Low-lying zeros of GL(2) L-functions

Steven J Miller Williams College

Steven.J.Miller@williams.edu
http://www.williams.edu/Mathematics/sjmiller/

Group, Lie and Number Theory Seminar University of Michigan, October 22, 2012

Compound Families Dueñez-Miller

Identifying the Symmetry Groups

- Often an analysis of the monodromy group in the function field case suggests the answer.
- All simple families studied to date are built from GL₁ or GL₂ L-functions.
- Tools: Explicit Formula, Orthogonality of Characters / Petersson Formula.
- How to identify symmetry group in general? One possibility is by the signs of the functional equation:
- Folklore Conjecture: If all signs are even and no corresponding family with odd signs, Symplectic symmetry; otherwise SO(even). (False!)

Explicit Formula

- π : cuspidal automorphic representation on GL_n .
- $Q_{\pi} > 0$: analytic conductor of $L(s, \pi) = \sum \lambda_{\pi}(n)/n^{s}$.
- By GRH the non-trivial zeros are $\frac{1}{2} + i\gamma_{\pi,j}$.
- Satake parameters $\{\alpha_{\pi,i}(\mathbf{p})\}_{i=1}^n$; $\lambda_{\pi}(\mathbf{p}^{\nu}) = \sum_{i=1}^n \alpha_{\pi,i}(\mathbf{p})^{\nu}$.
- $L(s,\pi) = \sum_{n} \frac{\lambda_{\pi}(n)}{n^{s}} = \prod_{p} \prod_{i=1}^{n} (1 \alpha_{\pi,i}(p)p^{-s})^{-1}.$

$$\sum_{j} g\left(\gamma_{\pi,j} \frac{\log Q_{\pi}}{2\pi}\right) = \widehat{g}(0) - 2\sum_{p,\nu} \widehat{g}\left(\frac{\nu \log p}{\log Q_{\pi}}\right) \frac{\lambda_{\pi}(p^{\nu}) \log p}{p^{\nu/2} \log Q_{\pi}}$$

1

Some Results: Rankin-Selberg Convolution of Families

Symmetry constant: $c_{\mathcal{L}} = 0$ (resp, 1 or -1) if family \mathcal{L} has unitary (resp, symplectic or orthogonal) symmetry.

Rankin-Selberg convolution: Satake parameters for $\pi_{1,p} \times \pi_{2,p}$ are

$$\{\alpha_{\pi_1 \times \pi_2}(k)\}_{k=1}^{nm} = \{\alpha_{\pi_1}(i) \cdot \alpha_{\pi_2}(j)\}_{\substack{1 \le i \le n \ 1 \le j \le m}}$$

Theorem (Dueñez-Miller)

If \mathcal{F} and \mathcal{G} are *nice* families of *L*-functions, then $c_{\mathcal{F}\times\mathcal{G}}=c_{\mathcal{F}}\cdot c_{\mathcal{G}}.$

Assuming conductors constant in family \mathcal{F} , have to study

$$\lambda_{f}(p^{\nu}) = \alpha_{f,1}(p)^{\nu} + \dots + \alpha_{f,n}(p)^{\nu}$$

$$S_{1}(\mathcal{F}) = -2\sum_{p} \hat{g}\left(\frac{\log p}{\log R}\right) \frac{\log p}{\sqrt{p}\log R} \left[\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \lambda_{f}(p)\right]$$

$$S_{2}(\mathcal{F}) = -2\sum_{p} \hat{g}\left(2\frac{\log p}{\log R}\right) \frac{\log p}{p\log R} \left[\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \lambda_{f}(p^{2})\right]$$

The corresponding classical compact group is determined by

$$\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \lambda_f(\boldsymbol{p}^2) = \boldsymbol{c}_{\mathcal{F}} = \begin{cases} 0 & \text{Unitary} \\ 1 & \text{Symplectic} \\ -1 & \text{Orthogonal.} \end{cases}$$

1-Level Density for Rankin-Selberg Convolution of Families

Families \mathcal{F} and \mathcal{G} .

Satake parameters $\{\alpha_{f,i}(p)\}_{i=1}^n$ and $\{\beta_{g,j}(p)\}_{j=1}^m$.

Family $\mathcal{F} \times \mathcal{G}$, $L(s, f \times g)$ has parameters $\{\alpha_{f,i}(p)\beta_{g,i}(p)\}_{i=1,...n,i=1,...m}$.

$$a_{f \times g}(\boldsymbol{p}^{\nu}) = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{f,i}(\boldsymbol{p})^{\nu} \beta_{g,j}(\boldsymbol{p})^{\nu}$$
$$= \sum_{i=1}^{n} \alpha_{f,i}(\boldsymbol{p})^{\nu} \sum_{j=1}^{m} \beta_{g,j}(\boldsymbol{p})^{\nu}$$
$$= \lambda_{f}(\boldsymbol{p}^{\nu}) \cdot \lambda_{g}(\boldsymbol{p}^{\nu}).$$

Technical restriction: need f and g unrelated (i.e., g is not the contragredient of f) for our applications.

1-Level Density for Rankin-Selberg Convolution of Families (cont)

To analyze $S_{\nu}(\mathcal{F} \times \mathcal{G})$ we must study

$$\frac{1}{|\mathcal{F} \times \mathcal{G}|} \sum_{f \times g \in \mathcal{F} \times \mathcal{G}} \lambda_f(p^{\nu}) \cdot \lambda_g(p^{\nu}) = \left[\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \lambda_f(p^{\nu}) \right] \cdot \left[\frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} \lambda_g(p^{\nu}) \right]$$

- $\nu =$ 1: If one of the families is rank zero, so is $\mathcal{F} \times \mathcal{G}$; $S_1(\mathcal{F} \times \mathcal{G})$ will not contribute.
- $\nu = 2$: $\mathbf{c}_{\mathcal{F} \times \mathcal{G}} = \mathbf{c}_{\mathcal{F}} \cdot \mathbf{c}_{\mathcal{G}}$.

Proves if each family is of rank 0, the symmetry type of the convolution is the product of the symmetry types.

Cuspidal Newforms Hughes-Miller

Results from Iwaniec-Luo-Sarnak

- Orthogonal: Iwaniec-Luo-Sarnak: 1-level density for holomorphic even weight k cuspidal newforms of square-free level N (SO(even) and SO(odd) if split by sign) in (-2,2).
- Symplectic: Iwaniec-Luo-Sarnak: 1-level density for sym²(f), f holomorphic cuspidal newform.

Will review Orthogonal case and talk about extensions (joint with Chris Hughes).

Modular Form Preliminaries

$$\Gamma_0(N) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) : \begin{array}{c} ad - bc = 1 \\ c \equiv 0(N) \end{array} \right\}$$

f is a weight k holomorphic cuspform of level N if

$$\forall \gamma \in \Gamma_0(N), \ f(\gamma z) = (cz+d)^k f(z).$$

- Fourier Expansion: $f(z) = \sum_{n=1}^{\infty} a_f(n)e^{2\pi iz}$, $L(s, f) = \sum_{n=1}^{\infty} a_n n^{-s}$.
- Petersson Norm: $\langle f,g\rangle = \int_{\Gamma_0(N)\backslash \mathbf{H}} f(z) \overline{g(z)} y^{k-2} dx dy$.
- Normalized coefficients:

$$\psi_f(n) = \sqrt{\frac{\Gamma(k-1)}{(4\pi n)^{k-1}}} \frac{1}{||f||} a_f(n).$$

11

Modular Form Preliminaries: Petersson Formula

 $B_k(N)$ an orthonormal basis for weight k level N. Define

$$\Delta_{k,N}(m,n) = \sum_{f \in B_k(N)} \psi_f(m) \overline{\psi}_f(n).$$

Petersson Formula

$$\Delta_{k,N}(m,n) = 2\pi i^k \sum_{c\equiv 0(N)} \frac{S(m,n,c)}{c} J_{k-1} \left(4\pi \frac{\sqrt{mn}}{c}\right) + \delta(m,n).$$

Modular Form Preliminaries: Explicit Formula

Let \mathcal{F} be a family of cupsidal newforms (say weight k, prime level N and possibly split by sign) $L(s, f) = \sum_{n} \lambda_f(n)/n^s$. Then

$$\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \sum_{\gamma_f} \phi \left(\frac{\log R}{2\pi} \gamma_f \right) = \widehat{\phi}(0) + \frac{1}{2} \phi(0) - \frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} P(f; \phi) \\
+ O \left(\frac{\log \log R}{\log R} \right) \\
P(f; \phi) = \sum_{\rho \nmid N} \lambda_f(\rho) \widehat{\phi} \left(\frac{\log \rho}{\log R} \right) \frac{2 \log \rho}{\sqrt{\rho} \log R}.$$

13

Modular Form Preliminaries: Fourier Coefficient Review

$$\lambda_f(n) = a_f(n)n^{\frac{k-1}{2}}$$

$$\lambda_f(m)\lambda_f(n) = \sum_{\substack{d \mid (m,n) \\ (d,M)=1}} \lambda_f\left(\frac{mn}{d}\right).$$

For a newform of level N, $\lambda_f(N)$ is trivially related to the sign of the form:

$$\epsilon_f = i^k \mu(N) \lambda_f(N) \sqrt{N}.$$

The above will allow us to split into even and odd families: $1 \pm \epsilon_f$.

Key Kloosterman-Bessel integral from ILS

Ramanujan sum:

$$R(n,q) = \sum_{a \bmod q}^* e(an/q) = \sum_{d \mid (n,q)} \mu(q/d)d,$$

where * restricts the summation to be over all a relatively prime to q.

Theorem (ILS)

Let Ψ be an even Schwartz function with $supp(\widehat{\Psi}) \subset (-2,2)$. Then

$$\begin{split} \sum_{m \leq N^{\epsilon}} \frac{1}{m^2} \sum_{(b,N)=1} \frac{R(m^2,b)R(1,b)}{\varphi(b)} \int_{y=0}^{\infty} J_{k-1}(y) \widehat{\Psi}\left(\frac{2 \log(by\sqrt{N}/4\pi m)}{\log R}\right) \frac{\mathrm{d}y}{\log R} \\ &= -\frac{1}{2} \left[\int_{-\infty}^{\infty} \Psi(x) \frac{\sin 2\pi x}{2\pi x} \mathrm{d}x - \frac{1}{2} \Psi(0) \right] + O\left(\frac{k \log \log kN}{\log kN}\right), \end{split}$$

where $R = k^2 N$ and φ is Euler's totient function.

Limited Support (σ < 1): Sketch of proof

Estimate Kloosterman-Bessel terms trivially.
 ⋄ Kloosterman sum: dd ≡ 1 mod q, τ(q) is the number of divisors of q,

$$S(m, n; q) = \sum_{d \bmod q}^* e\left(\frac{md}{q} + \frac{n\overline{d}}{q}\right)$$

 $|S(m, n; q)| \leq (m, n, q) \sqrt{\min\left\{\frac{q}{(m, q)}, \frac{q}{(n, q)}\right\}} \ au(q).$

- ♦ Bessel function: integer $k \ge 2$, $J_{k-1}(x) \ll \min(x, x^{k-1}, x^{-1/2})$.
- Use Fourier Coefficients to split by sign: *N* fixed: $\pm \sum_{f} \lambda_{f}(N) * (\cdots)$.

Increasing Support (σ < 2): Sketch of the proof

- Using Dirichlet Characters, handle Kloosterman terms.
- Have terms like

$$\int_0^\infty J_{k-1} \left(4\pi \frac{\sqrt{m^2 y N}}{c} \right) \widehat{\phi} \left(\frac{\log y}{\log R} \right) \frac{dy}{\sqrt{y}}$$

with arithmetic factors to sum outside.

• Works for support up to (-2,2).

Increasing Support (σ < 2): Kloosterman-Bessel details

Stating in greater generality for later use.

Gauss sum: χ a character modulo q: $|G_{\chi}(n)| \leq \sqrt{q}$ with

$$G_{\chi}(n) = \sum_{a \bmod q} \chi(a) \exp(2\pi i a n/q).$$

Increasing Support (σ < 2): Kloosterman-Bessel details

Kloosterman expansion:

$$S(m^{2}, p_{1} \cdots p_{n}N; Nb) = \frac{-1}{\varphi(b)} \sum_{\chi (\text{mod } b)} \chi(N) G_{\chi}(m^{2}) G_{\chi}(1) \overline{\chi}(p_{1} \cdots p_{n}).$$

Lemma: Assuming GRH for Dirichlet *L*-functions, $\operatorname{supp}(\widehat{\phi}) \subset \left(-\frac{2}{n}, \frac{2}{n}\right)$, non-principal characters negligible. Proof: use $J_{k-1}(x) \ll x$ and see

$$\ll \frac{1}{\sqrt{N}} \sum_{m \leq N^{\epsilon}} \frac{1}{m} \sum_{\stackrel{(b,N)=1}{b < N^{2006}}} \frac{1}{b} \frac{1}{\varphi(b)} \sum_{\stackrel{\chi \pmod{b}}{\chi \neq \chi_0}} \left| G_{\chi}(m^2) G_{\chi}(1) \right|$$

$$\times \frac{m}{b\sqrt{N}} \prod_{j=1}^{n} \left| \sum_{p_j \neq N} \overline{\chi}(p_j) \log p_j \cdot \frac{1}{\log R} \widehat{\phi} \left(\frac{\log p_j}{\log R} \right) \right|.$$

$$\int_{x_1=2}^{R^{\sigma}} \int_{x_2=2}^{R^{\sigma}} \widehat{\phi}\left(\frac{\log x_1}{\log R}\right) \widehat{\phi}\left(\frac{\log x_2}{\log R}\right) J_{k-1}\left(4\pi \frac{\sqrt{m^2 x_1 x_2 N}}{c}\right) \frac{dx_1 dx_2}{\sqrt{x_1 x_2}}$$

Change of variables and Jacobian:

Left with

$$\int \int \widehat{\phi} \left(\frac{\log u_1}{\log R} \right) \widehat{\phi} \left(\frac{\log \left(\frac{u_2}{u_1} \right)}{\log R} \right) \frac{1}{\sqrt{u_2}} J_{k-1} \left(4\pi \frac{\sqrt{m^2 u_2 N}}{c} \right) \frac{du_1 du_2}{u_1}$$

Changing variables, u_1 -integral is

$$\int_{w_1=\frac{\log u_2}{\log R}-\sigma}^{\sigma} \widehat{\phi}(w_1) \widehat{\phi}\left(\frac{\log u_2}{\log R}-w_1\right) dw_1.$$

Support conditions imply

$$\Psi_2\left(\frac{\log u_2}{\log R}\right) = \int_{w_1=-\infty}^{\infty} \widehat{\phi}(w_1) \widehat{\phi}\left(\frac{\log u_2}{\log R} - w_1\right) dw_1.$$

Substituting gives

$$\int_{u_2=0}^{\infty} J_{k-1} \left(4\pi \frac{\sqrt{m^2 u_2 N}}{c} \right) \Psi_2 \left(\frac{\log u_2}{\log R} \right) \frac{du_2}{\sqrt{u_2}}$$

21

$$\begin{split} & \int_{x_1=2}^{R^{\sigma}} \int_{x_2=2}^{R^{\sigma}} \widehat{\phi} \left(\frac{\log x_1}{\log R} \right) \widehat{\phi} \left(\frac{\log x_2}{\log R} \right) \widehat{\phi} \left(\frac{\log x_3}{\log R} \right) \\ * & J_{k-1} \left(4\pi \frac{\sqrt{m^2 x_1 x_2 x_3 N}}{c} \right) \frac{dx_1 dx_2 dx_3}{\sqrt{x_1 x_2 x_3}} \end{split}$$

Change variables as below and get Jacobian:

 $U_3 = X_1 X_2 X_3$

$$\begin{vmatrix} u_3 & = & x_1 x_2 x_3 & x_3 & = & \frac{u_3}{u_2} \\ u_2 & = & x_1 x_2 & x_2 & = & \frac{u_2}{u_1} \\ u_1 & = & x_1 & x_1 & = & u_1 \end{vmatrix}$$

$$\begin{vmatrix} \frac{\partial x}{\partial u} \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ -\frac{u_2}{u_1^2} & \frac{1}{u_1} & 0 \\ 0 & -\frac{u_3}{u_2^2} & \frac{1}{u_2} \end{vmatrix} = \frac{1}{u_1 u_2}$$

n-Level Density: Determinant Expansions from RMT

• U(N), U_k(N): det
$$\left(K_0(x_j, x_k)\right)_{1 < j,k < n}$$

• USp(N): det
$$\left(K_{-1}(x_j, x_k)\right)_{1 < j, k < n}$$

• SO(even): det
$$\left(K_1(x_j, x_k)\right)_{1 \le j,k \le n}$$

• SO(odd):
$$\det (K_{-1}(x_j, x_k))_{1 \le j,k \le n} + \sum_{\nu=1}^n \delta(x_{\nu}) \det (K_{-1}(x_j, x_k))_{1 \le j,k \ne \nu \le n}$$

where

$$\mathcal{K}_{\epsilon}(x,y) = rac{\sin\Big(\pi(x-y)\Big)}{\pi(x-y)} + \epsilon rac{\sin\Big(\pi(x+y)\Big)}{\pi(x+y)}.$$

n-Level Density: Sketch of proof

Expand Bessel-Kloosterman piece, use GRH to drop non-principal characters, change variables, main term is

$$\frac{b\sqrt{N}}{2\pi m} \int_0^\infty J_{k-1}(x) \widehat{\Phi_n} \left(\frac{2 \log(bx\sqrt{N}/4\pi m)}{\log R} \right) \frac{\mathrm{d}x}{\log R}$$

with
$$\Phi_n(\mathbf{x}) = \phi(\mathbf{x})^n$$
.

Main Idea

Difficulty in comparison with classical RMT is that instead of having an n-dimensional integral of $\phi_1(x_1)\cdots\phi_n(x_n)$ we have a 1-dimensional integral of a new test function. This leads to harder combinatorics but allows us to appeal to the result from ILS.

Support for *n*-Level Density

Careful book-keeping gives (originally just had $\frac{1}{n-1/2}$)

$$\sigma_n < \frac{1}{n-1}$$
.

n-Level Density is trivial for $\sigma_n < \frac{1}{n}$, non-trivial up to $\frac{1}{n-1}$.

Expected $\frac{2}{n}$. Obstruction from partial summation on primes.

Support Problems: 2-Level Density

Partial Summation on p_1 first, looks like

$$\sum_{\substack{p_1 \\ p_1 = 1}} S(m^2, p_1 p_2 N, c) \frac{2 \log p_1}{\sqrt{p_1} \log R} \widehat{\phi} \left(\frac{\log p_1}{\log R} \right) J_{k-1} \left(4\pi \frac{\sqrt{m^2 p_1 p_2 N}}{c} \right)$$

Similar to ILS, obtain (c = bN):

$$\sum_{\substack{p_1 \leq x_1 \\ p_1 \nmid b}} S(m^2, p_1 p_2 N, c) \frac{\log p}{\sqrt{p}} = \frac{2\mu(N)}{\phi(b)} \widetilde{R}(m^2, b, p_2) x_1^{\frac{1}{2}} + O(b(bx_1 N)^{\epsilon})$$

 \sum_{p_1} to \int_{X_1} , error $\ll b(bN)^{\epsilon}m\sqrt{p_2N}N^{\sigma_2/2}/bN$, yields

$$\sqrt{N} \sum_{m \le N^{\epsilon}} \frac{1}{m} \sum_{b \le N^{5}} \frac{1}{bN} \sum_{p_{2} \le N_{2}^{\sigma}} \frac{1}{\sqrt{p_{2}}} \frac{b(bN)^{\epsilon} m \sqrt{p_{2}N} N^{\frac{\sigma_{2}}{2}}}{bN}$$

 $\ll N^{\frac{1}{2}+\epsilon'+\sigma_2+\frac{1}{2}+\frac{\sigma_2}{2}-2} \ll N^{\frac{3}{2}\sigma_2-1+\epsilon'}$

Support Problems: *n*-Level Density: Why is $\sigma_2 < 1$?

• If no \sum_{p_2} , have above *without* the N^{σ} which arose from \sum_{p_2} , giving

$$\ll N^{\frac{1}{2}+\epsilon'+\frac{1}{2}+\frac{\sigma_1}{2}-2} = N^{\frac{1}{2}\sigma_1-1+\epsilon'}$$

• Fine for $\sigma_1 < 2$. For 3-Level, have two sums over primes giving N^{σ_3} , giving

$$\ll N^{\frac{1}{2}+\epsilon'+2\sigma_3+\frac{1}{2}+\frac{\sigma_3}{2}-2} = N^{\frac{5}{2}\sigma_3-1+\epsilon'}$$

• *n*-Level, have an additional (n-1) prime sums, each giving N^{σ_n} , yields

$$\ll N^{\frac{1}{2}+\epsilon'+(n-1)\sigma_n+\frac{1}{2}+\frac{\sigma_n}{2}-2} = N^{\frac{(2n-1)}{2}\sigma_n-1+\epsilon'}$$

Summary

- More support for RMT Conjectures.
- Control of Conductors.
- Averaging Formulas.

Theorem (Hughes-Miller 2007)

n-level densities of weight k cuspidal newforms of prime level $N, N \to \infty$, agree with orthogonal in non-trivial range (with or without splitting by sign).

New Cuspidal Results Iyer, Miller and Triantafillou

Goal:

Prove *n*-level densities agree for supp $(\widehat{\phi}) \subset \left(-\frac{1}{n-2}, \frac{1}{n-2}\right)$.

Philosophy:

Number theory harder - adapt tools to get an answer. Random matrix theory easier - manipulate known answer.

Theorem (ILS)

Let Ψ be an even Schwartz function with $supp(\widehat{\Psi}) \subset (-2,2)$. Then

$$\begin{split} \sum_{m \leq N^{\epsilon}} \frac{1}{m^{2}} \sum_{(b,N)=1} \frac{R(m^{2},b)R(1,b)}{\varphi(b)} \int_{y=0}^{\infty} J_{k-1}(y) \widehat{\Psi}\left(\frac{2 \log(by\sqrt{N}/4\pi m)}{\log R}\right) \frac{\mathrm{d}y}{\log R} \\ &= -\frac{1}{2} \left[\int_{-\infty}^{\infty} \Psi(x) \frac{\sin 2\pi x}{2\pi x} \mathrm{d}x - \frac{1}{2} \Psi(0) \right] + O\left(\frac{k \log \log kN}{\log kN}\right), \end{split}$$

where $R = k^2 N$, φ is Euler's totient function, and R(n, q) is a Ramanujan sum.

Number Theory Side: Iyer-Miller-Triantafillou:

$$\operatorname{supp}(\widehat{\phi})\subset (-\frac{1}{n-2},\frac{1}{n-2})$$

Sequence of Lemmas - New Contributions Arise

- Apply Petersson Formula
- Restrict Certain Sums
- Convert Kloosterman Sums to Gauss Sums
- Remove Non-Principal Characters
- Convert Sums to Integrals

New Results: Number Theory Side: Iyer-Miller-Triantafillou: $supp(\widehat{\phi}) \subset (-\frac{1}{n-2}, \frac{1}{n-2})$

Typical Argument

If any prime is 'special', bound error terms

$$\ll \frac{1}{\sqrt{N}} \sum_{p_1, \dots, p_n \leq N^{\sigma}} \sum_{m \leq N^{\epsilon}}^{\infty} \sum_{r=1}^{\infty} \frac{m^2 r}{r p_1} \frac{\sqrt{p_1 \cdots p_n}}{r p_1 \sqrt{N}} \frac{1}{\sqrt{p_1 \cdots p_n}}$$
$$\ll N^{-1+\epsilon'} \left(\sum_{p \leq N^{\sigma}} 1\right)^{n-1} \ll N^{-1+(n-1)\sigma + \epsilon'}$$

Bounds fail for large support - new terms arise.

Converting Sums to Integrals - Hughes-Miller: $supp(\widehat{\phi}) \subset (-\frac{1}{n-1}, \frac{1}{n-1})$

We want to evaluate

$$\begin{split} \sum_{n_{1},\dots,n_{n}} \left[\prod_{i=1}^{n} \hat{\phi} \left(\frac{\log n_{i}}{\log R} \right) \frac{\chi_{0}(n_{i}) \Lambda(n_{i})}{\sqrt{n_{i}} \log R} \right] J_{k-1} \left(\frac{4\pi m \sqrt{n_{1} \cdots n_{n}}}{b \sqrt{N}} \right) \\ = & \frac{1}{2\pi i} \int_{\mathfrak{Re}(s)=1} \left[\prod_{i=1}^{n} \sum_{n_{i}} \hat{\phi} \left(\frac{\log n_{i}}{\log R} \right) \frac{\chi_{0}(n_{i}) \Lambda(n_{i})}{\sqrt{n_{i}} \log R} \right] \\ & \times \left(\frac{4\pi m \sqrt{n_{1} \cdots n_{n}}}{b \sqrt{N}} \right)^{-s} G_{k-1}(s) ds \end{split}$$

33

Converting Sums to Integrals - Hughes-Miller:

 $\operatorname{supp}(\widehat{\phi}) \subset (-\frac{1}{n-1}, \frac{1}{n-1})$

Important Observation

$$\sum_{r=1}^{\infty} \hat{\phi}\left(\frac{\log r}{\log R}\right) \frac{\chi_0(r)\Lambda(r)}{r^{(1+s)/2}\log R} = \phi\left(\frac{1-s}{4\pi i}\log R\right) + \mathcal{E}(s),$$

where

$$\mathcal{E}(s) = -\frac{1}{2\pi i} \int_{\mathfrak{Re}(z)=c} \phi\left(\frac{(2z-1-s)\log R}{4\pi i}\right) \frac{L'}{L}(z,\chi_0) dz.$$

For convenience, rename expressions, X = Y + Z.

Converting Sums to Integrals - Hughes-Miller:

$$\operatorname{supp}(\widehat{\phi})\subset (-\frac{1}{n-1},\frac{1}{n-1})$$

Important Observation

By the binomial theorem,

$$\begin{split} &\frac{1}{2\pi i} \int_{\Re \mathfrak{e}(s)=1} X^n \left(\frac{4\pi m}{b\sqrt{N}}\right)^{-s} G_{k-1}(s) ds \\ &= \frac{1}{2\pi i} \int_{\Re \mathfrak{e}(s)=1} (Y+Z)^n \left(\frac{4\pi m}{b\sqrt{N}}\right)^{-s} G_{k-1}(s) ds \\ &= \sum_{i=0}^n \binom{n}{j} \frac{1}{2\pi i} \int_{\Re \mathfrak{e}(s)=1} Y^{n-j} Z^j \left(\frac{4\pi m}{b\sqrt{N}}\right)^{-s} G_{k-1}(s) ds. \end{split}$$

35

Converting Sums to Integrals - Hughes-Miller: $supp(\widehat{\phi}) \subset (-\frac{1}{p-1}, \frac{1}{p-1})$

 $Z = \mathcal{E}(s)$ is easy to bound (shift coutours), get

$$\frac{1}{2\pi i} \int_{\Re \mathfrak{e}(\mathfrak{s})=1} \mathsf{Y}^{n-j} Z^j \left(\frac{4\pi m}{b\sqrt{N}} \right)^{-s} \mathsf{G}_{k-1}(\mathfrak{s}) d\mathfrak{s}$$

$$\ll N^{(n-j)\sigma/2+\epsilon''}$$

26

Converting Sums to Integrals - Hughes-Miller: $supp(\widehat{\phi}) \subset (-\frac{1}{n-1}, \frac{1}{n-1})$

 $Z = \mathcal{E}(s)$ is easy to bound (shift coutours), get

$$\frac{1}{2\pi i} \int_{\Re \mathfrak{e}(s)=1} \mathsf{Y}^{n-j} Z^j \left(\frac{4\pi m}{b\sqrt{N}} \right)^{-s} G_{k-1}(s) ds$$

$$\ll N^{(n-j)\sigma/2+\epsilon''}$$

For $\sigma < \frac{1}{n-1}$, only j = 0 term is non-negligible.

Converting Sums to Integrals - Hughes-Miller: $supp(\widehat{\phi}) \subset (-\frac{1}{n-1}, \frac{1}{n-1})$

 $Z = \mathcal{E}(s)$ is easy to bound (shift coutours), get

$$\frac{1}{2\pi i} \int_{\Re \epsilon(s)=1} \mathsf{Y}^{n-j} Z^j \left(\frac{4\pi m}{b\sqrt{N}} \right)^{-s} \mathsf{G}_{k-1}(s) ds$$

$$\ll N^{(n-j)\sigma/2+\epsilon''}$$

For $\sigma < \frac{1}{n-1}$, only j = 0 term is non-negligible.

For $\sigma < \frac{1}{n-2}$, j = 1 term also non-negligible.

Converting Sums to Integrals - Hughes-Miller: $supp(\widehat{\phi}) \subset (-\frac{1}{n-1}, \frac{1}{n-1})$

 $Z = \mathcal{E}(s)$ is easy to bound (shift coutours), get

$$\frac{1}{2\pi i} \int_{\Re \epsilon(s)=1} \mathsf{Y}^{n-j} Z^j \left(\frac{4\pi m}{b\sqrt{N}} \right)^{-s} G_{k-1}(s) ds$$

$$\ll N^{(n-j)\sigma/2+\epsilon''}$$

For $\sigma < \frac{1}{n-1}$, only j = 0 term is non-negligible.

For $\sigma < \frac{1}{n-2}$, j = 1 term also non-negligible.

Unfortunately, $Z = \mathcal{E}(s)$ is hard to compute with.

Converting Sums to Integrals - Iyer-Miller-Triantafillou:

$$\operatorname{supp}(\widehat{\phi})\subset (-\tfrac{1}{n-2},\tfrac{1}{n-2})$$

Key idea: Recall X = Y + Z, write Z = X - Y.

Converting Sums to Integrals - Iyer-Miller-Triantafillou: $supp(\widehat{\phi}) \subset (-\frac{1}{n-2}, \frac{1}{n-2})$

Key idea: Recall X = Y + Z, write Z = X - Y.

$$\frac{n}{2\pi i} \int_{\mathfrak{Re}(s)=1} Y^{n-1} Z \left(\frac{4\pi m}{b\sqrt{N}}\right)^{-s} G_{k-1}(s) ds$$

$$= \frac{n}{2\pi i} \int_{\mathfrak{Re}(s)=1} X Y^{n-1} \left(\frac{4\pi m}{b\sqrt{N}}\right)^{-s} G_{k-1}(s) ds$$

$$- \frac{n}{2\pi i} \int_{\mathfrak{Re}(s)=1} Y^{n} \left(\frac{4\pi m}{b\sqrt{N}}\right)^{-s} G_{k-1}(s) ds.$$

Hughes-Miller handle Y^n term, XY^{n-1} term is similar.

Converting Sums to Integrals - Iyer-Miller-Triantafillou: $supp(\widehat{\phi}) \subset (-\frac{1}{n-2}, \frac{1}{n-2})$

When the dust clears, we see

$$\begin{split} \sum_{n_1,\dots,n_n} \left[\prod_{i=1}^n \hat{\phi} \left(\frac{\log n_i}{\log R} \right) \frac{\chi_0(n_i) \Lambda(n_i)}{\sqrt{n_i} \log R} \right] J_{k-1} \left(\frac{4\pi m \sqrt{n_1 \cdots n_n}}{b \sqrt{N}} \right) \\ = & (1-n) \left(\int_{-\infty}^{\infty} \phi(x)^n \frac{\sin 2\pi x}{2\pi x} dx - \frac{1}{2} \phi(0)^n \right) \\ & + n \left(\int_{-\infty}^{\infty} \hat{\phi}(x_2) \int_{-\infty}^{\infty} \phi^{n-1}(x_1) \frac{\sin (2\pi x_1 (1-|x_2|))}{2\pi x_1} dx_1 dx_2 \right. \\ & \left. - \frac{1}{2} \phi^n(0) \right) + o(1) \end{split}$$

42

New Results: Number Theory Side: Iyer-Miller-Triantafillou: $supp(\widehat{\phi}) \subset (-\frac{1}{n-2}, \frac{1}{n-2})$

Theorem

Fix $n \ge 4$ and let ϕ be an even Schwartz function with $\operatorname{supp}(\widehat{\phi}) \subset \left(-\frac{1}{n-2}, \frac{1}{n-2}\right)$. Then, the nth centered moment of the 1-level density for holomorphic cusp forms is

$$\begin{split} &\frac{1+(-1)^n}{2} \left(-1\right)^n (n-1)!! \left(2 \int_{-\infty}^{\infty} \hat{\phi}(y)^2 |y| dy\right)^{n/2} \\ &\pm (-2)^{n-1} \left(\int_{-\infty}^{\infty} \phi(x)^n \frac{\sin 2\pi x}{2\pi x} dx - \frac{1}{2} \phi(0)^n\right) \\ &\mp (-2)^{n-1} n \left(\int_{-\infty}^{\infty} \hat{\phi}(x_2) \int_{-\infty}^{\infty} \phi^{n-1}(x_1) \frac{\sin (2\pi x_1 (1+|x_2|))}{2\pi x_1} dx_1 dx_2 - \frac{1}{2} \phi^n(0)\right). \end{split}$$

Compare to ...

Random Matrix Theory: New Combinatorial Vantage lyer-Miller-Triantafillou

n-Level Density: Katz-Sarnak Determinant Expansions

Example: SO(even)

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \widehat{\phi}(x_1) \cdots \widehat{\phi}(x_n) \det \left(K_1(x_j, x_k) \right)_{1 \leq j, k \leq n} dx_1 \cdots dx_n,$$

where

$$K_1(x,y) = \frac{\sin\left(\pi(x-y)\right)}{\pi(x-y)} + \frac{\sin\left(\pi(x+y)\right)}{\pi(x+y)}.$$

45

n-Level Density: Katz-Sarnak Determinant Expansions

Example: SO(even)

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \widehat{\phi}(x_1) \cdots \widehat{\phi}(x_n) \det \left(K_1(x_j, x_k) \right)_{1 \leq j, k \leq n} dx_1 \cdots dx_n,$$

where

$$K_1(x,y) = \frac{\sin(\pi(x-y))}{\pi(x-y)} + \frac{\sin(\pi(x+y))}{\pi(x+y)}.$$

Problem: *n*-dimensional integral - looks very different.

Preliminaries

Easier to work with cumulants.

$$\sum_{n=1}^{\infty} C_n \frac{(it)^n}{n!} = \log \widehat{P}(t),$$

where *P* is the probability density function.

$$\mu'_n = C_n + \sum_{m=1}^{n-1} {n-1 \choose m-1} C_m \mu'_{n-m},$$

where μ'_n is uncentered moment.

Preliminaries

Manipulating determinant expansions leads to analysis of

$$K(y_1,\ldots,y_n) = \sum_{m=1}^n \sum_{\substack{\lambda_1+\ldots+\lambda_m=n\\\lambda_j\geq 1}} \frac{(-1)^{m+1}}{m} \frac{n!}{\lambda_1!\cdots\lambda_m!}$$
$$\sum_{\epsilon_1,\ldots,\epsilon_n=\pm 1} \prod_{\ell=1}^m \chi_{\left\{\left|\sum_{j=1}^n \eta(\ell,j)\epsilon_j y_j\right|\leq 1\right\}},$$

where

$$\eta(\ell,j) = \begin{cases} +1 & \text{if } j \leq \sum_{k=1}^{\ell} \lambda_k \\ -1 & \text{if } j > \sum_{k=1}^{\ell} \lambda_k. \end{cases}$$

New Result: Iyer-Miller-Triantafillou: Large Support:

$$supp(\widehat{\phi}) \subseteq \left(-\frac{1}{n-2}, \frac{1}{n-2}\right)$$

Hughes-Miller solved for supp $(\widehat{\phi}) \subseteq (-\frac{1}{n-1}, \frac{1}{n-1})$.

New Complications: If $supp(\widehat{\phi}) \subseteq (-\frac{1}{n-2}, \frac{1}{n-2}),$

- $\eta(\ell, j)\epsilon_j y_j$ need not have same sign (at most one can differ);
- omore than one term in product can be zero (for fixed m, λ_j, ϵ_j).

New Result: Iyer-Miller-Triantafillou: Large Support:

$$supp(\widehat{\phi}) \subseteq \left(-\frac{1}{n-2}, \frac{1}{n-2}\right)$$

Hughes-Miller solved for supp $(\widehat{\phi}) \subseteq (-\frac{1}{n-1}, \frac{1}{n-1}).$

New Complications: If supp $(\widehat{\phi}) \subseteq (-\frac{1}{n-2}, \frac{1}{n-2}),$

- $\eta(\ell, j)\epsilon_j y_j$ need not have same sign (at most one can differ);
- o more than one term in product can be zero (for fixed m, λ_j, ϵ_j).

Solution: Double count terms and subtract a correcting term ρ_j .

Generating Function Identity - $\lambda_i \ge 1$

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n = e^{-x} = \frac{1}{1 - (1 - e^x)} = \sum_{m=0}^{\infty} (1 - e^x)^m$$

Generating Function Identity - $\lambda_i \ge 1$

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n = e^{-x} = \frac{1}{1 - (1 - e^x)} = \sum_{m=0}^{\infty} (1 - e^x)^m$$

$$=\sum_{m=0}^{\infty}(-1)^m\left(\sum_{\lambda=1}^{\infty}\frac{1}{\lambda!}x^{\lambda}\right)^m=\sum_{n=0}^{\infty}\left(\sum_{m=1}^{\infty}\sum_{\lambda_1+\cdots+\lambda_m=n}\frac{(-1)^m}{\lambda_1!\cdots\lambda_m!}\right)x^n$$

52

Generating Function Identity - $\lambda_i \ge 1$

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n = e^{-x} = \frac{1}{1 - (1 - e^x)} = \sum_{m=0}^{\infty} (1 - e^x)^m$$

$$=\sum_{m=0}^{\infty}(-1)^m\left(\sum_{\lambda=1}^{\infty}\frac{1}{\lambda!}x^{\lambda}\right)^m=\sum_{n=0}^{\infty}\left(\sum_{m=1}^{\infty}\sum_{\lambda_1+\cdots+\lambda_m=n}\frac{(-1)^m}{\lambda_1!\cdots\lambda_m!}\right)x^n$$

$$\Rightarrow (-1)^n = \sum_{m=1}^{\infty} \sum_{\lambda_1 + \dots + \lambda_m = n} \frac{(-1)^m n!}{\lambda_1! \dots \lambda_m!}.$$

53

All
$$\lambda_i, \lambda_i' \geq 1$$
.

$$\rho_{j} = \sum_{m=1}^{n} \sum_{l=1}^{m} \sum_{\substack{\lambda_{1} + \dots + \lambda_{\ell-1} = j-1 \\ \lambda_{\ell} = 1 \\ \lambda_{\ell+1} + \dots + \lambda_{m} = n-j}} \frac{(-1)^{m}}{m} \frac{n!}{\lambda_{1}! \cdots \lambda_{m}!}$$

All $\lambda_i, \lambda_i' \geq 1$.

$$\sum_{j=1}^{n} \rho_j = \sum_{j=1}^{n} \sum_{m=1}^{n} \sum_{\ell=1}^{m} \sum_{\substack{\lambda_1 + \dots + \lambda_{\ell-1} = j-1 \\ \lambda_{\ell} = 1 \\ \lambda_{\ell+1} + \dots + \lambda_m = n-j}} \frac{(-1)^m}{m} \frac{n!}{\lambda_1! \cdots \lambda_m!}$$

44

All $\lambda_i, \lambda_i' > 1$.

$$\sum_{j=1}^{n} \rho_{j} = \sum_{j=1}^{n} \sum_{m=1}^{n} \sum_{\ell=1}^{m} \sum_{\lambda_{1} + \dots + \lambda_{\ell-1} = j-1}^{m} \frac{(-1)^{m}}{m} \frac{n!}{\lambda_{1}! \cdots \lambda_{m}!}$$

$$= n \sum_{m=1}^{n} \sum_{\ell=1}^{m} \sum_{\lambda'_{1} + \dots + \lambda'_{m-1} = n-1}^{m} \frac{(-1)^{m}}{m} \frac{(n-1)!}{\lambda'_{1}! \cdots \lambda'_{m-1}!}$$

All $\lambda_i, \lambda_i' > 1$.

$$\sum_{j=1}^{n} \rho_{j} = \sum_{j=1}^{n} \sum_{m=1}^{n} \sum_{\ell=1}^{m} \sum_{\lambda_{1} + \dots + \lambda_{\ell-1} = j-1}^{m} \frac{(-1)^{m}}{m} \frac{n!}{\lambda_{1}! \cdots \lambda_{m}!}$$

$$= n \sum_{m=1}^{n} \sum_{\ell=1}^{m} \sum_{\lambda'_{1} + \dots + \lambda'_{m-1} = n-1}^{m} \frac{(-1)^{m}}{m} \frac{(n-1)!}{\lambda'_{1}! \cdots \lambda'_{m-1}!}$$

$$= n \sum_{m=1}^{n} \sum_{\lambda'_{1} + \dots + \lambda'_{m-1} = n-1}^{m} (-1) \frac{(-1)^{m-1}(n-1)!}{\lambda'_{1}! \cdots \lambda'_{m-1}!}$$

57

All $\lambda_i, \lambda_i' \geq 1$.

$$\sum_{j=1}^{n} \rho_{j} = \sum_{j=1}^{n} \sum_{m=1}^{n} \sum_{\ell=1}^{m} \sum_{\lambda_{1} + \dots + \lambda_{\ell-1} = j-1}^{m} \frac{(-1)^{m}}{m} \frac{n!}{\lambda_{1}! \dots \lambda_{m}!}$$

$$= n \sum_{m=1}^{n} \sum_{\ell=1}^{m} \sum_{\lambda'_{1} + \dots + \lambda'_{m-1} = n-1}^{m} \frac{(-1)^{m}}{m} \frac{(n-1)!}{\lambda'_{1}! \dots \lambda'_{m-1}!}$$

$$= n \sum_{m=1}^{n} \sum_{\lambda'_{1} + \dots + \lambda'_{m-1} = n-1}^{m} (-1) \frac{(-1)^{m-1}(n-1)!}{\lambda'_{1}! \dots \lambda'_{m-1}!}$$

$$= n(-1)^{n}.$$

New Result: lyer-Miller-Triantafillou: Large Support:

$$supp(\widehat{\phi}) \subseteq \left(-\frac{1}{n-2}, \frac{1}{n-2}\right)$$

After Fourier transform identities:

New Result: Iyer-Miller-Triantafillou: Large Support:

$$\operatorname{supp}(\widehat{\phi}) \subseteq \left(-\frac{1}{n-2}, \frac{1}{n-2}\right)$$

After Fourier transform identities:

$$C_n^{SO}(\phi) = \frac{(-1)^{n-1}}{2} \left(\int_{-\infty}^{\infty} \phi(x)^n \frac{\sin 2\pi x}{2\pi x} dx - \frac{1}{2} \phi(0)^n \right) + \frac{n(-1)^n}{2} \left(\int_{-\infty}^{\infty} \hat{\phi}(x_2) \int_{-\infty}^{\infty} \phi^{n-1}(x_1) \frac{\sin(2\pi x_1(1+|x_2|))}{2\pi x_1} dx_1 dx_2 - \frac{1}{2} \phi^n(0) \right).$$

New Result: Iyer-Miller-Triantafillou: Large Support:

$$\operatorname{supp}(\widehat{\phi}) \subseteq \left(-\frac{1}{n-2}, \frac{1}{n-2}\right)$$

After Fourier transform identities:

$$C_n^{SO}(\phi) = \frac{(-1)^{n-1}}{2} \left(\int_{-\infty}^{\infty} \phi(x)^n \frac{\sin 2\pi x}{2\pi x} dx - \frac{1}{2} \phi(0)^n \right) + \frac{n(-1)^n}{2} \left(\int_{-\infty}^{\infty} \hat{\phi}(x_2) \int_{-\infty}^{\infty} \phi^{n-1}(x_1) \frac{\sin(2\pi x_1(1+|x_2|))}{2\pi x_1} dx_1 dx_2 - \frac{1}{2} \phi^n(0) \right).$$

Agrees with number theory!

Recap

- Difficult to compare n-dimensional integral from RMT with NT in general. Harder combinatorics worthwhile to appeal to result from ILS.
- Solve combinatorics by using cumulants; support restrictions translate to which terms can contribute.
- Extend number theory results by bounding Bessel functions, Kloosterman sums, etc. New terms arise and match random matrix theory prediction.
- Better bounds on percent of forms vanishing to large order at the center point.

Cuspidal Maass Forms Alpoge-Amersi-Iyer-Lazarev-Miller-Zhang

Maass Forms

Definition: Maass Forms

A Maass form on a group $\Gamma \subset PSL(2,\mathbb{R})$ is a function $f: \mathcal{H} \to \mathbb{R}$ which satisfies:

- $f(\gamma z) = f(z)$ for all $\gamma \in \Gamma$,
- 2 f vanishes at the cusps of Γ , and
- **3** $\Delta f = \lambda f$ for some $\lambda = s(1 s) > 0$, where

$$\Delta = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$$

is the Laplace-Beltrami operator on \mathcal{H} .

- Coefficients contain information about partitions.
- For full modular group, $s = 1/2 + it_i$ with $t_i \in \mathbb{R}$.
- Test Katz-Sarnak conjecture

L-function associated to Maass forms

Write Fourier expansion of Maass form u_i as

$$u_j(z) = \cosh(t_j) \sum_{n \neq 0} \sqrt{y} \lambda_j(n) K_{it_j}(2\pi |n| y) e^{2\pi i n x}.$$

L-function associated to Maass forms

Write Fourier expansion of Maass form u_i as

$$u_j(z) = \cosh(t_j) \sum_{n \neq 0} \sqrt{y} \lambda_j(n) K_{it_j}(2\pi |n| y) e^{2\pi i n x}.$$

Define L-function attached to u_i as

$$L(s, u_j) = \sum_{n \geq 1} \frac{\lambda_j(n)}{n^s} = \prod_{p} \left(1 - \frac{\alpha_j(p)}{p^s}\right)^{-1} \left(1 - \frac{\beta_j(p)}{p^s}\right)^{-1}$$

where
$$\alpha_j(\mathbf{p}) + \beta_j(\mathbf{p}) = \lambda_j(\mathbf{p}), \quad \alpha_j(\mathbf{p})\beta_j(\mathbf{p}) = 1, \quad \lambda_j(1) = 1.$$

66

L-function associated to Maass forms

Write Fourier expansion of Maass form u_i as

$$u_j(z) = \cosh(t_j) \sum_{n \neq 0} \sqrt{y} \lambda_j(n) K_{it_j}(2\pi |n| y) e^{2\pi i n x}.$$

Define L-function attached to u_i as

$$L(s, u_j) = \sum_{n \geq 1} \frac{\lambda_j(n)}{n^s} = \prod_{p} \left(1 - \frac{\alpha_j(p)}{p^s}\right)^{-1} \left(1 - \frac{\beta_j(p)}{p^s}\right)^{-1}$$

where
$$\alpha_j(p) + \beta_j(p) = \lambda_j(p)$$
, $\alpha_j(p)\beta_j(p) = 1$, $\lambda_j(1) = 1$. Also,

$$\lambda_j(\boldsymbol{p}) \ll \boldsymbol{p}^{7/64}$$
.

n-level over a family

Recall for Katz-Sarnak Conjecture,

$$\frac{1}{|\mathcal{F}_N|} \sum_{f \in \mathcal{F}_N} D_{n,f}(\phi) = \frac{1}{|\mathcal{F}_N|} \sum_{f \in \mathcal{F}_N} \sum_{\substack{j_1, \dots, j_n \\ j_i \neq \pm j_k}} \prod_i \phi_i \left(L_f \gamma_E^{(j_i)} \right)$$

$$\rightarrow \int \dots \int \phi(x) W_{n,\mathcal{G}(\mathcal{F})}(x) dx.$$

n-level over a family

Recall for Katz-Sarnak Conjecture,

$$\frac{1}{|\mathcal{F}_N|} \sum_{f \in \mathcal{F}_N} D_{n,f}(\phi) = \frac{1}{|\mathcal{F}_N|} \sum_{f \in \mathcal{F}_N} \sum_{\substack{j_1, \dots, j_n \\ j_j \neq \pm j_k}} \prod_i \phi_i \left(L_f \gamma_E^{(j_i)} \right)$$

$$\rightarrow \int \dots \int \phi(x) W_{n,\mathcal{G}(\mathcal{F})}(x) dx.$$

- For Dirichlet/cuspidal newform L-functions, there are many with a given conductor.
- Problem: For Maass forms, expect at most one with a given conductor.

n-level over a family: Last Year (Amersi-lyer-Lazarev-Miller-Zhang)

• Solution: Average over Laplace eigenvalues $\lambda_f = 1/4 + t_i^2$.

n-level over a family: Last Year (Amersi-lyer-Lazarev-Miller-Zhang)

- Solution: Average over Laplace eigenvalues $\lambda_f = 1/4 + t_i^2$.
- two choices for the weight function h_T :

$$h_{1,T}(t_j) = \exp(-t_i^2/T^2),$$

which picks out eigenvalues near the origin,

n-level over a family: Last Year (Amersi-lyer-Lazarev-Miller-Zhang)

- Solution: Average over Laplace eigenvalues $\lambda_f = 1/4 + t_i^2$.
- two choices for the weight function h_T :

$$h_{1,T}(t_j) = \exp(-t_j^2/T^2),$$

which picks out eigenvalues near the origin, or

$$h_{2,T}(t_j) = \exp(-(t_j - T)^2/L^2) + \exp(-(t_j + T)^2/L^2),$$
 which picks out eigenvalues centered at $\pm T$.

n-level over a family: Last Year (Amersi-lyer-Lazarev-Miller-Zhang)

- Solution: Average over Laplace eigenvalues $\lambda_f = 1/4 + t_i^2$.
- two choices for the weight function h_T :

$$h_{1,T}(t_i) = \exp(-t_i^2/T^2),$$

which picks out eigenvalues near the origin, or

$$h_{2,T}(t_j) = \exp(-(t_j - T)^2/L^2) + \exp(-(t_j + T)^2/L^2),$$

which picks out eigenvalues centered at $\pm T$.

• Weighted 1-level density becomes

$$\frac{1}{\sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}}} \sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}} D_{n,u_{j}}(\phi)$$

$$= \frac{1}{\sum_{i} \frac{h_{T}(t_{j})}{\|u_{i}\|^{2}}} \sum_{i} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}} \sum_{i_{n} = i_{n}} \prod_{j} \phi_{j} \left(\frac{\gamma}{2\pi} \log R\right)$$

1-level density: new test function

Joint with Levent Alpoge.

Work with a better test function.

Not as general, but can exploit holomorphicity.

$$h(r) = rh(ir)/\sinh(\pi r).$$

Results Amersi-Iyer-Lazarev-Miller-Zhang 2011

1-Level Density

1-level density for one function

$$D(u_j; \phi)$$

$$= \hat{\phi}(0) \frac{\log(1 + t_j^2)}{\log R} + \frac{\phi(0)}{2} + O\left(\frac{\log \log R}{\log R}\right)$$

$$- \sum_{p} \frac{2\lambda_j(p) \log p}{p^{\frac{1}{2}} \log R} \hat{\phi}\left(\frac{\log p}{\log R}\right) - \sum_{p} \frac{2\lambda_j(p^2) \log p}{p \log R} \hat{\phi}\left(\frac{2 \log p}{\log R}\right)$$

- Explicit formula.
- Gamma function identities
- Prime Number Theorem

Average 1-level density

The weighted 1-level density becomes:

$$\begin{split} & \frac{1}{\sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}}} \sum_{j} \frac{h_{t}(t_{j})}{\|u_{j}\|^{2}} D(u_{j}; \phi) \\ & = \frac{\phi(0)}{2} + O\left(\frac{\log\log R}{\log R}\right) + \frac{1}{\sum_{j} \frac{h_{t}(t_{j})}{\|u_{j}\|^{2}}} \sum_{j} \frac{h_{t}(t_{j})}{\|u_{j}\|^{2}} \widehat{\phi}(0) \frac{\log(1 + t_{j}^{2})}{\log R} \\ & - \frac{1}{\sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}}} \sum_{p} \frac{2\log p}{p^{\frac{1}{2}} \log R} \widehat{\phi}\left(\frac{\log p}{\log R}\right) \sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}} \lambda_{j}(p) \\ & - \frac{1}{\sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}}} \sum_{p} \frac{2\log p}{p\log R} \widehat{\phi}\left(\frac{2\log p}{\log R}\right) \sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}} \lambda_{j}(p^{2}) \end{split}$$

77

Average 1-level density

The weighted 1-level density becomes:

$$\frac{1}{\sum_{j} \frac{h_{\tau}(t_{j})}{\|u_{j}\|^{2}}} \sum_{j} \frac{h_{t}(t_{j})}{\|u_{j}\|^{2}} D(u_{j}; \phi)
= \frac{\phi(0)}{2} + O\left(\frac{\log\log R}{\log R}\right) + \frac{1}{\sum_{j} \frac{h_{t}(t_{j})}{\|u_{j}\|^{2}}} \sum_{j} \frac{h_{t}(t_{j})}{\|u_{j}\|^{2}} \widehat{\phi}(0) \frac{\log(1 + t_{j}^{2})}{\log R}
- \frac{1}{\sum_{j} \frac{h_{\tau}(t_{j})}{\|u_{j}\|^{2}}} \sum_{p} \frac{2\log p}{p^{\frac{1}{2}} \log R} \widehat{\phi}\left(\frac{\log p}{\log R}\right) \sum_{j} \frac{h_{\tau}(t_{j})}{\|u_{j}\|^{2}} \lambda_{j}(p)
- \frac{1}{\sum_{j} \frac{h_{\tau}(t_{j})}{\|u_{j}\|^{2}}} \sum_{p} \frac{2\log p}{p\log R} \widehat{\phi}\left(\frac{2\log p}{\log R}\right) \sum_{j} \frac{h_{\tau}(t_{j})}{\|u_{j}\|^{2}} \lambda_{j}(p^{2})$$

Kuznetsov Trace Formula

To tackle terms with $\lambda_j(p)$ and $\lambda_j(p^2)$ we need the Kuznetsov Trace Formula:

Kuznetsov Trace Formula

To tackle terms with $\lambda_j(p)$ and $\lambda_j(p^2)$ we need the Kuznetsov Trace Formula:

$$\sum_{j} \frac{h(t_{j})}{\|u_{j}\|^{2}} \lambda_{j}(m) \overline{\lambda_{j}(n)}$$

= some function that depends just on h, m, and n

Kuznetsov Trace Formula

$$\sum_{j} \frac{h(t_{j})}{\|u_{j}\|^{2}} \lambda_{j}(m) \overline{\lambda_{j}(n)} + \frac{1}{4\pi} \int_{\mathbb{R}} \overline{\tau(m,r)} \tau(n,r) \frac{h(r)}{\cosh(\pi r)} dr = \frac{\delta_{n,m}}{\pi^{2}} \int_{\mathbb{R}} r \tanh(r) h(r) dr + \frac{2i}{\pi} \sum_{c \geq 1} \frac{S(n,m;c)}{c} \int_{\mathbb{R}} J_{ir} \left(\frac{4\pi \sqrt{mn}}{c} \right) \frac{h(r)r}{\cosh(\pi r)} dr$$

where
$$\tau(m,r) = \pi^{\frac{1}{2} + ir} \Gamma(1/2 + ir)^{-1} \zeta(1 + 2ir)^{-1} n^{-\frac{1}{2}} \sum_{ab = |m|} \left(\frac{a}{b}\right)^{ir}.$$

$$S(n,m;c) = \sum_{0 \leq x \leq c-1, gcd(x,c) = 1} e^{2\pi i (nx + mx^*)/c}$$

$$J_{ir}(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m! \Gamma(m+ir+1)} \left(\frac{1}{2}x\right)^{2m+ir}.$$

Kuznetsov Formula

- The only $\lambda(m)\overline{\lambda(n)}$ term that contributes is when m=n=1.
- The m = 1, n = p and m = 1, $n = p^2$ terms do not contribute because of the $\delta_{m,n}$ function.

Result: 1-level density

Theorem (AILMZ, 2011)

If $h_T = h_{1,T}$ or $h_{2,T}$, $T \to \infty$ and $L \ll T/\log T$, and $\sigma < 1/6$ then 1-level density is

$$\frac{1}{\sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}}} \sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}} D(u_{j}; \phi) = \frac{\phi(0)}{2} + \widehat{\phi}(0) + O\left(\frac{\log \log R}{\log R}\right) + O(T^{3\sigma/2 - 1/4 + \epsilon} + T^{\sigma/2 - 1/4 + \epsilon}).$$

 This matches with the orthogonal family density as predicted by Katz-Sarnak.

Support

Main reason support so small due to bounds on Bessel-Kloosterman piece.

Can distinguish unitary and symplectic from the 3 orthogonal groups, but 1-level density cannot distinguish the orthogonal groups from each other if support in (-1,1).

2-level density can distinguish orthogonal groups with arbitrarily small support; additional term depending on distribution of signs of functional equations.

2- Level Density

To differentiate between even and odd in orthogonal family, we calculated the 2-level density:

$$\begin{split} &D_{2}^{*}(\phi) := \frac{1}{\sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}}} \sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}} \sum_{j_{i}, j_{2}} \phi_{1}(\gamma^{(j_{1})}) \overline{\phi_{2}(\gamma^{(j_{2})})} \\ &= \frac{1}{\sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}}} \sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}} \prod_{i=1}^{2} \left| \frac{\phi_{i}(0)}{2} + \widehat{\phi_{i}}(0) \frac{\log(1 + t_{j}^{2})}{\log R} + O\left(\frac{\log\log R}{\log R}\right) \right| \\ &- \sum_{p} \frac{2\lambda_{j}(p) \log p}{p^{\frac{1}{2}} \log R} \widehat{\phi_{j}}\left(\frac{\log p}{\log R}\right) - \sum_{p} \frac{2\lambda_{j}(p^{2}) \log p}{p \log R} \widehat{\phi_{j}}\left(\frac{2 \log p}{\log R}\right) \right|. \end{split}$$

25 terms, handled by Cauchy-Schwarz or Kuznetsov.

Result: 2-level density

Theorem (AILMZ, 2011)

Same conditions as before, for $\sigma < 1/12$ have

$$D_{2,\mathcal{F}}^{*} = \prod_{i=1}^{2} \left[\frac{\phi_{i}(0)}{2} + \widehat{\phi}_{i}(0) \right] + 2 \int_{-\infty}^{\infty} |z| \widehat{\phi}_{1}(z) \widehat{\phi}_{2}(z) dz$$

$$-\phi_{1}(0)\phi_{1}(0) - 2\widehat{\phi_{1}}\widehat{\phi}_{2}(0) + (\phi_{1}\phi_{2})(0)\mathcal{N}(-1)$$

$$+ O\left(\frac{\log \log R}{\log R} \right).$$

Note that $\mathcal{N}(-1)$ is the weighted percent that have odd sign in functional equation.

Results Alpoge-Miller 2012

Sketch of proof

Theorem (Alpoge-Miller 2012)

For $h(r) = rh(ir)/\sinh(\pi r)$ the Katz-Sarnak conjecture holds for level 1 cuspidal Maass forms for test functions whose Fourier transform is supported in (-4/3, 4/3).

- Express $\int_{-\infty}^{\infty} J_{2ir}(X) \frac{rh_T(r)}{\cosh(\pi r)} dr$ as a sum of $J_{2k+1}(X)$ and h_T at imaginary arguments and $J_{2kT}(X)$ and h at k.
- Bound contributions from sums. Apply Poisson summation, analyze, and Poisson summation again.
- In calculations key steps are Taylor expanding exponentials and invoking Fourier transform identities (especially relating differentiation and multiplication).

Conclusion

Recap

- Understand compound families in terms of simple ones.
- Choose combinatorics to simplify calculations.
- Extending support often related to deep arithmetic questions.