Mind the Gap: Distribution of Gaps in Generalized Zeckendorf Decompositions

Steven J. Miller (sjm1@williams.edu)
http://www.williams.edu/Mathematics/sjmiller/public_html

CANT 2013: May 21, 2013
Introduction
Goals of the Talk

- Combinatorial perspective.
- Asking for help: completing elementary proof.
- New results on longest gap.
- Techniques: Generating fns, partial fractions, Rouche.

Joint with Olivia Beckwith, Iddo Ben-Ari, Amanda Bower, Louis Gaudet, Rachel Insoft, Shiyu Li, Philip Tosteson.
Previous Results

Fibonacci Numbers: \(F_{n+1} = F_n + F_{n-1} \);
\(F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, \ldots \).

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: \(2013 = 1597 + 377 + 34 + 5 = F_{16} + F_{13} + F_8 + F_4 \).

Lekkerkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in \([F_n, F_{n+1})\) tends to \(\frac{n}{\varphi^2 + 1} \approx .276n \), where \(\varphi = \frac{1 + \sqrt{5}}{2} \) is the golden mean.
Old Results

Central Limit Type Theorem

As \(n \to \infty \), the distribution of the number of summands in the Zeckendorf decomposition for integers in \([F_n, F_{n+1}) \) is Gaussian.

\[\text{Figure: Number of summands in } [F_{2010}, F_{2011}); F_{2010} \approx 10^{420}. \]
New Results: Bulk Gaps: $m \in [F_n, F_{n+1})$ and $\phi = \frac{1+\sqrt{5}}{2}$

$$m = \sum_{j=1}^{k(m)=n} F_i, \quad \nu_{m;n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta \left(x - (i_j - i_{j-1}) \right).$$

Theorem (Zeckendorf Gap Distribution)

Gap measures $\nu_{m;n}$ converge to average gap measure where $P(k) = \frac{1}{\phi^k}$ for $k \geq 2$.

![Figure: Distribution of gaps in $[F_{1000}, F_{1001})$; $F_{2010} \approx 10^{208}$.](image)
New Results: Longest Gap

Fair coin: largest gap tightly concentrated around $\log n / \log 2$.

Theorem (Longest Gap)

As $n \to \infty$, the probability that $m \in [F_n, F_{n+1})$ has longest gap less than or equal to $f(n)$ converges to

$$
\text{Prob}(L_n(m) \leq f(n)) \approx e^{-e^{\log n - f(n) \cdot \log \phi}}
$$

- $\mu_n = \frac{\log \left(\frac{\phi^2}{\phi^2 + 1} n \right)}{\log \phi} + \frac{\gamma}{\log \phi} - \frac{1}{2} + \text{Small Error}$.

- If $f(n)$ grows **slower** (resp. **faster**) than $\log n / \log \phi$, then $\text{Prob}(L_n(m) \leq f(n))$ goes to 0 (resp. 1).
Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \geq 0$ is
\[
\binom{C+P-1}{P-1}.
\]

Let $p_{n,k} = \# \left\{ N \in [F_n, F_{n+1}) : \text{the Zeckendorf decomposition of } N \text{ has exactly } k \text{ summands} \right\}$.

For $N \in [F_n, F_{n+1})$, the largest summand is F_n.

\[
N = F_{i_1} + F_{i_2} + \cdots + F_{i_{k-1}} + F_n,
\]

where $1 \leq i_1 < i_2 < \cdots < i_{k-1} < i_k = n$, $i_j - i_{j-1} \geq 2$.

\[
d_1 := i_1 - 1, \quad d_j := i_j - i_{j-1} - 2 \quad (j > 1).
\]

\[
d_1 + d_2 + \cdots + d_k = n - 2k + 1, \quad d_j \geq 0.
\]

Cookie counting $\Rightarrow p_{n,k} = \binom{n - 2k + 1 + k - 1}{k-1} = \binom{n-k}{k-1}$.
<table>
<thead>
<tr>
<th>Intro</th>
<th>Gaps (Bulk)</th>
<th>Individual Gaps</th>
<th>Longest Gap</th>
<th>References</th>
<th>Generalizations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gaps in the Bulk
For $F_{i_1} + F_{i_2} + \cdots + F_{i_n}$, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \ldots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.
Distribution of Gaps

For $F_{i_1} + F_{i_2} + \cdots + F_{i_n}$, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \ldots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(k)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length k.
Distribution of Gaps

For $F_{i_1} + F_{i_2} + \cdots + F_{i_n}$, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \ldots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(k)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length k.

What is $P(k) = \lim_{n \to \infty} P_n(k)$?
Distribution of Gaps

For \(F_{i_1} + F_{i_2} + \cdots + F_{i_n} \), the gaps are the differences \(i_n - i_{n-1}, i_{n-1} - i_{n-2}, \ldots, i_2 - i_1 \).

Example: For \(F_1 + F_8 + F_{18} \), the gaps are 7 and 10.

Let \(P_n(k) \) be the probability that a gap for a decomposition in \([F_n, F_{n+1}]\) is of length \(k \).

What is \(P(k) = \lim_{n \to \infty} P_n(k) \)?

Can ask similar questions about binary or other expansions: \(2012 = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 2^3 + 2^2 \).
Main Result

Theorem (Distribution of Bulk Gaps (SMALL 2012))

Let $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n+1-L}$ be a positive linear recurrence of length L where $c_i \geq 1$ for all $1 \leq i \leq L$. Then

$$P(j) = \begin{cases}
1 - \left(\frac{a_1}{C_{Lek}} \right) \left(2\lambda_1^{-1} + a_1^{-1} - 3 \right) & : j = 0 \\
\lambda_1^{-1} \left(\frac{1}{C_{Lek}} \right) \left(\lambda_1 \left(1 - 2a_1 \right) + a_1 \right) & : j = 1 \\
\left(\lambda_1 - 1 \right)^2 \left(\frac{a_1}{C_{Lek}} \right) \lambda_1^{-j} & : j \geq 2.
\end{cases}$$
Theorem (Base B Gap Distribution (SMALL 2011))

For base B decompositions, $P(0) = \frac{(B-1)(B-2)}{B^2}$, and for $k \geq 1$, $P(k) = c_B B^{-k}$, with $c_B = \frac{(B-1)(3B-2)}{B^2}$.

Theorem (Zeckendorf Gap Distribution (SMALL 2011))

For Zeckendorf decompositions, $P(k) = 1/\phi^k$ for $k \geq 2$, with $\phi = \frac{1+\sqrt{5}}{2}$ the golden mean.
Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\phi^2 + 1}$.
Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker ⇒ total number of gaps $\sim F_{n-1} \frac{n}{\phi^2 + 1}$.

Let $X_{i,j} = \# \{ m \in [F_n, F_{n+1}) : \text{decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j \}$.
Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\phi^2 + 1}$.

Let $X_{i,j} = \#\{m \in [F_n, F_{n+1}) \; : \; \text{decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j\}$.

$$P(k) = \lim_{n \to \infty} \frac{\sum_{i=1}^{n-k} X_{i,i+k}}{F_{n-1} \frac{n}{\phi^2 + 1}}.$$
Calculating $X_{i,j+k}$

How many decompositions contain a gap from F_i to F_{i+k}?
Calculating $X_{i,i+k}$

How many decompositions contain a gap from F_i to F_{i+k}?

For the indices less than i: F_{i-1} choices. Why? Have F_i as largest summand and follows by Zeckendorf:

$$
\#[F_i, F_{i+1}) = F_{i+1} - F_i = F_{i-1}.
$$
Calculating $X_{i,i+k}$

How many decompositions contain a gap from F_i to F_{i+k}?

For the indices less than i: F_{i-1} choices. Why? Have F_i as largest summand and follows by Zeckendorf:

$$
\#[F_i, F_{i+1}) = F_{i+1} - F_i = F_{i-1}.
$$

For the indices greater than $i+k$: $F_{n-k-i-2}$ choices. Why? Shift. Choose summands from $\{F_1, \ldots, F_{n-k-i+1}\}$ with $F_1, F_{n-k-i+1}$ chosen. Decompositions with largest summand $F_{n-k-i+1}$ minus decompositions with largest summand F_{n-k-i}.

\[\includegraphics[width=\textwidth]{diagram.png}\]
Calculating $X_{i, i+k}$

How many decompositions contain a gap from F_i to F_{i+k}?

For the indices less than i: F_{i-1} choices. Why? Have F_i as largest summand and follows by Zeckendorf:

$$\# [F_i, F_{i+1}) = F_{i+1} - F_i = F_{i-1}. \)$$

For the indices greater than $i + k$: $F_{n-k-i-2}$ choices. Why? Shift. Choose summands from $\{ F_1, \ldots, F_{n-k-i+1} \}$ with $F_1, F_{n-k-i+1}$ chosen. Decompositions with largest summand $F_{n-k-i+1}$ minus decompositions with largest summand F_{n-k-i}.

So total choices number of choices is $F_{n-k-2-i}F_{i-1}$.
Determining $P(k)$

Recall

$$P(k) = \lim_{n \to \infty} \frac{\sum_{i=1}^{n-k} X_{i,i+k}}{F_{n-1} \frac{n}{\phi^2 + 1}}.$$

Use Binet’s formula. Sums of geometric series: $P(k) = 1 / \phi^k$.

Figure: Distribution of summands in $[F_{1000}, F_{1001})$.
Individual Gaps
Main Result

- Decomposition: \(m = \sum_{j=1}^{k(m)} F_{ij} \).
Main Result

- **Decomposition:** \(m = \sum_{j=1}^{k(m)} F_{ij} \).

- **Individual gap measure:**
 \[
 \nu_{m;n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta \left(x - (i_j - i_{j-1}) \right).
 \]
Main Result

- Decomposition: \(m = \sum_{j=1}^{k(m)} F_{ij}. \)

- Individual gap measure:
 \[
 \nu_{m;n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta \left(x - (i_j - i_{j-1}) \right).
 \]

Theorem (Distribution of Individual Gaps (SMALL 2012))

Gap measures \(\nu_{m;n} \) converge to average gap measure.
Proof Sketch of Individual Gap Measures

\[\mu_{m,n}(t) = \int x^t d\nu_{m,n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} (i_j - i_{j-1})^t. \]
Proof Sketch of Individual Gap Measures

- \(\mu_{m,n}(t) = \int x^t \, d\nu_{m,n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} (i_j - i_{j-1})^t. \)

- Show \(E_m[\mu_{m,n}(t)] \) equals average gap moments, \(\mu(t) \).
Proof Sketch of Individual Gap Measures

- \(\mu_{m,n}(t) = \int x^t d\nu_{m,n}(x) = \frac{1}{\binom{k(m)}{2}} \sum_{j=2}^{k(m)} (i_j - i_{j-1})^t. \)

- Show \(\mathbb{E}_m[\mu_{m,n}(t)] \) equals average gap moments, \(\mu(t) \).

- Show \(\mathbb{E}_m[(\mu_{m,n}(t) - \mu(t))^2] \) and \(\mathbb{E}_m[(\mu_{m,n}(t) - \mu(t))^4] \) tend to zero.
Proof Sketch of Individual Gap Measures

- $\mu_{m,n}(t) = \int x^t d\nu_{m,n}(x) = \frac{1}{k(m) - 1} \sum_{j=2}^{k(m)} (i_j - i_{j-1})^t$.

- Show $\mathbb{E}_m[\mu_{m,n}(t)]$ equals average gap moments, $\mu(t)$.

- Show $\mathbb{E}_m[(\mu_{m,n}(t) - \mu(t))^2]$ and $\mathbb{E}_m[(\mu_{m,n}(t) - \mu(t))^4]$ tend to zero.

Key ideas:
(1) Replace $k(m)$ with average (Gaussianity);
(2) use $X_{i,i+g_1,j,j+g_2}$.
Future Research

- Finish elementary proof of convergence of individual gap measures (maybe probabilities instead of moments). Email sjm1@williams.edu if interested.

- Extend to recurrences with coefficients that can be zero: SMALL ’13.

- Generalize to signed decompositions, ℓ largest gaps, SMALL ’13.
<table>
<thead>
<tr>
<th>Intro</th>
<th>Gaps (Bulk)</th>
<th>Individual Gaps</th>
<th>Longest Gap</th>
<th>References</th>
<th>Generalizations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fibonacci Case Generating Function

$G_{n,k,f}$ be the number of $m \in [F_n, F_{n+1})$ with k nonzero summands and all gaps less than $f(n)$.
Fibonacci Case Generating Function

$G_{n,k,f}$ be the number of $m \in [F_n, F_{n+1})$ with k nonzero summands and all gaps less than $f(n)$.

$G_{n,k,f}$ is the coefficient of x^n for the generating function

$$\frac{1}{1 - x} \left[\sum_{j=2}^{f(n)-2} x^j \right]^{k-1}.$$
Fibonacci Case Generating Function

$G_{n,k,f}$ be the number of $m \in [F_n, F_{n+1})$ with k nonzero summands and all gaps less than $f(n)$.

$G_{n,k,f}$ is the coefficient of x^n for the generating function

$$\frac{1}{1 - x} \left[\sum_{j=2}^{f(n)-2} x^j \right]^{k-1}.$$

Let $m = F_n + F_{n-g_1} + F_{n-g_1-g_2} + \cdots + F_{n-g_1-\cdots-g_{n-1}}$, then

- Each gap is ≥ 2.
- Each gap is $< f(n)$.
- The sum of the gaps of x is $\leq n$.

Gaps uniquely identify m by Zeckendorf’s Theorem.
The Combinatorics

\(G_{n,k,f} \) is the \(n^{th} \) coefficient of

\[
\frac{1}{1-x} \left[x^2 + \cdots + x^{f(n)-2} \right]^{k-1} = \frac{x^{2(k-1)}}{1-x} \left(\frac{1 - x^{f(n)-3}}{1-x} \right)^{k-1}.
\]
The Combinatorics

$G_{n,k,f}$ is the n^{th} coefficient of

$$\frac{1}{1-x} \left[x^2 + \cdots + x^{f(n)-2} \right]^{k-1} = \frac{x^{2(k-1)}}{1-x} \left(\frac{1 - x^{f(n)-3}}{1-x} \right)^{k-1}.$$

For fixed k hard to analyze, but only care about sum over k.
The Generating Function

Sum over k gives number of $m \in [F_n, F_{n+1})$ with longest gap $< f(n)$, call it $G_{n,f}$.

It’s the n^{th} coefficient (up to potentially small algebra errors!) of

$$F(x) = \frac{1}{1-x} \sum_{k=1}^{\infty} \left(\frac{x^2 - x^{f-2}}{1-x} \right)^{k-1} = \frac{x}{1 - x - x^2 + x^{f(n)}}.$$

The Generating Function

Sum over k gives number of $m \in [F_n, F_{n+1})$ with longest gap $< f(n)$, call it $G_{n,f}$.

It’s the n^{th} coefficient (up to potentially small algebra errors!) of

$$F(x) = \frac{1}{1-x} \sum_{k=1}^{\infty} \left(\frac{x^2 - x^{f-2}}{1-x} \right)^{k-1} = \frac{x}{1 - x - x^2 + x^{f(n)}}.$$

Use partial fractions and Rouché’s Theorem to find CDF.
Partial Fractions

Write the roots of $x^f - x^2 - x - 1$ as $\{\alpha_i\}_{i=1}^{f}$, generating function is

$$F(x) = \frac{x}{1 - x - x^2 + x^f} = \frac{f(n)}{f(n)\alpha_i^f(n)} - \frac{-\alpha_i}{\alpha_i^f(n) - 2\alpha_i^2 - \alpha_i} \sum_{j=1}^{\infty} \left(\frac{x}{\alpha_i} \right)^j.$$
Partial Fractions

Write the roots of $x^f - x^2 - x - 1$ as $\{\alpha_i\}_{i=1}^f$, generating function is

$$F(x) = \frac{x}{1 - x - x^2 + x^{f(n)}} = \sum_{i=1}^{f(n)} \frac{-\alpha_i}{f(n)\alpha_i^{f(n)} - 2\alpha_i^2 - \alpha_i} \sum_{j=1}^{\infty} \left(\frac{x}{\alpha_i}\right)^j.$$

Take the n^{th} coefficient to find the number of m with gaps less than $f(n)$.
Partial Fractions

Divide the number of $m \in [F_n, F_{n+1})$ with longest gap $< f(n)$ by the number of m, which is

$$F_{n+1} - F_n = F_{n-1} = 5^{-1/2} \left(\phi^{n-1} - (1/\phi)^{n-1} \right).$$

Theorem

The proportion of $m \in [F_n, F_{n+1})$ with $L(x) < f(n)$ is exactly

$$\sum_{i=1}^{f(n)} \frac{-\sqrt{5}(\alpha_i)}{f(n)\alpha_i^{f(n)} - 2\alpha_i^2 - \alpha_i} \left(\frac{1}{\alpha_i} \right)^{n+1} \frac{1}{(\phi^n - (-1/\phi)^n)}$$

Now study the roots of $x^f - x^2 - x + 1$.
Rouché and Roots

When \(f(n) \) is large, \(z^{f(n)} \) is very small for \(|z| < 1 \). Thus, by Rouché’s theorem:

Lemma

For \(f \in \mathbb{N} \) and \(f \geq 4 \), the polynomial \(p_f(z) = z^f - z^2 - z + 1 \) has exactly one root \(z_f \) with \(|z_f| < .9 \). Further, \(z_f \in \mathbb{R} \) and

\[
z_f = \frac{1}{\phi} + \left| \frac{z_f}{z_f + \phi} \right|,
\]

so as \(f \to \infty \), \(z_f \) converges to \(\frac{1}{\phi} \).

We only care about the **smallest root**.
Getting the CDF

As f grows, only one root goes to $1/\phi$. The other roots don’t matter. So,
Getting the CDF

As f grows, only one root goes to $1/\phi$. The other roots don’t matter. So,

Theorem

If $\lim_{n \to \infty} f(n) = \infty$, the proportion of m with $L(m) < f(n)$ is, as $n \to \infty$

$$\lim_{n \to \infty} (\phi Z_f)^{-n} = \lim_{n \to \infty} \left(1 + \left| \frac{\phi Z_f^{f(n)}}{\phi + Z_f} \right| \right)^{-n}.$$

If $f(n)$ is bounded, then $P_f = 0$.

Take logarithms, Taylor expand, result follows from algebra.

Algebra increases greatly for general recurrence.
References
References

Generalizations
Positive Linear Recurrence Sequences

This method can be greatly generalized to **Positive Linear Recurrence Sequences**: linear recurrences with non-negative coefficients:

\[H_{n+1} = c_1 H_{n-j_1} + c_2 H_{n-j_2} + \cdots + c_L H_{n-j_L}. \]

Theorem (Zeckendorf’s Theorem for PLRS recurrences)

Any \(b \in \mathbb{N} \) *has a unique legal decomposition into sums of* \(H_n \),

\[b = a_1 H_{i_1} + \cdots + a_k H_{i_k}. \]

Here *legal* reduces to non-adjacency of summands in the Fibonacci case.
Messier Combinatorics

The number of \(b \in [H_n, H_{n+1}) \), with longest gap \(< f \) is the coefficient of \(x^{n-s} \) in the generating function:
The **number** of $b \in [H_n, H_{n+1})$, with longest gap $< f$ is the coefficient of x^{n-s} in the generating function:

$$
\frac{1}{1-x} \left(c_1 - 1 + c_2 x^{t_2} + \cdots + c_L x^{t_L} \right) \times \sum_{k \geq 0} \left[\left((c_1 - 1) x^{t_1} + \cdots + (c_L - 1) x^{t_L} \right) \left(\frac{x^{s+1} - x^f}{1 - x} \right) + x^{t_1} \left(\frac{x^{s+t_2-t_1+1} - x^f}{1 - x} \right) + \cdots + x^{t_L-1} \left(\frac{x^{s+t_L-t_{L-1}+1} - x^f}{1 - x} \right) \right]^k.
$$
Messier Combinatorics

The **number** of $b \in [H_n, H_{n+1})$, with longest gap $< f$ is the coefficient of x^{n-s} in the generating function:

\[
\frac{1}{1-x} \left(c_1 - 1 + c_2 x^{t_2} + \cdots + c_L x^{t_L} \right) \times
\]

\[
\times \sum_{k \geq 0} \left[((c_1 - 1)x^{t_1} + \cdots + (c_L - 1)x^{t_L}) \left(\frac{x^{s+1} - x^f}{1-x} \right) + \right.
\]

\[
+ x^{t_1} \left(\frac{x^{s+t_2-t_1+1} - x^f}{1-x} \right) + \cdots + x^{t_{L-1}} \left(\frac{x^{s+t_L-t_{L-1}+1} + 1 - x^f}{1-x} \right) \right]^k.
\]

A geometric series!
Let $f > j_L$. The number of $x \in [H_n, H_{n+1})$, with longest gap $< f$ is given by the coefficient of s^n in the generating function

$$F(s) = \frac{1 - s^j}{\mathcal{M}(s) + sf\mathcal{R}(s)},$$

where

$$\mathcal{M}(s) = 1 - c_1 s - c_2 s^{j_2 + 1} - \cdots - c_L s^{j_L + 1},$$

and

$$\mathcal{R}(s) = c_{j_1 + 1} s^{j_1} + c_{j_2 + 1} s^{j_2} + \cdots + (c_{j_L + 1} - 1) s^{j_L}.$$

and c_i and j_i are defined as above.
The **coefficients** in the **partial fraction** expansion might **blow up** from multiple roots.
The coefficients in the partial fraction expansion might blow up from multiple roots.

Theorem (Mean and Variance for "Most Recurrences")

For x in the interval $[H_n, H_{n+1})$, the mean longest gap μ_n and the variance of the longest gap σ_n^2 are given by

$$
\mu_n = \frac{\log \left(\frac{\mathcal{R}(\frac{1}{\lambda_1})}{\mathcal{G}(\frac{1}{\lambda_1})} n \right)}{\log \lambda_1} + \frac{\gamma}{\log \lambda_1} - \frac{1}{2} + \text{Small Error} + \epsilon_1(n),
$$

and

$$
\sigma_n^2 = \frac{\pi^2}{6 \log \lambda_1} - \frac{1}{12} + \text{Small Error} + \epsilon_2(n),
$$

where $\epsilon_i(n)$ tends to zero in the limit, and Small Error comes from the Euler-Maclaurin Formula.