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Compound Families
°

Identifying the Symmetry Groups

@ Often an analysis of the monodromy group in the
function field case suggests the answer.

@ All simple families studied to date are built from GL;
or GL, L-functions.

@ Tools: Explicit Formula, Orthogonality of Characters /
Petersson Formula.

@ How to identify symmetry group in general? One
possibility is by the signs of the functional equation:

@ Folklore Conjecture: If all signs are even and no
corresponding family with odd signs, Symplectic
symmetry; otherwise SO(even). (False!)




Compound Families
°

Explicit Formula

@ 7 cuspidal automorphic representation on GL,,.
@ Q, > 0: analytic conductor of L(s,7) = >_ A.(n)/n®.
@ By GRH the non-trivial zeros are 1 + i,;.
@ Satake parameters {o.i(p)}i,;
Ax(p”) =30y ani(p)"”.
o L(s.m) = X0 *5 = [T, [Ty (1 — ami(p)p~)

logQx\ _ .\ ~ (vlogp\ Az(p”)logp
Zg(%” 2 )_g(o) ZZQ(IOQQW) pv/2log Qx

j p,v

A




Compound Families
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Some Results: Rankin-Selberg Convolution of Families

Symmetry constant: ¢, = 0 (resp, 1 or -1) if family £ has
unitary (resp, symplectic or orthogonal) symmetry.

Rankin-Selberg convolution: Satake parameters for

{OéﬂlXﬂ'z(k) Eil = {&Wl(i) 'Oéﬂz(j)} lsizn .

1<j<m

Theorem (Duefiez-Miller)
If 7 and G are nice families of L-functions, then
Crxg = CF - Cg.




Compound Families
°

1-Level Density

Assuming conductors constant in family F, have to study

M(PY) = ara(p) + - +Off,n(_p)y
Sy(F) = _ZZA(Iogp> log p LZA()
! B > g logR /) \/plogR ||F| P
N logp log p 1 2
S(F) = —2%:9 (ZlogR> olog R _mz)\f(p )]

The corresponding classical compact group is determined
by

0 Unitary

1 .
mZ,\f(pz) =Cr = 1 Symplectic
fer —1 Orthogonal.

¢




y

Compound Families
°

1-Level Density for Rankin-Selberg Convolution of Families

Families 7 and G.
Satake parameters {as;(p)}L; and {fg;(p) ;-
Family 7 x G, L(s,f x g) has parameters

{0£,i(P)Bg,i(P) }i=1..nj=1..m-
arxg(P) = sz,i(p)”ﬂg,j(p)”

= M) ().

Technical restriction: need f and g unrelated (i.e., g is not
the contragredient of f) for our applications.




Compound Families
°

1-Level Density for Rankin-Selberg Convolution of Families (cont)

To analyze S,(F x G) we must study

1 v vy _ i vy| . i v
IF x G] > Af(p)')\g(p)—[|]_-|z>\f(p )] [|Q|ZA9(|O )]

fXgEFXG fer geg

@ v = 1: If one of the families is rank zero, so is F x G;
S1(F x G) will not contribute.

@ v=2:Crxg = Cr-Cg.

Provesif each family is of rank 0, the symmetry type of the
convolution isthe product of the symmetry types. O
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Cuspidal Newforms
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Results from Iwaniec-Luo-Sarnak

@ Orthogonal: Iwaniec-Luo-Sarnak: 1-level density for
holomorphic even weight k cuspidal newforms of
square-free level N (SO(even) and SO(odd) if split by
sign) in (—2, 2).

@ Symplectic: lwaniec-Luo-Sarnak: 1-level density for
sym?(f), f holomorphic cuspidal newform.

Will review Orthogonal case and talk about extensions
(joint with Chris Hughes).
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Modular Form Preliminaries

ab) ad—-bc =1
) = 4(2 4 ) " om) )
f is a weight k holomorphic cuspform of level N if

¥y € To(N), f(y2) = (cz +d)*f(z2).

@ Fourier Expansion: f(z) = Y o2, a;(n)e®"Z,
L(s,f)=> ", an"s.

@ Petersson Norm: (f,g) = fro(N)\Hf(z)g(z)yk*dedy.

@ Normalized coefficients:

rk—1) 1

Pr(n) Wwaf(n)-
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Modular Form Preliminaries: Petersson Formula

Bk (N) an orthonormal basis for weight k level N. Define

Agn(m,n) = Z wr(m)(n).

fEBk(N)

Petersson Formula
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Modular Form Preliminaries: Explicit Formula

Let F be a family of cupsidal newforms (say weight k,
prime level N and possibly split by sign)
L(s,f) = >, A(n)/n3. Then

1 logR ~ 1 1 _
WZXM( > vf) = 9(0) +50(0) — 7 > _P(fi0)

feF n

~(logp\ 2logp
P = SN0 ook ) sk
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Modular Form Preliminaries:Fourier Coefficient Review

A(n) = a(n)nz
M) = 3 (?)
d|(m,n)
(d,M)=1

For a newform of level N, A\¢(N) is trivially related to the
sign of the form:

e = i*u(N)A(N)VN.

The above will allow us to split into even and odd families:
1+ €f.
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Key Kloosterman-Bessel integral from ILS

Ramanujan sum:
R(n,q) = > e(an/q) = » w(q/d)d,
amod q d|(n,q)

where x restricts the summation to be over all a relatively
prime to q.

Theorem (ILS)

Let W be an even Schwartz function with supp(¥) C (—2, 2). Then

1 R(m?,b)R(1,b) oo ~ <2log(by\/ﬁ/47rm)) dy
— N e Ji_ v — 7| —
mge m?2 (bN)=1 @(b) /y:o k=109 logR logR

1 B sin 27x 1 k log log kN
- =5 |7 w0 E e - Sw)] 0 ,
2 — oo 27X 2 log kN

where R = k2N and ¢ is Euler’s totient function.




Cuspidal Newforms
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Limited Support ( o < 1): Sketch of proof

@ Estimate Kloosterman-Bessel terms trivially.
o Kloosterman sum: dd = 1 mod q, 7(q) is the
number of divisors of q,

Wy e(md, nd
S(m,n;q) = Ze(q +q>

d mod q

S(m.ma)| < (m.n.q) \/min{ a9 }T(q).

© Bessel function: integer k > 2,
Ji-1(x) < min (x, xk= x71/2),

@ Use Fourier Coefficients to split by sign: N fixed:

£ 3 (N # ().




Cuspidal Newforms
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Increasing Support ( o < 2): Sketch of the proof

@ Using Dirichlet Characters, handle Kloosterman
terms.

@ Have terms like

[ o (3N 3 (90) &
0

logR /) VY

with arithmetic factors to sum outside.

@ Works for support up to (-2, 2).




Cuspidal Newforms
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Increasing Support ( o < 2): Kloosterman-Bessel details

Stating in greater generality for later use.

Gauss sum: x a character modulo q: |G, (n)| < /g with

G (n) = > x(a)exp(2rian/q).

amod g
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Increasing Support ( o < 2): Kloosterman-Bessel details

Kloosterman expansion:
S(m?,p;---pnN; Nb)

=) X(mZOdb) X(N)G (m?)G,(1)x(Pz - - - Pn).

Lemma: Assuming GRH for Dirichlet L-functions,
supp(¢) C (—ﬁ, ﬁ) non-principal characters negligible.

Proof: use Jx_1(x ) < X and see

< =Y oY iop X Gmew)

m<N¢e (b,N)=1 x(mod b)
b<N2006 X#XO

m 1 ~(logp
\/NH 2 X(p)logp- I09R¢(|09R) '

=1 |p#N
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2-Level Density

/ / log X1 ngS log X, ] 47T\/m2x1x2N dx,dx,
x1=2 J xp= logR logR k-1 C VX1 X

Change of variables and Jacobian:

u
U = XX X2 = §

up = X1 X1 = U

Left with

// |OgU1 |Og (%i) 1 3 4 \/mZUZN dUldU;
logR logR VU2 k=1 57 C Up
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2-Level Density
Changing variables, u;-integral is

7 ~ ~ (log uy
/W logu27o¢(W1)¢ (logR —Wl) dWl.

1= TogR

Support conditions imply
logu,\ [~ ~ ~ (log u,
Vs (IOQR) = /Wl__oo¢(W1)¢ (IogR Wl) dws.
Substituting gives

/oo 5, <4ﬁ,/m2uZN> v, (Iog u2) %
u,=0

C
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3-Level Density

) ) )
X1:2 X2:2 X3:2 |Og R |Og R |Og R
( \/m2x1x2x3N> dx;dx,dxs
* \Jk—l 4r
C v X1X2X3

Change variables as below and get Jacobian:

Us = X1X2X3 X3 = 3
u
U = XX X2 = F
U = X1 X1 = U
0O O
OX _ U 1 0 1
I — U% up —
8u U3z 1 ulu2
o —= =
u; Uz
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n-Level Density: Determinant Expansions from RMT

o U(N), Uc(N): det (Ko(x,-,xk))

1<j,k<n

@ USp(N): det< 1(Xj, Xk

1<j,k<n

)
@ SO(even): det <K1 Xj, Xk )

1<j,k<n
® SO(odd): det (K_1(Xj, Xk))1<j <n +
S, 0(x,) det <K71(Xj ; Xk))

where

1<j k#v<n

sin (w(x — y)) sin (w(x + y))
Ax—y) T Ay

KE(X>Y) =
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n-Level Density: Sketch of proof

Expand Bessel-Kloosterman piece, use GRH to drop
non-principal characters, change variables, main term is

bvN [ A<2log(bx\/ﬁ/47rm)> dx

_ ()
2tm J, -1 (x)n logR logR

with &, (x) = &(x)".

Main ldea

Difficulty in comparison with classical RMT is that instead
of having an n-dimensional integral of ¢1(X1) - - - &n(Xn) We
have a 1-dimensional integral of a new test function. This
leads to harder combinatorics but allows us to appeal to
the result from ILS.
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Support for n-Level Density

Careful book-keeping gives (originally just had ﬁ)

1
n—1

on <

n-Level Density is trivial for o, < , non-trivial up to L.

Expected % Obstruction from partial summation on
primes.
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Support Problems: 2-Level Density

Partial Summation on p; first, looks like

2lo ~/lo \/m?2 N
Z S(m?,p1p2N, c) 9P 45( gp1> J—1 <47T7p1p2

VvP1logR log R c )
p1#P2

Similar to ILS, obtain (c = bN):

logp _ 2u(N)
F;L S(m27plp2N7C) \/5 ¢(b)

p1tb

>p, 10 [, , error < b(bN)‘m/p,NN”2/?/bN, yields

1 b(bN)m/p,NN7
WY S 2. 75 T

m<Ne b<N5 p <N(’

< N5+e+02+5+7—2 < N202 14+¢

R(m? b pz)xl +0O (b(bxyN)




Cuspidal Newforms
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Support Problems: n-Level Density:

@ Ifno }_, , have above without the N which arose
from >_, , giving

@ Fine for o1 < 2. For 3-Level, have two sums over
primes giving N3, giving

< NZHe+203+5+F -2 _ N 3os-1+¢

@ n-Level, have an additional (n — 1) prime sums, each
giving N, yields
< NIte+-Donti+P-2 _ N Eon—1+¢

7




Cuspidal Newforms
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Summary

@ More support for RMT Conjectures.
@ Control of Conductors.

@ Averaging Formulas.

Theorem (Hughes-Miller 2007)

n-level densities of weight k cuspidal newforms of prime
level N, N — oo, agree with orthogonal in non-trivial
range (with or without splitting by sign).
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New Cuspidal Results
@®000000000

Goal:
Prove n-level densities agree for supp(¢) C (—35, =35).

Philosophy:
Number theory harder - adapt tools to get an answer.
Random matrix theory easier - manipulate known answer.

Theorem (ILS)

Let W be an even Schwartz function with supp(W) C (=2, 2). Then

R(m2,b)R(1,b) 2log(byvN/47m) \ dy
Z R #/y: Healy ""( logR )ng

o 2 k loglog kN
1 / sm 7rxd _ 7\“(0) oglog ,
log kN

where R = k2N, ¢ is Euler’s totient function, and R(n, q) is a Ramanujan sum.
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Number Theory Side: lyer-Miller-Triantafillou:
SUpp((b)C( n— 2 n12)

Sequence of Lemmas - New Contributions Arise
© Apply Petersson Formula

@ Restrict Certain Sums
© Convert Kloosterman Sums to Gauss Sums
@ Remove Non-Principal Characters

@ Convert Sums to Integrals




New Cuspidal Results
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New Results: Number Theory Side: lyer-Miller-Triantafillo u:
SUpp((b)C( n— 2 n12)

Typical Argument
If any prime is ‘special’, bound error terms

1 P 1
<< .
VN P1,. ,pZn<N0 m<ZN€ ; P1 rpy \/_ VP1-Pn

n—1

< N71+6/ Z 1 < N71+(n71)0‘+6/
p<N¢

Bounds fail for large support - new terms arise.




New Cuspidal Results
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Converting Sums to Integrals - Hughes-Miller:
Supp((b) - ( n— 1 nll)

We want to evaluate

(14 (55R) Sem | ()

1 log ni \ xo(ni)A(n;)
S Lo TS (8) s

(47rm\/n1 N,
X
bv/N

) B Gk_1(s)ds
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Converting Sums to Integrals - Hughes-Miller:
Supp((b) - ( n— 1 nll)

Important Observation

[ logr\ xo(nAr)  [(l-s
§¢ (Iog R) rd+s)/2logR o\ am l09R (),
where
1 (2z-1-s)logR
£(5) = 5 me(z):f( ) o

For convenience, rename expressions, X =Y + Z.




New Cuspidal Results
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Converting Sums to Integrals - Hughes-Miller:
Supp((b) - ( n— 1 nll)

Important Observation
By the binomial theorem,

1 47m °
— X" Gy_1(s)ds
271 Jore(s)=1 <bvN) ()
1

=5 et (Y +Z)”(bm)_sGk1(s)ds
_Z( )Zm/ . 1Y”*J'Zj (%)_s Gk_1(s)ds.




New Cuspidal Results
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Converting Sums to Integrals - Hughes-Miller:
Supp((b) - ( n— 1 nll)

Z = £(s) is easy to bound (shift coutours), get

1 . (4rm\ °
— Y"iz! (—) Gy_1(s)ds
271 Jope(s)=1 bvN ()

< N (n—j)o/2+¢€"




New Cuspidal Results
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Converting Sums to Integrals - Hughes-Miller:
Supp((b) - ( n— 1 nll)

Z = £(s) is easy to bound (shift coutours), get

1 . (4rm\ °
— Yz [ —= Gy_1(s)ds
271 Jore(s)=1 <b\/ﬁ) -1(s)

< N (n—j)o/2+¢€"

For o < —=;, only j = 0 term is non-negligible.




New Cuspidal Results
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Converting Sums to Integrals - Hughes-Miller:
Supp((b) - ( n— 1 nll)

Z = £(s) is easy to bound (shift coutours), get

1 . (4rm\ °
— Yz [ —= Gy_1(s)ds
271 Jore(s)=1 <b\/ﬁ) -1(s)

< N(n*j)U/ZJFﬁN
For o < —=;, only j = 0 term is non-negligible.

Foro < - 2, ] = 1 term also non-negligible.




New Cuspidal Results
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Converting Sums to Integrals - Hughes-Miller:
Supp((b) - ( n— 1 nll)

Z = £(s) is easy to bound (shift coutours), get

1 . (4rm\ °
— Yz [ —= Gy_1(s)ds
271 Jore(s)=1 <b\/ﬁ) -1(s)

< N(n*j)U/ZJFﬁN
For o < —=;, only j = 0 term is non-negligible.
Foro < - 2, ] = 1 term also non-negligible.

Unfortunately, Z = £(s) is hard to compute with.

Qe
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Converting Sums to Integrals - lyer-Miller-Triantafillou:

supp(¢)c( n— 2 nlz)

Key idea: Recall X =Y +Z,writeZ =X - Y.

A




New Cuspidal Results
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Converting Sums to Integrals - lyer-Miller-Triantafillou:

A

supp(¢)c( n— 2 nlz)

Key idea: Recall X =Y +Z,writeZ =X - Y.

n 4rm\ ~°
— yn-1iz ( ) Gy_1(s)ds
27T| %e(s):l b\/N k 1( )

n 47m\ —°

= — Xyn-1 (—) Gy_1(s)ds
27T| %e(s):l b\/N k 1( )
n 47m\ —°
— Y" [ — Gy_1(s)ds.
271 Jre(s)=1 <b\/N) -1(s)

Hughes-Miller handle Y " term, XY "~ term is similar.
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Converting Sums to Integrals - lyer-Miller-Triantafillou:
Supp((b) - ( n— 2 n12)

When the dust clears, we see

|15 () S (™)

.....

—w-m) ([ oS ek - Se(0r)

o0

sin(27x1(1 — |x2]))
21X XmdX2

~300)) +o(1)

2
n ( Tox) [ ok

— 00 — 00

A
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New Results: Number Theory Side: lyer-Miller-Triantafillo u:

supp(¢) C (—t5. 7t5)

Theorem

Fix n > 4 and let ¢ be an even Schwartz function with

supp(gg) C (=%, 55)- Then, the nth centered moment
of the 1-level denS|ty for holomorphic cusp forms is

e o n/2
# (—1)"(n — 1)1 (2/ ¢(y)2|y|dY)

- 1 </ #(x) nSIn27rX ¢(O)”>

—1n ([m ¢(X2)[m ¢n71(xl)3|n(27rx217(;1+ 1*21)) 4y dx, — %d)n(o)) .

Compare to ...

A




New RMT

Random Matrix Theory: New Combinatorial Vantage
lyer-Miller-Triantafillou

A




New RMT
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n-Level Density: Katz-Sarnak Determinant Expansions

Example: SO(even)

/ / <;5 X1) xn)det (Kl(X”Xk))lq k<ndx1-~-dxn,

where

sin <7r(x — y)) sin (W(X + y))
X y) | axty)

Kl(va) =

AT




New RMT
°

n-Level Density: Katz-Sarnak Determinant Expansions

Example: SO(even)

/ / <;5 X1) xn)det (Kl(X”Xk))lq k<ndx1-~-dxn,

where

sin <7r(x — y)) sin (W(X + y))

oY) = Ty T Ry

Problem: n-dimensional integral - looks very different.

AR




New RMT
°

Preliminaries

A

Easier to work with cumulants.

where g, is uncentered moment.




New RMT
°

Preliminaries

Manipulating determinant expansions leads to analysis of

(-y™t_ n

n
K(Y1,-.-,¥n) :Z Z m )\l!....)\m!

m=1X;+...+Am=n
Aji>1

m

Z X{|Zjn:177(£7j)€jyj|§1}7
1

where
+10fj < Sho M

n(t5) = { 1> A

A




New RMT
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New Result: lyer-Miller-Triantafillou: Large Support:
supp(3) € (~ 7tz 75 )

-~

Hughes-Miller solved for supp(¢) C (—=25, -15).

~

New Complications: If supp(¢) C (—-%5, =15),

Q 1(4,))gy; need not have same sign (at most one can
differ);

@ more than one term in product can be zero (for fixed
m, )\j, Ej).

A




New RMT
°

New Result: lyer-Miller-Triantafillou: Large Support:
supp(3) € (~ 7tz 75 )

-~

Hughes-Miller solved for supp(¢) C (—-%;, -17).

~

New Complications: If supp(¢) C (—=15, -55),

© 1(¢,})ey; need not have same sign (at most one can
differ);

@ more than one term in product can be zero (for fixed
m, )\j, Ej).

Solution: Double count terms and subtract a correcting
term p;.
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Generating Function Identity - )\ > 1




New RMT
°

Generating Function Identity - )\ > 1

=f:<—1>m(i%xk)m=i(§: > %)

n=0 \m=1X\+--+Am=n




New RMT
°

Generating Function Identity - )\ > 1

=f:<—1>m(i%xk)m=i(§: > %)

m=1 A;+--+Am=n




New RMT
°

New Result: Dealing With * p;’s

All M, N > 1.

_ i > gro
- ... |
)\Zl

App1t - HAm=n—j




New RMT
°

New Result: Dealing With * p;’s

All A, A > 1

n n n m (_1)m nl

)IED D)) DD DEE v v w

j=1 =1 m=1 =1 A\+-+Xp_1=j—1 1- m:
Ap=1

Agp1+e+HAm=n—j




New RMT
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New Result: Dealing With * p;’s

All X\, X > 1.
n n n m
_ (—1)m n!
Dn=20.00 X momoo
j=1 =1 m=1/¢=1 A\{+-+Xp_1=j—1




New RMT
°

New Result: Dealing With * p;’s

All A, N > 1.

i —1)m !
Zp’ Z ; 2 (m) )\1!~r-‘~)\m!

1 A+4Aeg=j-1
Ap=1
g1t HAm=n—j

" —1)™1(n —1)!
:”Z Z (_1)( Afl)!...(,\r: !)

m=1 X\ +-+N, _,=n-1 m—1




New RMT
°

New Result: Dealing With * p;’s

All A, X > 1.
n n n m
()™ n!
=1 j=1 m=1¢=1 Aj4-4X_1=j—1

Ap=1
Aggq+teFAm=n—j
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New Result: lyer-Miller-Triantafillou: Large Support:
supp(3) € (~ 7tz 75 )

After Fourier transform identities:




New RMT
°

New Result: lyer-Miller-Triantafillou: Large Support:

supp(3) € (~ 7tz 75 )

After Fourier transform identities:

cto) - ([ otrTp2a —%fb(o)n)

A (o

sin(27x1(1 + |x2])) 1,
= dx; dx; Zgb (0)) :

¢




New RMT
°

New Result: lyer-Miller-Triantafillou: Large Support:

supp(3) € (~ 7tz 75 )

After Fourier transform identities:

cto) = ([ oo Ty ax - Jocor)

n(l (/ O(x /¢”1x1

sin(2mx1(1 + [x2])) 1,
= dx, dx; Zgb (0)) .

Agrees with number theory!

¢




New RMT
°

© Difficult to compare n-dimensional integral from RMT
with NT in general. Harder combinatorics worthwhile
to appeal to result from ILS.

@ Solve combinatorics by using cumulants; support
restrictions translate to which terms can contribute.

@ Extend number theory results by bounding Bessel
functions, Kloosterman sums, etc. New terms arise
and match random matrix theory prediction.

@ Better bounds on percent of forms vanishing to large
order at the center point.

¢
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Cuspidal Maass Forms
Alpoge-Amersi-lyer-Lazarev-Miller-Zhang

R




Maass Forms
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Maass Forms

Definition: Maass Forms

A Maass form on a group I' € PSL(2,R) is a function
f : H — R which satisfies:

Q f(hyz)=f(z)forallyerT,
@ f vanishes at the cusps of ', and
© Af = \f for some A =s(1 —s) > 0, where

0? 0?
8= 5+ o32)

is the Laplace-Beltrami operator on .

@ Coefficients contain information about partitions.
@ For full modular group, s = 1/2 + it; with t; € R.

] o Jost Katz-Sarpak coniectyre
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L-function associated to Maass forms

Write Fourier expansion of Maass form u; as

() = cosh(t) 3 vy (n)Ky, (2x|nly )e2™™.

n=£0
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Maass Forms
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L-function associated to Maass forms

Write Fourier expansion of Maass form u; as

u;(z) = cosh(t) Z VYA (N)Ki (27|nly )e?™™.
n=£0

Define L-function attached to u; as

s = > AW ] (1‘%)1 (1_%)1

n>1 p

where oj(p) + G(p) = Ai(p),  «(P)Fi(P) =1, X(1)=1.
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Maass Forms
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L-function associated to Maass forms

Write Fourier expansion of Maass form u; as
ui(z) = cosh(t;) > vy (n)Ky, (27 |nly )e> ™.
n=£0
Define L-function attached to u; as
. . -1 ] -1
o,y = - MO T (1 o)) 7 ()
n>1 n p p p

where oj(p) + G(p) = Ai(P),  «(P)Fi(P) =1, X(1)=1.
Also,

¢
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n-level over a family

@ Recall for Katz-Sarnak Conjecture,

1 1 -i
Al Z Dnt(¢) = 7l Z Z H<Z5i (Lf’Yl(z)>

f E.FN f EJ:N Jl vvvvv ) in |
ji# £k

. / / (%) Wo.o(r) (X)dX.

R
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n-level over a family

@ Recall for Katz-Sarnak Conjecture,

1 1
WZDn,f(¢) = WZ Z

fe]:N fE.FN Jl 77777 in

[T (Lf’Yéi)>
N / / H(X)Wagm) (X)dX.

@ For Dirichlet/cuspidal newform L-functions, there are
many with a given conductor.

@ Problem: For Maass forms, expect at most one with a
given conductor.

¢
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n-level over a family: Last Year (Amersi-lyer-Lazarev-Mill  er-Zhang)

@ Solution: Average over Laplace eigenvalues

Z0)




Maass Forms
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n-level over a family: Last Year (Amersi-lyer-Lazarev-Mill  er-Zhang)

@ Solution: Average over Laplace eigenvalues
@ two choices for the weight function hr:
hyr(t) = exp (—t7/T?),

which picks out eigenvalues near the origin,

2SS




Maass Forms
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n-level over a family: Last Year (Amersi-lyer-Lazarev-Mill  er-Zhang)

@ Solution: Average over Laplace eigenvalues
@ two choices for the weight function hr:
hyr(t) = exp (—t7/T?),
which picks out eigenvalues near the origin, or
ha.r () = exp (= (4 — T)?/L?) +exp (—(t + T)?/L?),
which picks out eigenvalues centered at +T.

7SS -



Maass Forms
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n-level over a family: Last Year (Amersi-lyer-Lazarev-Mill

@ Solution: Average over Laplace eigenvalues
@ two choices for the weight function hr:
hyr(t) = exp (—t7/T?),
which picks out eigenvalues near the origin, or

er-Zhang)

ha1(t) = exp (—(f — T)?/L%) +exp (—(f + T)?/L?),

which picks out eigenvalues centered at +T.
@ Weighted 1-level density becomes

h(t)z u 2 nuJ
> ”L”g ~ | H

iy s Ha(” o0r)

2
S ) < u]

y
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Maass Forms
L]

1-level density: new test function

Joint with Levent Alpoge.
Work with a better test function.
Not as general, but can exploit holomorphicity.

h(r) = rh(ir)/ sinh(zr).




Maass |

Results
Amersi-lyer-Lazarev-Miller-Zhang 2011
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1-Level Density

1-level density for one function

D(u;; ¢)
o log(l+t7) (0 loglog R
=¢(0) Iog R ' 2 © < logR >
p)logp - <I09p> B 2Aj(p2)logpA<2l09p)
zp: pzlogR logR Zp: plogR ¢ logR

@ Explicit formula.
@ Gamma function identities
© Prime Number Theorem

y
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Average 1-level density

The weighted 1-level density becomes:

hT(tJ Z ||u ||2

Z il
( ) . o (loglogR Z h(t) I09(1+t,-2)
logR J lu; ||2 logR
U
1 2Iogp A(Iogp) hT tJ
> TlL(t') > pzlogR~ \logR HUJHZ

1 2Iogp 2logp
Sy M Z logR (Io R u 2 P*)
Y, o 45 plog o) T ,||




Average 1-level density

The weighted 1-level density becomes:

hT(tJ Z ”U HZ

I g2
_9(0) loglogR he ( tJ Iog(l + th)
2 +0 “logR Z HuJH2 logR

2

J u
Z 2logp A(Iogp> hT tJ
o hTt) |2 A
> iz S pzlogR - \logR |u |
1 2Iogp (2Iogp)
Z 2 J )
ZJ h | > plogR logR uH

y




Kuznetsov Trace Formula

To tackle terms with )j(p) and )\j(p?) we need the
Kuznetsov Trace Formula:

Qe




Kuznetsov Trace Formula

To tackle terms with )j(p) and )\j(p?) we need the
Kuznetsov Trace Formula:

Z g M)

= some function that depends just on h, m, and n




Kuznetsov Trace Formula

Z%xj(m)wﬁﬂ/ﬂgmﬂn,r)&dr:

cosh(rr)

£ / rann(t Z M /RJ" <47T\ém> cor;(f:();r)dr

c>1

where . . i
T(m,r) =72 HT(1/2 +ir) 721+ 2 =2 3 (8)"

S(n,m;c) = Z g2mi(mx+mx*)/c

0<x<c-1,gcd(x,c)=1

- (_1)m 1 2m-ir
Jir(x)zgm!r(m+ir+l) (§X> .




Kuznetsov Formula

@ The only A(m)A(n) term that contributes is when
m=n=1.

@ Them=1,n=pandm = 1,n = p? terms do not
contribute because of the oy, function.




Result: 1-level density

Theorem (AILMZ, 2011)

Ifht =hyrorhyr, T > occandL <« T/logT, and ¢ < 1/6 then
1-level density is

hr ( tJ #(0) -~ loglog R
hT(t 7> ita DU ¢) = =5~ + 6(0) + O
Py m i 5 Iyl 2 logR

+ O(T30/2—1/4+€ + Ta/2—1/4+e)_

@ This matches with the orthogonal family density as
predicted by Katz-Sarnak.




Support

Main reason support so small due to bounds on
Bessel-Kloosterman piece.

Can distinguish unitary and symplectic from the 3
orthogonal groups, but 1-level density cannot distinguish
the orthogonal groups from each other if support in
(—1,1).

2-level density can distinguish orthogonal groups with
arbitrarily small support; additional term depending on
distribution of signs of functional equations.




2- Level Density

To differentiate between even and odd in orthogonal
family, we calculated the 2-level density:

hT tj 1
D(¢ hT P> Tu 2 > 01(78)oo ()
Zl Tz i inh2
2 P log(1 + t?
ZhT t) H %0) L 5 M o (loglogR
uj ||? - 2 logR logR
Hu|||2 i =1

72% logp log p 722Aj(p)logp¢7 2logp
zlogR logR —  plogR "\logR /|’

25 terms, handled by Cauchy-Schwarz or Kuznetsov.




Result: 2-level density

Theorem (AILMZ, 2011)

Same conditions as before, for ¢ < 1/12 have

0ir = T1[*2+50)] +2 [ e

i=1

—$1(0)¢1(0) — 2@2(0) + (¢102)(0)N(-1)
loglog R
L0 (Tg 0 ) |
Note that A//(—1) is the weighted percent that have odd
sign in functional equation.
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Sketch of proof

Theorem (Alpoge-Miller 2012)

For h(r) = rh(ir)/ sinh(xr) the Katz-Sarnak conjecture
holds for level 1 cuspidal Maass forms for test functions
whose Fourier transform is supported in (—4/3,4/3).

@ Express [~ J2ir(X)Cg';;( dr as a sum of Jy1(X)

and hy at imaginary arguments and Jar(X) and h at
k.

@ Bound contributions from sums. Apply Poisson
summation, analyze, and Poisson summation again.

@ In calculations key steps are Taylor expanding
exponentials and invoking Fourier transform identities




Conclusion

Conclusion J




Conclusion
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@ Understand compound families in terms of simple
ones.

@ Choose combinatorics to simplify calculations.

@ Extending support often related to deep arithmetic
guestions.
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