. from a
fixed p(x) with mean 0, variance 1, and other moments
finite. Then for almost all A, as N → ∞

µA,N(x) −→
{

2
π

√
1 − x2 if |x | ≤ 1

0 otherwise.
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SKETCH OF PROOF: Correct Scale

Trace(A2) =
N

∑

i=1

λi(A)2.

By the Central Limit Theorem:

Trace(A2) =

N
∑

i=1

N
∑

j=1

aijaji =

N
∑

i=1

N
∑

j=1

a2
ij ∼ N2

N
∑

i=1

λi(A)2 ∼ N2

Gives NAve(λi(A)2) ∼ N2 or Ave(λi(A)) ∼
√

N.
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SKETCH OF PROOF: Averaging Formula

Recall k -th moment of µA,N(x) is Trace(Ak )/2kNk/2+1.

Average k -th moment is
∫

· · ·
∫

Trace(Ak)

2kNk/2+1

∏

i≤j

p(aij)daij .

Proof by method of moments: Two steps

Show average of k -th moments converge to moments
of semi-circle as N → ∞;
Control variance (show it tends to zero as N → ∞).
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SKETCH OF PROOF: Averaging Formula for Second Moment

Substituting into expansion gives

1
22N2

∫ ∞

−∞
· · ·

∫ ∞

−∞

N
∑

i=1

N
∑

j=1

a2
ji · p(a11)da11 · · ·p(aNN)daNN

Integration factors as
∫ ∞

aij=−∞
a2

ij p(aij)daij ·
∏

(k,l) 6=(i,j)
k<l

∫ ∞

akl=−∞
p(akl)dakl = 1.

Higher moments involve more advanced combinatorics
(Catalan numbers).
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Numerical example: Gaussian density

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.005

0.01

0.015

0.02

0.025
Distribution of eigenvalues−−Gaussian, N=400, 500 matrices

500 Matrices: Gaussian 400 × 400
p(x) = 1√

2π
e−x2/2
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Numerical example: Cauchy density p(x) = 1/π(1 + x2)
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Numerical example: Cauchy density p(x) = 1/π(1 + x2)

−300 −200 −100 0 100 200 300
0

500

1000

1500

2000

2500

 
The eigenvalues of the Cauchy
distribution are NOT semicirular. 

Cauchy Distribution: p(x) = 1
π(1+x2)
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Spacings between events
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GOE Conjecture

GOE Conjecture:
As N → ∞, the probability density of the spacing b/w
consecutive normalized eigenvalues approaches a limit
independent of p.
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GOE Conjecture

GOE Conjecture:
As N → ∞, the probability density of the spacing b/w
consecutive normalized eigenvalues approaches a limit
independent of p.

Only known if p is a Gaussian.

GOE(x) ≈ π
2 xe−πx2/4.
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Numerical Experiment: Uniform Distribution

Let p(x) = 1
2 for |x | ≤ 1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

 

The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 uniform matrices, normalized in batches
of 20. 

5000: 300 × 300 uniform on [−1, 1]
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Cauchy Distribution

Let p(x) = 1
π(1+x2)

.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2000

4000

6000

8000

10000

12000

 
 

The local spacings of the central 3/5 of the eigenvalues
of 5000 100x100 Cauchy matrices, normalized in batches
of 20. 

5000: 100 × 100 Cauchy
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Cauchy Distribution

Let p(x) = 1
π(1+x2)

.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 Cauchy matrices, normalized in batches
of 20. 

5000: 300 × 300 Cauchy
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Random Graphs

   1

2
3

4

Degree of a vertex = number of edges leaving the vertex.
Adjacency matrix: aij = number edges b/w Vertex i and
Vertex j .

A =









0 0 1 1
0 0 1 0
1 1 0 2
1 0 2 0









These are Real Symmetric Matrices.
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McKay’s Law (Kesten Measure) with d = 3

Density of Eigenvalues for d-regular graphs

f (x) =

{

d
2π(d2−x2)

√

4(d − 1) − x2 |x | ≤ 2
√

d − 1

0 otherwise.
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McKay’s Law (Kesten Measure) with d = 6

Fat Thin: fat enough to average, thin enough to get
something different than Semi-circle.
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3-Regular, 2000 Vertices and GOE

Spacings between eigenvalues of 3-regular graphs and
the GOE:

0.5 1. 1.5 2. 2.5 3.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
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Introduction
to L-Functions
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Riemann Zeta Function

ζ(s) =

∞
∑

n=1

1
ns

=
∏

p prime

(

1 − 1
ps

)−1

, Re(s) > 1.
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Riemann Zeta Function

ζ(s) =

∞
∑

n=1

1
ns

=
∏

p prime

(

1 − 1
ps

)−1

, Re(s) > 1.

Unique Factorization: n = pr1
1 · · ·prm

m .
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Riemann Zeta Function

ζ(s) =

∞
∑

n=1

1
ns

=
∏

p prime

(

1 − 1
ps

)−1

, Re(s) > 1.

Unique Factorization: n = pr1
1 · · ·prm

m .

∏

p

(

1 − 1
ps

)−1

=

[

1 +
1
2s

+

(

1
2s

)2

+ · · ·
] [

1 +
1
3s

+

(

1
3s

)2

=
∑

n

1
ns
.
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Riemann Zeta Function (cont)

ζ(s) =
∑

n

1
ns

=
∏

p

(

1 − 1
ps

)−1

, Re(s) > 1

π(x) = #{p : p is prime, p ≤ x}

Properties of ζ(s) and Primes:
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Riemann Zeta Function (cont)

ζ(s) =
∑

n

1
ns

=
∏

p

(

1 − 1
ps

)−1

, Re(s) > 1

π(x) = #{p : p is prime, p ≤ x}

Properties of ζ(s) and Primes:

lims→1+ ζ(s) = ∞, π(x) → ∞.
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Riemann Zeta Function (cont)

ζ(s) =
∑

n

1
ns

=
∏

p

(

1 − 1
ps

)−1

, Re(s) > 1

π(x) = #{p : p is prime, p ≤ x}

Properties of ζ(s) and Primes:

lims→1+ ζ(s) = ∞, π(x) → ∞.

ζ(2) = π2

6 , π(x) → ∞.
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Riemann Zeta Function

ζ(s) =
∞

∑

n=1

1
ns

=
∏

p prime

(

1 − 1
ps

)−1

, Re(s) > 1.

Functional Equation:

ξ(s) = Γ
(s

2

)

π− s
2 ζ(s) = ξ(1 − s).

Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2

; can write zeros as
1
2

+iγ.

Observation: Spacings b/w zeros appear same as b/w
eigenvalues of Complex Hermitian matrices A

T
= A.
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Zeros of ζ(s) vs GUE

70 million spacings b/w adjacent zeros of ζ(s), starting at
the 1020th zero (from Odlyzko)
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