## Low-lying zeros of GL(2) *L*-functions

Steven J Miller Williams College

Steven.J.Miller@williams.edu http://www.williams.edu/Mathematics/sjmiller/

> Group, Lie and Number Theory Seminar University of Michigan, October 22, 2012

### Why study zeros of *L*-functions?

- Infinitude of primes, primes in arithmetic progression.
- Chebyshev's bias:  $\pi_{3,4}(x) \ge \pi_{1,4}(x)$  'most' of the time.
- Birch and Swinnerton-Dyer conjecture.
- Goldfeld, Gross-Zagier: bound for h(D) from L-functions with many central point zeros.
- Even better estimates for h(D) if a positive percentage of zeros of  $\zeta(s)$  are at most  $1/2 \epsilon$  of the average spacing to the next zero.

#### **Distribution of zeros**

- $\zeta(s) \neq 0$  for  $\mathfrak{Re}(s) = 1$ :  $\pi(x)$ ,  $\pi_{a,q}(x)$ .
- GRH: error terms.
- GSH: Chebyshev's bias.
- Analytic rank, adjacent spacings: h(D).

of L-functions.

Introduction

# Determine correct scale and statistics to study zeros

- See similar behavior in different systems (random matrix theory).
- Discuss the tools and techniques needed to prove the results.
- State new GL(2) results, sketch proofs in simple families.
- In Part II: Discuss new ideas for GL(2) families.

### Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at  $t_1, t_2, t_3, \ldots$ 

Question: What rules govern the spacings between the  $t_i$ ?

### Examples:

- Spacings b/w Energy Levels of Nuclei.
- Spacings b/w Eigenvalues of Matrices.
- Spacings b/w Primes.
- Spacings b/w  $n^k \alpha$  mod 1.
- Spacings b/w Zeros of L-functions.

### Sketch of proofs

In studying many statistics, often three key steps:

- Determine correct scale for events.
- Develop an explicit formula relating what we want to study to something we understand.
- Use an averaging formula to analyze the quantities above.

It is not always trivial to figure out what is the correct statistic to study!

### Classical Random Matrix Theory

### Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.

Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into nucleus, see what comes out.

### Fundamental Equation:

$$H\psi_n = E_n\psi_n$$

H: matrix, entries depend on system

 $E_n$ : energy levels

 $\psi_n$ : energy eigenfunctions

### **Origins of Random Matrix Theory**



- Statistical Mechanics: for each configuration, calculate quantity (say pressure).
- Average over all configurations most configurations close to system average.
- Nuclear physics: choose matrix at random, calculate eigenvalues, average over matrices (real Symmetric  $A = A^T$ , complex Hermitian  $\overline{A}^T = A$ ).

#### **Classical Random Matrix Ensembles**

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1N} \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1N} & a_{2N} & a_{3N} & \cdots & a_{NN} \end{pmatrix} = A^{T}, \quad a_{ij} = a_{ji}$$

Fix p, define

$$\mathsf{Prob}(A) = \prod_{1 \leq i \leq N} p(a_{ij}).$$

This means

$$\mathsf{Prob}\left(\mathsf{A}: \mathsf{a}_{ij} \in [\alpha_{ij}, \beta_{ij}]\right) \ = \ \prod_{1 \leq i \leq j \leq N} \int_{\mathsf{x}_{ij} = \alpha_{ij}}^{\beta_{ij}} \rho(\mathsf{x}_{ij}) d\mathsf{x}_{ij}.$$

Want to understand eigenvalues of A.

$$\delta(x - x_0)$$
 is a unit point mass at  $x_0$ :  $\int f(x)\delta(x - x_0)dx = f(x_0)$ .

Results

Introduction

$$\delta(x - x_0)$$
 is a unit point mass at  $x_0$ :  
  $\int f(x)\delta(x - x_0)dx = f(x_0)$ .

To each A, attach a probability measure:

$$\mu_{A,N}(x) = \frac{1}{N} \sum_{i=1}^{N} \delta\left(x - \frac{\lambda_i(A)}{2\sqrt{N}}\right)$$

### **Eigenvalue Distribution**

$$\delta(x - x_0)$$
 is a unit point mass at  $x_0$ :  $\int f(x)\delta(x - x_0)dx = f(x_0)$ .

To each A, attach a probability measure:

$$\mu_{A,N}(x) = \frac{1}{N} \sum_{i=1}^{N} \delta\left(x - \frac{\lambda_i(A)}{2\sqrt{N}}\right)$$
$$\int_{a}^{b} \mu_{A,N}(x) dx = \frac{\#\left\{\lambda_i : \frac{\lambda_i(A)}{2\sqrt{N}} \in [a,b]\right\}}{N}$$

### **Eigenvalue Distribution**

$$\delta(x - x_0)$$
 is a unit point mass at  $x_0$ :  $\int f(x)\delta(x - x_0)dx = f(x_0)$ .

To each A, attach a probability measure:

$$\mu_{A,N}(x) = \frac{1}{N} \sum_{i=1}^{N} \delta\left(x - \frac{\lambda_i(A)}{2\sqrt{N}}\right)$$

$$\int_{a}^{b} \mu_{A,N}(x) dx = \frac{\#\left\{\lambda_i : \frac{\lambda_i(A)}{2\sqrt{N}} \in [a,b]\right\}}{N}$$

$$k^{\text{th moment}} = \frac{\sum_{i=1}^{N} \lambda_i(A)^k}{2^k N^{\frac{k}{2}+1}} = \frac{\text{Trace}(A^k)}{2^k N^{\frac{k}{2}+1}}$$

#### \_\_\_\_

Not most general case, gives flavor.

### Wigner's Semi-Circle Law

 $N \times N$  real symmetric matrices, entries i.i.d.r.v. from a fixed p(x) with mean 0, variance 1, and other moments finite. Then for almost all A, as  $N \to \infty$ 

$$\mu_{A,N}(x) \ \longrightarrow \ egin{cases} rac{2}{\pi}\sqrt{1-x^2} & ext{if } |x| \leq 1 \ 0 & ext{otherwise}. \end{cases}$$

#### SKETCH OF PROOF: Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but it is the matrix elements that are chosen randomly and independently.

### **Eigenvalue Trace Lemma**

Let A be an  $N \times N$  matrix with eigenvalues  $\lambda_i(A)$ . Then

Trace(
$$A^k$$
) =  $\sum_{n=1}^N \lambda_i(A)^k$ ,

where

Trace
$$(A^k) = \sum_{i_1=1}^N \cdots \sum_{i_k=1}^N a_{i_1 i_2} a_{i_2 i_3} \cdots a_{i_N i_1}.$$

#### **SKETCH OF PROOF: Correct Scale**

Trace(
$$A^2$$
) =  $\sum_{i=1}^{N} \lambda_i(A)^2$ .

By the Central Limit Theorem:

Trace(
$$A^2$$
) =  $\sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} a_{ji} = \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij}^2 \sim N^2$   
 $\sum_{i=1}^{N} \lambda_i(A)^2 \sim N^2$ 

Gives NAve $(\lambda_i(A)^2) \sim N^2$  or Ave $(\lambda_i(A)) \sim \sqrt{N}$ .

Recall k-th moment of  $\mu_{A,N}(x)$  is  $\operatorname{Trace}(A^k)/2^k N^{k/2+1}$ .

Average k-th moment is

$$\int \cdots \int \frac{\operatorname{Trace}(A^k)}{2^k N^{k/2+1}} \prod_{i \leq j} p(a_{ij}) da_{ij}.$$

Proof by method of moments: Two steps

- Show average of k-th moments converge to moments of semi-circle as  $N \to \infty$ :
- Control variance (show it tends to zero as  $N \to \infty$ ).

### **SKETCH OF PROOF: Averaging Formula for Second Moment**

Substituting into expansion gives

$$\frac{1}{2^{2}N^{2}}\int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}\sum_{i=1}^{N}\sum_{j=1}^{N}a_{jj}^{2}\cdot p(a_{11})da_{11}\cdots p(a_{NN})da_{NN}$$

Integration factors as

$$\int_{a_{ij}=-\infty}^{\infty}a_{ij}^2p(a_{ij})da_{ij} \cdot \prod_{(k,l)\neq (i,j)\atop k < l}\int_{a_{kl}=-\infty}^{\infty}p(a_{kl})da_{kl} = 1.$$

Higher moments involve more advanced combinatorics (Catalan numbers).

### SKETCH OF PROOF: Averaging Formula for Higher Moments

Higher moments involve more advanced combinatorics (Catalan numbers).

$$\frac{1}{2^k N^{k/2+1}} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \sum_{i_1=1}^{N} \cdots \sum_{i_k=1}^{N} a_{i_1 i_2} \cdots a_{i_k i_1} \cdot \prod_{i \leq j} p(a_{ij}) da_{ij}.$$

Main term  $a_{i_{\ell}i_{\ell+1}}$ 's matched in pairs, not all matchings contribute equally (if did have Gaussian, see in Real Symmetric Palindromic Toeplitz matrices; interesting results for circulant ensembles (joint with Gene Kopp, Murat Kologlu).



500 Matrices: Gaussian 400 × 400  $p(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ 

### **Numerical examples**



Cauchy Distribution:  $p(x) = \frac{1}{\pi(1+x^2)}$ 

#### **GOE Conjecture**

Introduction

### **GOE Conjecture:**

As  $N \to \infty$ , the probability density of the spacing b/w consecutive normalized eigenvalues approaches a limit independent of p.

Until recently only known if p is a Gaussian.

$$GOE(x) \approx \frac{\pi}{2}xe^{-\pi x^2/4}$$
.

Let 
$$p(x) = \frac{1}{2}$$
 for  $|x| \le 1$ .



5000:  $300 \times 300$  uniform on [-1, 1]

### **Cauchy Distribution**

Let 
$$p(x) = \frac{1}{\pi(1+x^2)}$$
.



5000: 100 × 100 Cauchy

Let 
$$p(x) = \frac{1}{\pi(1+x^2)}$$
.





Degree of a vertex = number of edges leaving the vertex. Adjacency matrix:  $a_{ij}$  = number edges b/w Vertex i and Vertex j.

$$A = \left(\begin{array}{cccc} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 2 \\ 1 & 0 & 2 & 0 \end{array}\right)$$

These are Real Symmetric Matrices.

### McKay's Law (Kesten Measure) with d=3

Density of Eigenvalues for *d*-regular graphs

$$f(x) = \begin{cases} \frac{d}{2\pi(d^2-x^2)} \sqrt{4(d-1)-x^2} & |x| \le 2\sqrt{d-1} \\ 0 & \text{otherwise.} \end{cases}$$



### McKay's Law (Kesten Measure) with d = 6



Fat Thin: fat enough to average, thin enough to get something different than semi-circle (though as  $d \to \infty$  recover semi-circle).

Spacings between eigenvalues of 3-regular graphs and the GOE:



Introduction to *L*-Functions

#### **Riemann Zeta Function**

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}, \text{ Re}(s) > 1.$$

### **Functional Equation:**

$$\xi(s) = \Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}}\zeta(s) = \xi(1-s).$$

### Riemann Hypothesis (RH):

All non-trivial zeros have  $Re(s) = \frac{1}{2}$ ; can write zeros as  $\frac{1}{2} + i\gamma$ .

**Observation:** Spacings b/w zeros appear same as b/w eigenvalues of Complex Hermitian matrices  $\overline{A}^T = A$ .

# General *L*-functions

$$L(s,f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s} = \prod_{p \text{ prime}} L_p(s,f)^{-1}, \quad \text{Re}(s) > 1.$$

#### **Functional Equation:**

$$\Lambda(s, f) = \Lambda_{\infty}(s, f)L(s, f) = \Lambda(1 - s, f).$$

### Generalized Riemann Hypothesis (RH):

All non-trivial zeros have  $Re(s) = \frac{1}{2}$ ; can write zeros as  $\frac{1}{2} + i\gamma$ .

**Observation:** Spacings b/w zeros appear same as b/w eigenvalues of Complex Hermitian matrices  $\overline{A}^T = A$ .

### Zeros of $\zeta(s)$ vs GUE



70 million spacings b/w adjacent zeros of  $\zeta(s)$ , starting at the 10<sup>20th</sup> zero (from Odlyzko).

### **Explicit Formula (Contour Integration)**

$$-\frac{\zeta'(s)}{\zeta(s)} = -\frac{\mathsf{d}}{\mathsf{d}s}\log\zeta(s) = -\frac{\mathsf{d}}{\mathsf{d}s}\log\prod_{p}\left(1-p^{-s}\right)^{-1}$$

$$-\frac{\zeta'(s)}{\zeta(s)} = -\frac{d}{ds} \log \zeta(s) = -\frac{d}{ds} \log \prod_{p} (1 - p^{-s})^{-1}$$

$$= \frac{d}{ds} \sum_{p} \log (1 - p^{-s})$$

$$= \sum_{p} \frac{\log p \cdot p^{-s}}{1 - p^{-s}} = \sum_{p} \frac{\log p}{p^{s}} + \text{Good}(s).$$

# **Explicit Formula (Contour Integration)**

$$-\frac{\zeta'(s)}{\zeta(s)} = -\frac{d}{ds}\log\zeta(s) = -\frac{d}{ds}\log\prod_{p} (1-p^{-s})^{-1}$$

$$= \frac{d}{ds}\sum_{p}\log(1-p^{-s})$$

$$= \sum_{p}\frac{\log p \cdot p^{-s}}{1-p^{-s}} = \sum_{p}\frac{\log p}{p^{s}} + \text{Good}(s).$$

Contour Integration:

$$\int -\frac{\zeta'(s)}{\zeta(s)} \frac{x^s}{s} ds \quad \text{vs} \quad \sum_{p} \log p \int \left(\frac{x}{p}\right)^s \frac{ds}{s}.$$

# **Explicit Formula (Contour Integration)**

$$-\frac{\zeta'(s)}{\zeta(s)} = -\frac{d}{ds} \log \zeta(s) = -\frac{d}{ds} \log \prod_{p} (1 - p^{-s})^{-1}$$

$$= \frac{d}{ds} \sum_{p} \log (1 - p^{-s})$$

$$= \sum_{p} \frac{\log p \cdot p^{-s}}{1 - p^{-s}} = \sum_{p} \frac{\log p}{p^{s}} + \operatorname{Good}(s).$$

Contour Integration:

$$\int -\frac{\zeta'(s)}{\zeta(s)} \, \phi(s) ds \quad \text{vs} \quad \sum_{n} \log p \int \phi(s) p^{-s} ds.$$

# **Explicit Formula (Contour Integration)**

$$-\frac{\zeta'(s)}{\zeta(s)} = -\frac{d}{ds} \log \zeta(s) = -\frac{d}{ds} \log \prod_{p} (1 - p^{-s})^{-1}$$

$$= \frac{d}{ds} \sum_{p} \log (1 - p^{-s})$$

$$= \sum_{p} \frac{\log p \cdot p^{-s}}{1 - p^{-s}} = \sum_{p} \frac{\log p}{p^{s}} + \text{Good}(s).$$

Contour Integration (see Fourier Transform arising):

$$\int -\frac{\zeta'(s)}{\zeta(s)} \, \phi(s) ds \quad \text{vs} \quad \sum \log p \int \phi(s) \mathrm{e}^{-\sigma \log p} \mathrm{e}^{-it \log p} ds.$$

Knowledge of zeros gives info on coefficients.

Riemann Zeta Function: Let  $\sum_{\rho}$  denote the sum over the zeros of  $\zeta(s)$  in the critical strip, g an even Schwartz function of compact support and  $\phi(r) = \int_{-\infty}^{\infty} g(u)e^{iru}du$ . Then

$$\sum_{\rho} \phi(\gamma_{\rho}) = 2\phi\left(\frac{i}{2}\right) - \sum_{p} \sum_{k=1}^{\infty} \frac{2\log p}{p^{k/2}} g(k\log p) + \frac{1}{\pi} \int_{-\infty}^{\infty} \left(\frac{1}{iy - \frac{1}{2}} + \frac{\Gamma'(\frac{iy}{2} + \frac{5}{4})}{\Gamma(\frac{iy}{2} + \frac{5}{4})} - \frac{1}{2}\log \pi\right) \phi(y) \, dy.$$

# **Explicit Formula: Examples**

Dirichlet *L*-functions: Let *h* be an even Schwartz function and  $L(s,\chi) = \sum_n \chi(n)/n^s$  a Dirichlet *L*-function from a non-trivial character  $\chi$  with conductor *m* and zeros  $\rho = \frac{1}{2} + i\gamma_{\chi}$ ; if the Generalized Riemann Hypothesis is true then  $\gamma \in \mathbb{R}$ . Then

$$\sum_{\rho} h\left(\gamma_{\rho} \frac{\log(m/\pi)}{2\pi}\right) = \int_{-\infty}^{\infty} h(y) dy$$

$$-2 \sum_{\rho} \frac{\log \rho}{\log(m/\pi)} \widehat{h}\left(\frac{\log \rho}{\log(m/\pi)}\right) \frac{\chi(\rho)}{\rho^{1/2}}$$

$$-2 \sum_{\rho} \frac{\log \rho}{\log(m/\pi)} \widehat{h}\left(2 \frac{\log \rho}{\log(m/\pi)}\right) \frac{\chi^{2}(\rho)}{\rho} + O\left(\frac{1}{\log m}\right).$$

42

Cuspidal Newforms: Let  $\mathcal{F}$  be a family of cupsidal newforms (say weight k, prime level N and possibly split by sign)  $L(s, f) = \sum_{n} \lambda_f(n)/n^s$ . Then

$$\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \sum_{\gamma_f} \phi \left( \frac{\log R}{2\pi} \gamma_f \right) = \widehat{\phi}(0) + \frac{1}{2} \phi(0) - \frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} P(f; \phi) \\
+ O \left( \frac{\log \log R}{\log R} \right) \\
P(f; \phi) = \sum_{p \nmid N} \lambda_f(p) \widehat{\phi} \left( \frac{\log p}{\log R} \right) \frac{2 \log p}{\sqrt{p} \log R}.$$

 $\{\alpha_i\}$  increasing sequence, box  $B \subset \mathbb{R}^{n-1}$ .

#### *n*-level correlation

$$\lim_{N\to\infty} \frac{\#\left\{\left(\alpha_{j_1}-\alpha_{j_2},\ldots,\alpha_{j_{n-1}}-\alpha_{j_n}\right)\in B, j_i\neq j_k\right\}}{N}$$

(Instead of using a box, can use a smooth test function.)

- $\{\alpha_i\}$  increasing sequence, box  $B \subset \mathbf{R}^{n-1}$ .
- Normalized spacings of  $\zeta(s)$  starting at  $10^{20}$  (Odlyzko).
- 2 and 3-correlations of  $\zeta(s)$  (Montgomery, Hejhal).
- n-level correlations for all automorphic cupsidal L-functions (Rudnick-Sarnak).
- n-level correlations for the classical compact groups (Katz-Sarnak).
- Insensitive to any finite set of zeros.

 $\phi(\mathbf{x}) := \prod_i \phi_i(\mathbf{x}_i), \ \phi_i$  even Schwartz functions whose Fourier Transforms are compactly supported.

# n-level density

$$D_{n,f}(\phi) = \sum_{\substack{j_1,\ldots,j_n \\ \text{distinct}}} \phi_1\left(L_f\gamma_f^{(j_1)}\right)\cdots\phi_n\left(L_f\gamma_f^{(j_n)}\right)$$

# Measures of Spacings: *n*-Level Density and Families

 $\phi(\mathbf{x}) := \prod_i \phi_i(\mathbf{x}_i), \ \phi_i$  even Schwartz functions whose Fourier Transforms are compactly supported.

# n-level density

$$D_{n,f}(\phi) = \sum_{\substack{j_1,\ldots,j_n \\ \text{distinct}}} \phi_1\left(L_f\gamma_f^{(j_1)}\right)\cdots\phi_n\left(L_f\gamma_f^{(j_n)}\right)$$

- Individual zeros contribute in limit.
- Most of contribution is from low zeros.
- Average over similar curves (family).

 $\phi(\mathbf{x}) := \prod_i \phi_i(\mathbf{x}_i), \ \phi_i$  even Schwartz functions whose Fourier Transforms are compactly supported.

# n-level density

Introduction

$$D_{n,f}(\phi) = \sum_{\substack{j_1,\ldots,j_n \\ \text{distinct}}} \phi_1\left(L_f\gamma_f^{(j_1)}\right)\cdots\phi_n\left(L_f\gamma_f^{(j_n)}\right)$$

- Individual zeros contribute in limit.
- Most of contribution is from low zeros.
- Average over similar curves (family).

# **Katz-Sarnak Conjecture**

For a 'nice' family of *L*-functions, the *n*-level density depends only on a symmetry group attached to the family.

#### Normalization of Zeros

Introduction

Local (hard, use  $C_f$ ) vs Global (easier, use log C = $|\mathcal{F}_N|^{-1} \sum_{f \in \mathcal{F}_N} \log C_f$ ). Hope:  $\phi$  a good even test function with compact support, as  $|\mathcal{F}| \to \infty$ ,

$$\frac{1}{|\mathcal{F}_N|} \sum_{f \in \mathcal{F}_N} D_{n,f}(\phi) = \frac{1}{|\mathcal{F}_N|} \sum_{\substack{f \in \mathcal{F}_N \\ j_f \neq \pm j_k}} \sum_{i_1, \dots, i_n \atop j_f \neq \pm j_k} \prod_i \phi_i \left( \frac{\log C_f}{2\pi} \gamma_E^{(j_i)} \right)$$

$$\rightarrow \int \dots \int \phi(x) W_{n,\mathcal{G}(\mathcal{F})}(x) dx.$$

#### **Katz-Sarnak Conjecture**

As  $C_f \to \infty$  the behavior of zeros near 1/2 agrees with  $N \to \infty$  limit of eigenvalues of a classical compact group.

#### **1-Level Densities**

The Fourier Transforms for the 1-level densities are

$$\widehat{W_{1,SO(\text{even})}}(u) = \delta_0(u) + \frac{1}{2}\eta(u)$$

$$\widehat{W_{1,SO}}(u) = \delta_0(u) + \frac{1}{2}$$

$$\widehat{W_{1,SO(\text{odd})}}(u) = \delta_0(u) - \frac{1}{2}\eta(u) + 1$$

$$\widehat{W_{1,Sp}}(u) = \delta_0(u) - \frac{1}{2}\eta(u)$$

$$\widehat{W_{1,U}}(u) = \delta_0(u)$$

where  $\delta_0(u)$  is the Dirac Delta functional and

$$\eta(u) = \begin{cases}
1 & \text{if } |u| < 1 \\
\frac{1}{2} & \text{if } |u| = 1 \\
0 & \text{if } |u| > 1
\end{cases}$$

#### Correspondences

Introduction

#### Similarities between L-Functions and Nuclei:

Zeros ←→ Energy Levels

Schwartz test function  $\longrightarrow$  Neutron

Support of test function  $\longleftrightarrow$  Neutron Energy.

#### Results

#### **Some Number Theory Results**

- Orthogonal: Iwaniec-Luo-Sarnak, Ricotta-Royer:
   1-level density for holomorphic even weight k cuspidal newforms of square-free level N (SO(even) and SO(odd) if split by sign).
- Symplectic: Rubinstein, Gao, Levinson-Miller, and Entin, Roddity-Gershon and Rudnick: n-level densities for twists  $L(s, \chi_d)$  of the zeta-function.
- Unitary: Fiorilli-Miller, Hughes-Rudnick: Families of Primitive Dirichlet Characters.
- Orthogonal: Miller, Young: One and two-parameter families of elliptic curves.

- Orthogonal: *n*-level densities of cuspidal newforms:
  - $\diamond$  Hughes-Miller: up to  $\left(-\frac{1}{n-1}, \frac{1}{n-1}\right)$ .
  - $\diamond$  lyer-Miller-Triantafillou: up to  $\left(-\frac{1}{n-2}, \frac{1}{n-2}\right)$ .
- Symplectic: n-level densities of  $L(s, \chi_d)$ :
  - ♦ Levinson-Miller: up to (-2/n, 2/n) for  $n \le 7$ .
- Unitary: 1-level of  $L(s, \chi)$ :
  - Fiorilli-Miller: lower order terms beyond square-root, large support conditionally.

- Orthogonal: *n*-level densities of cuspidal newforms:
  - $\diamond$  Hughes-Miller: up to  $\left(-\frac{1}{n-1}, \frac{1}{n-1}\right)$ .
  - $\diamond$  lyer-Miller-Triantafillou: up to  $\left(-\frac{1}{n-2}, \frac{1}{n-2}\right)$ .
- Symplectic: *n*-level densities of  $L(s, \chi_d)$ :
  - ♦ Levinson-Miller: up to (-2/n, 2/n) for  $n \le 7$ .
- Unitary: 1-level of  $L(s, \chi)$ :
  - ⋄ Fiorilli-Miller: lower order terms beyond square-root, large support conditionally.

#### **Main Tools**

- Control of conductors: Usually monotone, gives scale to study low-lying zeros.
- Explicit Formula: Relates sums over zeros to sums over primes.
- Averaging Formulas: Petersson formula in Iwaniec-Luo-Sarnak, Orthogonality of characters in Fiorilli-Miller, Gao, Hughes-Rudnick, Levinson-Miller, Rubinstein.

#### Applications of *n*-level density

Introduction

One application: bounding the order of vanishing at the central point.

Average rank  $\cdot \phi(0) \leq \int \phi(x) W_{G(\mathcal{F})}(x) dx$  if  $\phi$  non-negative.

One application: bounding the order of vanishing at the central point.

Average rank  $\cdot \phi(0) \leq \int \phi(x) W_{G(\mathcal{F})}(x) dx$  if  $\phi$  non-negative. Can also use to bound the percentage that vanish to order *r* for any *r*.

# Theorem (Miller, Hughes-Miller)

Using n-level arguments, for the family of cuspidal newforms of prime level  $N \to \infty$  (split or not split by sign), for any r there is a  $c_r$  such that probability of at least rzeros at the central point is at most  $c_n r^{-n}$ .

Better results using 2-level than Iwaniec-Luo-Sarnak using the 1-level for r > 5.

Example: Dirichlet L-functions

# $(\mathbb{Z}/m\mathbb{Z})^*$ is cyclic of order m-1 with generator g. Let $\zeta_{m-1}=e^{2\pi i/(m-1)}$ . The principal character $\chi_0$ is given by

$$\chi_0(k) = \begin{cases} 1 & (k, m) = 1 \\ 0 & (k, m) > 1. \end{cases}$$

The m-2 primitive characters are determined (by multiplicativity) by action on g.

As each  $\chi: (\mathbb{Z}/m\mathbb{Z})^* \to \mathbb{C}^*$ , for each  $\chi$  there exists an I such that  $\chi(g) = \zeta_{m-1}^I$ . Hence for each  $I, 1 \le I \le m-2$  we have

$$\chi_l(\mathbf{k}) = \begin{cases} \zeta_{m-1}^{la} & \mathbf{k} \equiv g^a(m) \\ 0 & (\mathbf{k}, m) > 0 \end{cases}$$

#### Dirichlet L-Functions

Introduction

Let  $\chi$  be a primitive character mod m. Let

$$c(m,\chi)=\sum_{k=0}^{m-1}\chi(k)e^{2\pi ik/m}.$$

 $c(m,\chi)$  is a Gauss sum of modulus  $\sqrt{m}$ .

$$L(s,\chi) = \prod_{p} (1 - \chi(p)p^{-s})^{-1}$$

$$\Lambda(s,\chi) = \pi^{-\frac{1}{2}(s+\epsilon)}\Gamma\left(\frac{s+\epsilon}{2}\right)m^{\frac{1}{2}(s+\epsilon)}L(s,\chi),$$

where

$$\epsilon = \begin{cases} 0 & \text{if } \chi(-1) = 1 \\ 1 & \text{if } \chi(-1) = -1 \end{cases}$$

#### **Explicit Formula**

Let  $\phi$  be an even Schwartz function with compact support  $(-\sigma, \sigma)$ , let  $\chi$  be a non-trivial primitive Dirichlet character of conductor m.

$$\sum \phi \left( \gamma \frac{\log(\frac{m}{\pi})}{2\pi} \right)$$

$$= \int_{-\infty}^{\infty} \phi(y) dy$$

$$- \sum_{\rho} \frac{\log \rho}{\log(m/\pi)} \widehat{\phi} \left( \frac{\log \rho}{\log(m/\pi)} \right) [\chi(\rho) + \bar{\chi}(\rho)] \rho^{-\frac{1}{2}}$$

$$- \sum_{\rho} \frac{\log \rho}{\log(m/\pi)} \widehat{\phi} \left( 2 \frac{\log \rho}{\log(m/\pi)} \right) [\chi^{2}(\rho) + \bar{\chi}^{2}(\rho)] \rho^{-1}$$

$$+ O\left( \frac{1}{\log m} \right).$$

 $\{\chi_0\} \cup \{\chi_I\}_{1 \le I \le m-2}$  are all the characters mod m. Consider the family of primitive characters mod a prime m (m-2 characters):

$$\int_{-\infty}^{\infty} \phi(y) dy$$

$$- \frac{1}{m-2} \sum_{\chi \neq \chi_0} \sum_{p} \frac{\log p}{\log(m/\pi)} \widehat{\phi} \Big( \frac{\log p}{\log(m/\pi)} \Big) [\chi(p) + \bar{\chi}(p)] p^{-\frac{1}{2}}$$

$$- \frac{1}{m-2} \sum_{\chi \neq \chi_0} \sum_{p} \frac{\log p}{\log(m/\pi)} \widehat{\phi} \Big( 2 \frac{\log p}{\log(m/\pi)} \Big) [\chi^2(p) + \bar{\chi}^2(p)] p^{-1}$$

$$+ O\Big( \frac{1}{\log m} \Big).$$

Note can pass Character Sum through Test Function.

$$\sum_{\chi} \chi(k) = \begin{cases} m-1 & k \equiv 1(m) \\ 0 & \text{otherwise.} \end{cases}$$

$$\sum_{\chi} \chi(k) = \begin{cases} m - 1 & k \equiv 1(m) \\ 0 & \text{otherwise.} \end{cases}$$

For any prime  $p \neq m$ 

$$\sum_{\chi \neq \chi_0} \chi(p) \; = \; \begin{cases} -1 + m - 1 & p \equiv 1(m) \\ -1 & \text{otherwise.} \end{cases}$$

$$\sum_{x} \chi(k) = \begin{cases} m-1 & k \equiv 1(m) \\ 0 & \text{otherwise.} \end{cases}$$

For any prime  $p \neq m$ 

$$\sum_{\chi \neq \chi_0} \chi(p) = \begin{cases} -1 + m - 1 & p \equiv 1(m) \\ -1 & \text{otherwise.} \end{cases}$$

Substitute into

$$\frac{1}{m-2} \sum_{n \neq \infty} \sum_{\boldsymbol{p}} \frac{\log \boldsymbol{p}}{\log (m/\pi)} \widehat{\phi} \Big( \frac{\log \boldsymbol{p}}{\log (m/\pi)} \Big) [\chi(\boldsymbol{p}) + \bar{\chi}(\boldsymbol{p})] \boldsymbol{p}^{-\frac{1}{2}}$$

#### First Sum: no contribution if $\sigma < 2$

$$\frac{-2}{m-2} \sum_{p}^{m^{\sigma}} \frac{\log p}{\log(m/\pi)} \widehat{\phi} \left( \frac{\log p}{\log(m/\pi)} \right) p^{-\frac{1}{2}}$$

$$+ 2 \frac{m-1}{m-2} \sum_{p=1}^{m^{\sigma}} \frac{\log p}{\log(m/\pi)} \widehat{\phi} \left( \frac{\log p}{\log(m/\pi)} \right) p^{-\frac{1}{2}}$$

$$\frac{-2}{m-2} \sum_{p}^{m^{\sigma}} \frac{\log p}{\log(m/\pi)} \widehat{\phi} \left( \frac{\log p}{\log(m/\pi)} \right) p^{-\frac{1}{2}}$$

$$+ 2 \frac{m-1}{m-2} \sum_{p=1(m)}^{m^{\sigma}} \frac{\log p}{\log(m/\pi)} \widehat{\phi} \left( \frac{\log p}{\log(m/\pi)} \right) p^{-\frac{1}{2}}$$

$$\ll \frac{1}{m} \sum_{p}^{m^{\sigma}} p^{-\frac{1}{2}} + \sum_{p=1(m)}^{m^{\sigma}} p^{-\frac{1}{2}}$$

$$\frac{-2}{m-2} \sum_{p}^{m^{o}} \frac{\log p}{\log(m/\pi)} \widehat{\phi} \left( \frac{\log p}{\log(m/\pi)} \right) p^{-\frac{1}{2}} \\
+ 2 \frac{m-1}{m-2} \sum_{p\equiv 1(m)}^{m^{\sigma}} \frac{\log p}{\log(m/\pi)} \widehat{\phi} \left( \frac{\log p}{\log(m/\pi)} \right) p^{-\frac{1}{2}} \\
\ll \frac{1}{m} \sum_{p}^{m^{\sigma}} p^{-\frac{1}{2}} + \sum_{p\equiv 1(m)}^{m^{\sigma}} p^{-\frac{1}{2}} \ll \frac{1}{m} \sum_{k=1(m)}^{m^{\sigma}} k^{-\frac{1}{2}} + \sum_{k\equiv 1(m)}^{m^{\sigma}} k^{-\frac{1}{2}}$$

#### First Sum: no contribution if $\sigma < 2$

$$\frac{-2}{m-2} \sum_{p}^{m^{\sigma}} \frac{\log p}{\log(m/\pi)} \widehat{\phi} \left( \frac{\log p}{\log(m/\pi)} \right) p^{-\frac{1}{2}} \\
+ 2 \frac{m-1}{m-2} \sum_{p\equiv 1(m)}^{m^{\sigma}} \frac{\log p}{\log(m/\pi)} \widehat{\phi} \left( \frac{\log p}{\log(m/\pi)} \right) p^{-\frac{1}{2}} \\
\ll \frac{1}{m} \sum_{p}^{m^{\sigma}} p^{-\frac{1}{2}} + \sum_{p\equiv 1(m)}^{m^{\sigma}} p^{-\frac{1}{2}} \ll \frac{1}{m} \sum_{k}^{m^{\sigma}} k^{-\frac{1}{2}} + \sum_{k\equiv 1(m) \atop k\geq m+1}^{m^{\sigma}} k^{-\frac{1}{2}} \\
\ll \frac{1}{m} \sum_{k}^{m^{\sigma}} k^{-\frac{1}{2}} + \frac{1}{m} \sum_{k}^{m^{\sigma}} k^{-\frac{1}{2}} \ll \frac{1}{m} m^{\sigma/2}.$$

70

$$\frac{1}{m-2} \sum_{\gamma \neq \gamma_0} \sum_{p} \frac{\log p}{\log(m/\pi)} \widehat{\phi} \left( 2 \frac{\log p}{\log(m/\pi)} \right) \frac{\chi^2(p) + \bar{\chi}^2(p)}{p}.$$

$$\sum_{p \neq \pm 1} \left[ \chi^2(p) + \bar{\chi}^2(p) \right] = \begin{cases} 2(m-2) & p \equiv \pm 1(m) \\ -2 & p \neq \pm 1(m) \end{cases}$$

Up to  $O\left(\frac{1}{\log m}\right)$  we find that

$$\ll \frac{1}{m-2} \sum_{p}^{m^{\sigma/2}} p^{-1} + \frac{2m-2}{m-2} \sum_{p\equiv \pm 1(m)}^{m^{\sigma/2}} p^{-1}$$

$$\ll \frac{1}{m-2} \sum_{k}^{m^{\sigma/2}} k^{-1} + \sum_{k\equiv 1(m)}^{m^{\sigma/2}} k^{-1} + \sum_{k\equiv -1(m)}^{m^{\sigma/2}} k^{-1}$$

#### **Dirichlet Characters:** *m* **Square-free**

Fix an r and let  $m_1, \ldots, m_r$  be distinct odd primes.

$$m = m_1 m_2 \cdots m_r$$
  
 $M_1 = (m_1 - 1)(m_2 - 1) \cdots (m_r - 1) = \phi(m)$   
 $M_2 = (m_1 - 2)(m_2 - 2) \cdots (m_r - 2).$ 

 $M_2$  is the number of primitive characters mod m, each of conductor m. A general primitive character mod m is given by  $\chi(u) = \chi_h(u)\chi_h(u)\cdots\chi_h(u)$ . Let  $\mathcal{F} = \{ \chi : \chi = \chi_h \chi_h \cdots \chi_h \}.$ 

$$\frac{1}{M_2} \sum_{p} \frac{\log p}{\log(m/\pi)} \widehat{\phi} \left( \frac{\log p}{\log(m/\pi)} \right) p^{-\frac{1}{2}} \sum_{\chi \in \mathcal{F}} [\chi(p) + \bar{\chi}(p)]$$

$$\frac{1}{M_2} \sum_{p} \frac{\log p}{\log(m/\pi)} \widehat{\phi} \left( 2 \frac{\log p}{\log(m/\pi)} \right) p^{-1} \sum_{\chi \in \mathcal{F}} [\chi^2(p) + \bar{\chi}^2(p)]$$

#### **Characters Sums**

Introduction

$$\sum_{l_i=1}^{m_i-2} \chi_{l_i}(p) \ = \ \begin{cases} m_i-1-1 & p \equiv 1(m_i) \\ -1 & \text{otherwise}. \end{cases}$$

Define

$$\delta_{m_i}(p,1) = \begin{cases} 1 & p \equiv 1(m_i) \\ 0 & \text{otherwise.} \end{cases}$$

Then

$$\sum_{\chi \in \mathcal{F}} \chi(\rho) = \sum_{l_1=1}^{m_1-2} \cdots \sum_{l_r=1}^{m_r-2} \chi_{l_1}(\rho) \cdots \chi_{l_r}(\rho)$$

$$= \prod_{i=1}^r \sum_{l_i=1}^{m_i-2} \chi_{l_i}(\rho) = \prod_{i=1}^r \left(-1 + (m_i - 1)\delta_{m_i}(\rho, 1)\right).$$

# **Expansion Preliminaries**

k(s) is an s-tuple  $(k_1, k_2, ..., k_s)$  with  $k_1 < k_2 < \cdots < k_s$ . This is just a subset of (1, 2, ..., r),  $2^r$  possible choices for k(s).

$$\delta_{k(s)}(\boldsymbol{p},1) = \prod_{i=1}^{s} \delta_{m_{k_i}}(\boldsymbol{p},1).$$

If s = 0 we define  $\delta_{k(0)}(p, 1) = 1 \ \forall p$ . Then

$$\prod_{i=1}^{r} \left(-1 + (m_i - 1)\delta_{m_i}(p, 1)\right)$$

$$= \sum_{s=0}^{r} \sum_{k(s)} (-1)^{r-s} \delta_{k(s)}(p, 1) \prod_{i=1}^{s} (m_{k_i} - 1).$$

$$\ll \sum_{p}^{m^{\sigma}} p^{-\frac{1}{2}} \frac{1}{M_{2}} \Big( 1 + \sum_{s=1}^{r} \sum_{k(s)} \delta_{k(s)}(p, 1) \prod_{i=1}^{s} (m_{k_{i}} - 1) \Big).$$

As  $m/M_2 \le 3^r$ , s = 0 sum contributes

$$S_{1,0} = \frac{1}{M_2} \sum_{p}^{m^o} p^{-\frac{1}{2}} \ll 3^r m^{\frac{1}{2}\sigma - 1},$$

hence negligible for  $\sigma$  < 2.

$$\ll \sum_{p}^{m^{\sigma}} p^{-\frac{1}{2}} \frac{1}{M_2} \Big( 1 + \sum_{s=1}^{r} \sum_{k(s)} \delta_{k(s)}(p,1) \prod_{i=1}^{s} (m_{k_i} - 1) \Big).$$

Now we study

$$S_{1,k(s)} = \frac{1}{M_2} \prod_{i=1}^{s} (m_{k_i} - 1) \sum_{p}^{m^{\sigma}} p^{-\frac{1}{2}} \delta_{k(s)}(p, 1)$$

$$\ll \frac{1}{M_2} \prod_{i=1}^{s} (m_{k_i} - 1) \sum_{n \equiv 1 (m_{k(s)})}^{m^{\sigma}} n^{-\frac{1}{2}}$$

$$\ll \frac{1}{M_2} \prod_{i=1}^{s} (m_{k_i} - 1) \frac{1}{\prod_{i=1}^{s} (m_{k_i})} \sum_{p}^{m^{\sigma}} n^{-\frac{1}{2}} \ll 3^r m^{\frac{1}{2}\sigma - 1}.$$

76

# There are 2<sup>r</sup> choices, yielding

$$S_1 \ll 6^r m^{\frac{1}{2}\sigma-1},$$

which is negligible as m goes to infinity for fixed r if  $\sigma$  < 2. Cannot let r go to infinity.

If *m* is the product of the first *r* primes,

$$\log m = \sum_{k=1}^{r} \log p_k$$
$$= \sum_{p \le r} \log p \approx r$$

Therefore

$$6^r \approx m^{\log 6} \approx m^{1.79}$$
.

# **Second Sum Expansions and Bounds**

$$\sum_{l=1}^{m_i-2} \chi_{l_i}^2(p) = \begin{cases} m_i - 1 - 1 & p \equiv \pm 1(m_i) \\ -1 & \text{otherwise} \end{cases}$$

$$\sum_{\chi \in \mathcal{F}} \chi^{2}(p) = \sum_{l_{1}=1}^{m_{1}-2} \cdots \sum_{l_{r}=1}^{m_{r}-2} \chi^{2}_{l_{1}}(p) \cdots \chi^{2}_{l_{r}}(p)$$

$$= \prod_{i=1}^{r} \sum_{l_{i}=1}^{m_{i}-2} \chi^{2}_{l_{i}}(p)$$

$$= \prod_{i=1} \left(-1 + (m_i - 1)\delta_{m_i}(p, 1) + (m_i - 1)\delta_{m_i}(p, -1)\right).$$

#### Second Sum Expansions and Bounds

Handle similarly as before. Say

$$p \equiv 1 \mod m_{k_1}, \dots, m_{k_n}$$

$$p \equiv -1 \mod m_{k_{n+1}}, \dots, m_{k_n}$$

How small can p be?

+1 congruences imply 
$$p \ge m_{k_1} \cdots m_{k_a} + 1$$
.

$$-1$$
 congruences imply  $p \ge m_{k_{a+1}} \cdots m_{k_b} - 1$ .

Since the product of these two lower bounds is greater than  $\prod_{i=1}^{b} (m_{k_i} - 1)$ , at least one must be greater than

$$\left(\prod_{i=1}^b(m_{k_i}-1)\right)^{\frac{1}{2}}.$$

There are 3<sup>r</sup> pairs, yielding

Second Sum = 
$$\sum_{s=0}^{r} \sum_{k(s)} \sum_{j(s)} S_{2,k(s),j(s)} \ll 9^{r} m^{-\frac{1}{2}}$$
.

#### **Summary**

Agrees with Unitary for  $\sigma$  < 2 for square-free  $m \in [N, 2N]$  from:

#### Theorem

- m square-free odd integer with r = r(m) factors;
- $m = \prod_{i=1}^r m_i$ ;
- $M_2 = \prod_{i=1}^r (m_i 2)$ .

Then family  $\mathcal{F}_m$  of primitive characters mod m has

First Sum 
$$\ll \frac{1}{M_2} 2^r m^{\frac{1}{2}\sigma}$$
  
Second Sum  $\ll \frac{1}{M_2} 3^r m^{\frac{1}{2}}$ .