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Why study zeros of L-functions?

@ Infinitude of primes, primes in arithmetic progression.
@ Chebyshev’s bias: m34(x) > m1.4(X) ‘most’ of the time.
@ Birch and Swinnerton-Dyer conjecture.

@ Goldfeld, Gross-Zagier: bound for h(D) from
L-functions with many central point zeros.

@ Even better estimates for h(D) if a positive
percentage of zeros of {(s) are at most 1/2 — ¢ of the
average spacing to the next zero.
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Distribution of zeros

@ ((s) # 0 for Re(s) = 1: m(X), maq(X).
@ GRH: error terms.
@ GSH: Chebyshev’s bias.

@ Analytic rank, adjacent spacings: h(D).
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Goals

@ Determine correct scale and statistics to study zeros
of L-functions.

@ See similar behavior in different systems (random
matrix theory).

@ Discuss the tools and techniques needed to prove the
results.

@ State new GL(2) results, sketch proofs in simple
families.

@ In Part Il: Discuss new ideas for GL(2) families.
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Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at
t, b, tg, ...

Question: What rules govern the spacings between the t;?

Examples:
@ Spacings b/w Energy Levels of Nuclei.
@ Spacings b/w Eigenvalues of Matrices.
@ Spacings b/w Primes.
@ Spacings b/w nka mod 1.
@ Spacings b/w Zeros of L-functions.

¢
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Sketch of proofs

In studying many statistics, often three key steps:
© Determine correct scale for events.

@ Develop an explicit formula relating what we want to
study to something we understand.

© Use an averaging formula to analyze the quantities
above.

It is not always trivial to figure out what is the correct
statistic to study!

y
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.
Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into
nucleus, see what comes out.

Fundamental Equation:

H wn = Enz/fn

H : matrix, entries depend on system
E, : energy levels
1 : energy eigenfunctions

Q
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Origins of Random Matrix Theory

@ Statistical Mechanics: for each configuration,
calculate quantity (say pressure).

@ Average over all configurations — most configurations
close to system average.

@ Nuclear physics: choose matrix at random, calculate
eigenvalues, average over matrices (real Symmetric

A = AT, complex Hermitian A' = A).
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Classical Random Matrix Ensembles

dj1 dip a3z -+ AN
djp dpp dpz -+ AN
A = . . . . . = AT, adjj = g;i
aiNn don A3n  cc AnN
Fix p, define
Prob(A) = H p(ay).
1<i<j<N
This means
Bu
Prob (A D Qi € [Ozij,ﬁij]) = H / Xu dXIj
1<i<j<N Y Xij =

Want to understand eigenvalues of A.
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Eigenvalue Distribution

d(X — Xp) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).
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Eigenvalue Distribution

d(X — Xp) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:

) = 535 (x=3)
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Eigenvalue Distribution

d(X — Xp) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:

pian(x) %Za(x—g(—fﬁ’)
/buA,N(x)dx AU L)
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Eigenvalue Distribution

d(X — Xp) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:
1Q A(A)
pan(X) = NZ(S <X - m)
7

/b pan(X)dx = {Ai o €l b]}

o SR Tracal)
kN 5+1 okN5+L
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Wigner's Semi-Circle Law

Not most general case, gives flavor.

Wigner’s Semi-Circle Law

N x N real symmetric matrices, entries i.i.d.r.v. from a
fixed p(x) with mean 0, variance 1, and other moments
finite. Then for almost all A, as N — oo

v1—-x? if|x| <1

otherwise.

2
pan(X) — {6
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SKETCH OF PROOF: Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but it is the
matrix elements that are chosen randomly and
independently.

Eigenvalue Trace Lemma
Let A be an N x N matrix with eigenvalues Aj(A). Then

Trace(A*) = > A(A)K,

where
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SKETCH OF PROOF: Correct Scale

N

Trace(A?) = > N(A).

i=1

By the Central Limit Theorem:

N N N N
Trace(A?) = ZZaijaji - ZZaﬁ ~ N2

N

Gives NAve( )\ (A)?) ~ N2 or Ave(\(A)) ~ vN.
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SKETCH OF PROOF: Averaging Formula

Recall k-th moment of pan(X) is Trace(Ak)/2XNk/2+1,

Average k-th moment is
Trace(A¥)
/ / kN K/2+1 Hp(a”)da”'

Proof by method of moments: Two steps

@ Show average of k-th moments converge to moments
of semi-circle as N — oo;

@ Control variance (show it tends to zero as N — o0).
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SKETCH OF PROOF: Averaging Formula for Second Moment

Substituting into expansion gives

22N2 / / 2| -p(az1)day; - - - p(ann )dann

Iljl

Integration factors as

[e o]
/ arp(a;)da;
ajj=—00

Higher moments involve more advanced combinatorics
(Catalan numbers).

H / p(aw)day = 1.
a

k')#IJ) K=—00
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SKETCH OF PROOF: Averaging Formula for Higher Moments

Higher moments involve more advanced combinatorics
(Catalan numbers).

2ka/2+1/ / Z"‘Zailiz'“aikil'Hp(aij)dau-

=1 =1 i<j

Main term a,;,,,’s matched in pairs, not all matchings
contribute equally (if did have Gaussian, see in Real

Symmetric Palindromic Toeplitz matrices; interesting

results for circulant ensembles (joint with Gene Kopp,
Murat Kologlu).
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Numerical examples

Distribution of eigenvalues--Gaussian, N=400, 500 matrices
0.025 T T T

0.015

0.005

0
-15 -1 -0.5 0 0.5 1 15

500 Matrices: Gaussian 400 x 400
p(x) = e/
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Numerical examples

2500

The eigenvalues of the Cauchy
distribution are NOT semicirular.

0
-300 -200 -100 0 100 200 300

Cauchy Distribution: p(x) = Tixq
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GOE Conjecture

GOE Conjecture:

As N — oo, the probability density of the spacing b/w
consecutive normalized eigenvalues approaches a limit
independent of p.

Until recently only known if p is a Gaussian.

GOE(x) ~ Ixe ™/4,
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Numerical Experiment: Uniform Distribution

Let p(x) = 1 for x| < 1.

35

T T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 uniform matrices, normalized in batches
of 20.

0 L L L
0 0.5 1 15 2 25 3 35 4 45 5

5000: 300 x 300 uniform on [—1,1]
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Cauchy Distribution

Let p(X) = —+=

m(1+x2) "

12000

0 05

1

15

The |OCr":l\ spac\ngs‘; of the ce‘mra\ 3/5 o‘f the e\geHvaIues '
of 5000 100x100 Cauchy matrices, normalized in batches
of 20.

2 25 3 35 4 4.5

5000: 100 x 100 Cauchy

OGS
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Cauchy Distribution

Let p(x) = m

35

T T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 Cauchy matrices, normalized in batches
of 20.
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Random Graphs

, @

Degree of a vertex = number of edges leaving the vertex.
Adjacency matrix: a; = number edges b/w Vertex i and

Vertex j.
0011
0010
A=11102
1020

These are Real Symmetric Matrices.
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McKay'’s Law (Kesten Measure) with d =3

Density of Eigenvalues for d-regular graphs

f(x) - {mﬁud—n—xz M| < 2Va =1

0 otherwise.
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McKay’s Law (Kesten Measure) with d =6

Fat Thin: fat enough to average, thin enough to get
something different than semi-circle (though as d — oo
recover semi-circle).
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3-Regular Graph with 2000 Vertices: Comparison with the GOE

Spacings between eigenvalues of 3-regular graphs and
the GOE:
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Riemann Zeta Function

n=1 p prime

Functional Equation:
S\ _s
&(s) = T(3)75c(s) = ¢ —s).
Riemann Hypothesis (RH):
- 1 . 1 .
All non-trivial zeros have Re(s) = > can write zeros as §+w.

Observation: Spacings b/w zeros appear same as b/w
eigenvalues of Complex Hermitian matrices A — A
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General L-functions

Functional Equation:
A(s,f) = Ax(s,f)L(s,f) = A1 —s,T).
Generalized Riemann Hypothesis (RH):

- 1 . 1 .
All non-trivial zeros have Re(s) = > can write zeros as §+w.

Observation: Spacings b/w zeros appear same as b/w
eigenvalues of Complex Hermitian matrices A=A
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Zeros of ((s) vs GUE

06

04 P

02

0.0

0.0 0.5 1.0 15 20 2.5 3.0

70 million spacings b/w adjacent zeros of ((s), starting at
the 10%°"" zero (from Odlyzko).
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Explicit Formula (Contour Integration)




Intro to L-Functions
°0

Explicit Formula (Contour Integration)

d -1
ol _C?—Slogg(s) = —£|091;[(1—p_s)

d s
— E;Iog(l—p )

logp - p~° log p
— Zl—ip—s = ZF + Good(s).
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Explicit Formula (Contour Integration)

Contour Integration:

[-@

S [(5)
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Explicit Formula (Contour Integration)

Contour Integration:

~((s) s
/ ) #(s)ds vs ;Iogp/gb(s)p ds.
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Explicit Formula (Contour Integration)

Contour Integration (see Fourier Transform arising):

('(s) —ologp o—it o
|-G otsids v > logp [ ots)errrvetoongs.

Knowledge of zeros gives info on coefficients.

A
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Explicit Formula: Examples

Riemann Zeta Function: Let }  denote the sum over the
zeros of ((s) in the critical strip, g an even Schwartz

function of compact support and ¢(r) f g(u)e™du.
Then
=.2lo
> () = 2¢( )—ZZ k/gng(klogp)
p k=1

A
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Explicit Formula: Examples

Dirichlet L-functions: Let h be an even Schwartz function
and L(s, x) = >_, x(n)/n® a Dirichlet L-function from a
non-trivial character y with conductor m and zeros

p = 3+ i7,; if the Generalized Riemann Hypothesis is
true then v € R. Then

Zh< log( m/w)) :/_C:h(y)dy

logp ~/( logp \ x(p)
22 Tog(m/m)" (fogtm=1) 37

logp ~ logp \ Xx*(p) 1
‘Z?og(m/w)h(zlog(m/w)) > +Oligm)

A
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Explicit Formula: Examples

Cuspidal Newforms: Let F be a family of cupsidal
newforms (say weight k, prime level N and possibly split
by sign) L(s,f) =>_, A(n)/n®. Then

1 log R ~ 1 1 _
WZZ¢(2W %) — 3(0)+5900) ~ 7 S_P(0)

feF »

~(logp\ 2logp
P(fi0) = ZAf(p)as( >\/5IogR'

A
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Measures of Spacings: n-Level Correlations

{oy} increasing sequence, box B  R".

n-level correlation

# <Ozj1 = Qfpy - Qg — O‘jn) € Baji 7£Jk

lim
N— oo N

(Instead of using a box, can use a smooth test function.)

A
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Measures of Spacings: n-Level Correlations

{oy} increasing sequence, box B  R".

© Normalized spacings of ¢(s) starting at 10%°
(Odlyzko).

@ 2 and 3-correlations of ((s) (Montgomery, Hejhal).

© n-level correlations for all automorphic cupsidal
L-functions (Rudnick-Sarnak).

@ n-level correlations for the classical compact groups
(Katz-Sarnak).

@ Insensitive to any finite set of zeros.

A
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Measures of Spacings: n-Level Density and Families

o(x) =1 ¢i(x), ¢i even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

Dnf(¢) = Z¢1<Lf7f01))...¢H<Lf,yf(jn))

i15---5dn
distinct

AR
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Measures of Spacings: n-Level Density and Families

o(x) =1 ¢i(x), ¢i even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

Dnf(¢) = Z¢1<Lffyf(h))...¢H<Lf,yf(jn))

i15---5dn
distinct

© Individual zeros contribute in limit.
@ Most of contribution is from low zeros.
© Average over similar curves (family).

A




Intro to L-Functions
°

Measures of Spacings: n-Level Density and Families

o(x) =1 ¢i(x), ¢i even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

Dnf(¢) = Z¢1<Lffyf(h))...¢H<Lf,yf(jn))

i15---5dn
distinct

© Individual zeros contribute in limit.
@ Most of contribution is from low zeros.
© Average over similar curves (family).

Katz-Sarnak Conjecture

For a ‘nice’ family of L-functions, the n-level density
depends only on a symmetry group attached to the family.
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Normalization of Zeros

Local (hard, use Cs) vs Global (easier, use logC =
| Fnlt ZfefN log C;). Hope: ¢ a good even test function
with compact support, as |F| — oo,

T - 3 X T2

feFn feFn J1 77777 Jn

— / /cb Wh g(7)(X)dX.

Katz-Sarnak Conjecture

As C; — oo the behavior of zeros near 1/2 agrees with
N — oo limit of eigenvalues of a classical compact group.

A
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1-Level Densities

The Fourier Transforms for the 1-level densities are

W sormen(U) = 8o(u) + Zu(u)
Woso(u) = dou) + 5

Wi sorin(u) = do(u) — zn(u) +1
Woss(U) = do(u) — n(u)

W17u(U) = (50(U)
where do(u) is the Dirac Delta functional and

1 ifjuj<1
n(u) = { ; ifjul=1

2
0 iflu/>1
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Correspondences

Similarities between L-Functions and Nuclei:

Zeros <+— Energy Levels

Schwartz test function —— Neutron

Support of test function <+— Neutron Energy.
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Some Number Theory Results

@ Orthogonal: lwaniec-Luo-Sarnak, Ricotta-Royer:
1-level density for holomorphic even weight k
cuspidal newforms of square-free level N (SO(even)
and SO(odd) if split by sign).

@ Symplectic: Rubinstein, Gao, Levinson-Miller, and
Entin, Roddity-Gershon and Rudnick: n-level
densities for twists L(s, xq) of the zeta-function.

@ Unitary: Fiorilli-Miller, Hughes-Rudnick: Families of
Primitive Dirichlet Characters.

@ Orthogonal: Miller, Young: One and two-parameter
families of elliptic curves.
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Recent Results with Colleagues

@ Orthogonal: n-level densities of cuspidal newforms:
o Hughes-Miller: up to (—-%;, —%5).
o lyer-Miller-Triantafillou: up to (—-%5, -%5).

@ Symplectic: n-level densities of L(s, xq):
o Levinson-Miller: up to (—2/n,2/n) forn < 7.

@ Unitary: 1-level of L(s, x):
o Fiorilli-Miller: lower order terms beyond
square-root, large support conditionally.
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Recent Results with Colleagues

@ Orthogonal: n-level densities of cuspidal newforms:
o Hughes-Miller: up to (—-1;, -42).
o lyer-Miller-Triantafillou: up to (—-%5, -15).

@ Symplectic: n-level densities of L(s, xq):
o Levinson-Miller: up to (—2/n,2/n) forn < 7.

@ Unitary: 1-level of L(s, x):
o Fiorilli-Miller: lower order terms beyond
square-root, large support conditionally.
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Main Tools

@ Control of conductors: Usually monotone, gives scale
to study low-lying zeros.

@ Explicit Formula: Relates sums over zeros to sums
over primes.

@ Averaging Formulas: Petersson formula in
lwaniec-Luo-Sarnak, Orthogonality of characters in
Fiorilli-Miller, Gao, Hughes-Rudnick, Levinson-Miller,
Rubinstein.
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Applications of n-level density

One application: bounding the order of vanishing at the
central point.
Averagerank - ¢(0) < [ ¢(x)Wg(z)(x)dx if ¢ non-negative.
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Applications of n-level density

One application: bounding the order of vanishing at the
central point.

Averagerank - ¢(0) < [ ¢(x)Wg(z)(x)dx if ¢ non-negative.
Can also use to bound the percentage that vanish to
orderr forany r.

Theorem (Miller, Hughes-Miller)

Using n-level arguments, for the family of cuspidal
newforms of prime level N — oo (split or not split by sign),
for any r there is a ¢, such that probability of at least r
zeros at the central point is at most c,r —".

Better results using 2-level than lwaniec-Luo-Sarnak
using the 1-level forr > 5.

[ =3 = 5 ""'''”””™”™”™*
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Dirichlet Characters ( m prime)

(Z/mZ)* is cyclic of order m — 1 with generator g. Let
Cm_1 = €27/(m=1)_The principal character g is given by

The m — 2 primitive characters are determined (by
multiplicativity) by action on g.

As each x : (Z/mZ)* — C*, for each x there exists an |
such that y(g) = ¢|._,. Hence foreach|,1 <1 <m —2 we

have
_ B, k=g?m)
k) = {o (k,m) > 0

¢
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Dirichlet L-Functions

Let x be a primitive character mod m. Let

m—1 _
— Z X(k)e2mk/m_
k=0

c(m, x) is a Gauss sum of modulus v/m.

L(s,x) = JJ@—x@p~)"
p

S
AS,y) = %S+6>r( ;6) miE+IL(s, y),

where

_JO ifx(-1)= 1
© T 1 (1) =1

¢
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Explicit Formula

Let ¢ be an even Schwartz function with compact support
(—o,0), let x be a non-trivial primitive Dirichlet character
of conductor m.

()

/_ o(y)dy

> o o (iog = Lx(p) + X(p)p

-3 ol 322l ) (P) + N
p

¢
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Expansion

{xo0} U {xi1}1<1<m_2 are all the characters mod m.
Consider the family of primitive characters mod a prime m

(m — 2 characters):

/ oy

logp -~/ logp 1
P > fagim/m)" Uiog(m/m) ) NP + KPP

XFX0
1 logp ~/_ logp 2 2 1
- ﬁ¢; oam/77° (Ziogrm ) D)+ @)
1
* O(Iogm)'

Note can pass Character Sum through Test Function.

¢
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Character Sums

m—-1 k=1(m)
Z x(k) = {O otherwise.

X

-y
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Character Sums

) m- 1 k=1(m)
Z x(k) = 0 otherwise.
For any prime p # m

S () - {—1+m—1 p=1(m)

-1 otherwise.
XFX0

2 =
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Character Sums

) m—-1 k=1(m)
Z x(k) = {O otherwise.
For any prime p # m

S xp) = {j*m‘l p=1(m)

otherwise.
XFX0

Substitute into

logp A logp _ _1
. Z Z oa(m/71° Liogrm =7 X(P) + KPP~

¢
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First Sum: no contributionif o <2

2 & logp ~/ logp 1
m-—2 Z Iog(m/7r)¢<log(m/7r)>IO i

m-1 << logp ~; logp _
2m—2pz Iog(m/w)¢<log(m/w)>p

NI

R7




¢

First Sum: no contributionif o <2

g(m/m)

«~ logp ~/ logp
m—ZZIo ¢<Iog(m/7r)>p

log p

1
2

m-1 << logp ~
2m—2pz Iog(m/w)¢<
1 s &
< Sy pi+ )y p

p p=1(m)

log(m /=

)P

NI

Dirichlet L-functions
°
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First Sum: no contributionif o <2

NI=

2 & logp ~/ logp -
m-—2 Z Iog(m/7r)¢<log(m/7r)>IO
m-1 << logp ~; logp _

) ( Jp

m—2 o) log(m/7) " \log(m/x)

.
< zSete $ ottt S

pP= 1(m k >m+1

NI

2

¢
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First Sum: no contributionif o <2

NI=

2 X logp ~/ logp _
m-—2 Z Iog(m/7r)¢<log(m/7r)>IO

m-—1 logp )A( logp )>p

NI

+ 2——=
m—2 o) log(m/7) " \log(m /7
1 &
- -3 2 — k*E kf’
< mzp:p +pzl(;np < Z + Z
k>m+1

< —Zk‘ﬁ + —Zk <<ilmf’/2.

y
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Second Sum

logp 5, 10gp_\x*(p) + ¥*(P)
2 Z ZIog (m/m) ( Iog(m/ﬂ)> p '

X#Xo P

> EP) + 7P(p)] = {Z(m ~2) p=4+1(m)

X#Xo =2 b7 il(m)
Upto O (mgm) we find that
mo/2 me/2
2m 2
. Z > 07
p==+1(m)
me/2 me/2 me/2

< = 22k1+ okt Zkl

k=1(m) k=—-1(m
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Dirichlet Characters: m Square-free

Fix anr and let mq, ..., m, be distinct odd primes.

m = mumy---m,

My = (mg—1)(mz—1)---(m; — 1) = ¢(m)

M, = (my—2)(m;—2)---(m, —2).
M, is the number of primitive characters mod m, each of
conductor m. A general primitive character mod m is

given by x(u) = xi,(U)xi,(u) - - - xi, (u). Let
F={X:X=XuXs, "X}

logp A logp 1
Mzzlog (m/x) (Iog (m/x) ) Z[X

logp 3 logp \ 1
M, Z log(m /) < log(m /) ) Z[X

y
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Characters Sums

miZZXI-(D) _ {mi—l—l p=1(m)

-1 otherwise.

Define
1 p=1(m)
. 1) =
Om (P, 1) {O otherwise.
Then
my—2 my—2
> xp) = < x(P) - (p)
XEF l=1 =1
r m-—2 r

y
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Expansion Preliminaries

k(s) is an s-tuple (ki,ka, ..., Ks) with k; < kp < -+ < K.
This is just a subset of (1,2,...,r), 2" possible choices for

K(s).
S
5k(5)(p7 l) = H 5mki (p7 1)
i=1
If s = 0 we define dyo)(p, 1) = 1 Vp.
Then

r

II(—l+Um—lﬁm@J»

E:}: 1) 0k (p, 1) [ T(my — 2).

s=0 k(s) i=1

y
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First Sum

< Zp (1+Zzéks) p.1 i—1)>-

s=1 k(s) i

As m/M, < 3', s = 0 sum contributes

hence negligible for o < 2.

y
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First Sum

< sz (uZZM p.1 i—1>)-
s=1 Kk(s) i
Now we study
14 U
Sikes) = M—ZH(mki —1)Zp75k(s)(pal)
i—1 p
1L i
1
< LMlm-n 3 o
2 i=1 nEl(mk(s))
14 1 &
< (mg, — 1) “2 <« 3'mz1
Ma ,11 [Tr-a(m) Z

y
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First Sum

There are 2" choices, yielding

Sl < Grm%afl’

which is negligible as m goes to infinity for fixed r if o < 2.
Cannot let r go to infinity.

If m is the product of the first r primes,
r
logm = Z log pxk
k=1

= ) logp ~r

p<r

Therefore
6r ~ mIog6 ~ ml.79.




Dirichlet L-functions
°

Second Sum Expansions and Bounds

-1 otherwise

3 ) - {mi_l_l P = =im)

m;—2
S PP = > Z Xi(p) -~ xP(p
XEF h=1 lr=
r mi—2
= 1> xtp
i=1 =1

y




Dirichlet L-functions
°

Second Sum Expansions and Bounds

Handle similarly as before. Say
p = 1 mod my,,..., My,
p = —1mod My 1,...,My,
How small can p be?
+1 congruences imply p > my, - - -my, + 1.
—1 congruences imply p > my_, ---my, — 1.
Since the product of these two lower bounds is greater
than []"_,(m — 1), at least one must be greater than

(ITPs(m — 1)

There are 3" pairs, yielding

Second Sum = ZZZS“ ()i(s) < 9'mM~2.

s=0 k(s)

2

y



Dirichlet L-functions
°

Summary

Agrees with Unitary for o < 2 for square-free m € [N, 2N]
from:

@ m square-free odd integer with r = r(m) factors;
o m=T[_, m;
® M = [[i_;(mi - 2).

Then family F,, of primitive characters mod m has

: 1

First Sum <« = 2'mz°
M,
1

Second Sum < —3'm:.
M,
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