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Introduction J




Goals of the Talk

@ Generalize Zeckendorf decompositions
@ Analyze gaps (in the bulk and longest)
@ Power of generating functions

@ Some open problems (if time permits)




Collaborators and Thanks

Collaborators: Gaps (Bulk, Individual, Longest):  Joint with
Olivia Beckwith, Amanda Bower, Louis Gaudet, Rachel Insoft,
Shiyu Li, Philip Tosteson; Current work (Kentucky Sequence,
Fibonacci Quilt):  Joint with Minerva Catral, Pari Ford, Pamela
Harris & Dawn Nelson.

Supported by: NSF Grants DMS1265673, DMS0970067,
DMS1347804 and DMS0850577, AIM and Williams College.

A




Collaborators and Thanks

Collaborators: Gaps (Bulk, Individual, Longest):  Joint with
Olivia Beckwith, Amanda Bower, Louis Gaudet, Rachel Insoft,
Shiyu Li, Philip Tosteson; Current work (Kentucky Sequence,
Fibonacci Quilt):  Joint with Minerva Catral, Pari Ford, Pamela
Harris & Dawn Nelson.

Supported by: NSF Grants DMS1265673, DMS0970067,
DMS1347804 and DMS0850577, AIM and Williams College.

Not supported by:




Previous Results

Fibonacci Numbers: Fniq = Fn + Fp_1;
Fl:]-’ F2:2, F3:3, F4:5,....

Zeckendorf’'s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2014 =1597 +377+34+5+1=F16 + F13 +Fg + Fa + F1.

Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [F,, Fry1) tends to # A .276n,

where ¢ = 1+2—\/§ is the golden mean.
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Old Results

Central Limit Type Theorem

As n — oo, the distribution of number of summands in
Zeckendorf decomposition for m € [F,, F11) is Gaussian.
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Figure: Number of summands in [F2o10, F2011); F2010 ~ 1020,




Theorem (Zeckendorf Gap Distribution)

Gap measures v,y COnverge to average gap measure where
P(k) =1/¢X fork > 2.

Figure: Distribution of gaps in [Fao10, F2011); Fo010 = 10%%°.




New Results: Longest Gap

Fair coin: largest gap tightly concentrated around logn/ log 2.

Theorem (Longest Gap)

As n — oo, the probability that m € [F,, F,1) has longest gap
less than or equal to f(n) converges to

Prob (Ln(m) < f(n)) =~ g—elosn—r(n-ogs

¢2
_ 'Og(«>2+1>”)

®ln="ogs = T Togs — % + Small Error.

e If f(n) grows slower (resp. faster) than logn/log ¢, then
Prob(Ln(m) < f(n)) goes to O (resp. 1).
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Gaps in the Bulk J
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Distribution of Gaps

For F, +Fi, +--- + F;,, the gaps are the differences
in —in—1,In—1 —Ih—2,...,02 — 1.

Example: For F; + Fg + F1g, the gaps are 7 and 10.
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Distribution of Gaps

For F, +Fi, +--- + F;,, the gaps are the differences
in —in—1,In—1 —Ih—2,...,02 — 1.

Example: For F; + Fg + F1g, the gaps are 7 and 10.

Let Pn(g) be the probability that a gap for a decomposition in
[Fn,Fny1) is of length g.

What is P(g) = limp_ Pn(9)?

Can ask similar questions about binary or other expansions:
2012 =210 + 29 1 28 1 27 4 26 4 24 1 23 4 22,
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Main Result

Theorem (Distribution of Bulk Gaps (SMALL 2012))

Let Hy, 1 = ciHn + C2Hp—1 + -+ - + ¢ Hp 1 be a positive linear
recurrence of length L where c; > 1 forall1 <i < L. Then

(CLek)(Z)\l_lJral‘l—B) :g=0
Pg) = M (es)(a(l—2a1) +a1) 1g=1
w*l)z(cik)” 922




Gaps (Bulk)
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Special Cases

Theorem (Base B Gap Distribution (SMALL 2011))

For base B decompositions, P(0) = (B’%#, and forg > 1,
P(g) = cgB™9, with cg = 7(871)5572).

Theorem (Zeckendorf Gap Distribution (SMALL 2011))

For Zeckendorf decompositions, P(g) = 1/¢9 for g > 2, with
¢ = 15 the golden mean.
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Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker = total number of gaps ~ Fn_lﬁ.
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Proof of Bulk Gaps for Fibonacci Sequence
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Let Xi g = #{m € [Fn,Fn41): decomposition of m includes F;,
Fi+g, butnot Fq fori < q <i+g}.
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Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker = total number of gaps ~ Fn_lﬁ.

Let Xi g = #{m € [Fn,Fn41): decomposition of m includes F;,
Fi+g, butnot Fq fori < q <i+g}.




Gaps (Bulk)
[ ]

Calculating X; g

How many decompositions contain a gap from F; to Fi_4?

QO RPRNee XX @R C oo ORX @

F F F F F F_F
1 -1 i itg  itgtl n-1 n

For the indices less than i: Fj_; choices. Why? Have F; as
largest summand and follows by Zeckendorf:

#[Fi,Fiy1) = Fiqa — Fi = Fi1.

For the indices greater than i +g: F,_g_i_> choices. Why?
Shift. Choose summands from {Fy,... ,Fn_g_j+1} with
F1,Fn_g—i+1 chosen. Decompositions with largest summand
Fn_g—i+1 Minus decompositions with largest summand Fn_g_;.

So total choices number of choicesis F,_¢_>_iFi_1.

Y



Gaps (Bulk)
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Determining P(Q)

Recall

n—g
Zi:l Xi,g
===
*+1

Use Binet’s formula. Sums of geometric series: P(g) = 1/¢9.

P(g) = lim

n—oo Fn_1

15 0 25 M

Figure: Distribution of summands in [Figo0, F1001)-

D




Individual Gaps

Individual Gaps J




Individual Gaps
[ ]

Main Result

@ Decomposition:
k(m)

j=1
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Main Result

@ Decomposition:

k(m)
m = Z Fij~
j=1
@ Individual gap measure:
k(m)
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Main Result

@ Decomposition:

Theorem (Distribution of Individual Gaps (SMALL 2012))

For almost all m, gap measures vm.n converge to average gap
measure.




Individual Gaps
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Proof Sketch of Individual Gap Measures

® Umn(t): Characteristic fn of vm.n(X).
@ 7(t): Characteristic fn of average gap distribution v(x).
@ En|[ - -]: Expected value wrt uniform measure:

1 Froi—1
En[X] = X(m).
m[ ] Fn+1 _ Fn mZF ( )

Key ideas:
(1) Em[Zmn(t)] = (1) (use k(m) ~ un by Gaussianity).
2

(2) limnsoc Em | (Fn(t) — 2(1))°] = 0 (use Xi g, g,)
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Fibonacci Case Generating Function

Gn ki be the number of m € [Fp, F,41) with k nonzero
summands and all gaps less than f(n).
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Fibonacci Case Generating Function

Gn ki be the number of m € [Fp, F,41) with k nonzero
summands and all gaps less than f(n).

Ghk f Is the coefficient of x" for the generating function

fm—2 1K1

1 .
1-—x Z X

j=2
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Fibonacci Case Generating Function

Gn ki be the number of m € [Fp, F,41) with k nonzero
summands and all gaps less than f(n).

Ghk f Is the coefficient of x" for the generating function

. [ k=1

1-—x Z X

j=2

Letm =Fp + Fn_g; + Fn—g,—g, + - + Fn—g;—...—g,_,, then
@ Eachgapis > 2.
@ Eachgapis < f(n).
@ The sum of the gaps of x is < n.

Gaps uniquely identify m by Zeckendorf’'s Theorem.

A0)
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The Combinatorics

Gp ks is the n'™ coefficient of
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The Combinatorics

Gp ks is the n'™ coefficient of

k—1
K1 2(k—1) o f(n)-3
1 {X2+...+Xf(n)fz] _X (1 X ) |

1-—x 1-—x

For fixed k hard to analyze, but only care about sum over k.
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The Generating Function

Sum over k gives number of m € [Fy, Fn11) with longest gap
< f(n), call it G 4.
It's the n" coefficient (up to potentially small algebra errors!) of

1 & /x2 o xt-2\* ! X
F(X):lle< 1-x > T 1-ox-—xZ+x{M
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The Generating Function

Sum over k gives number of m € [Fy, Fn11) with longest gap

< f(n), call it G 4.

It's the n" coefficient (up to potentially small algebra errors!) of
k—1

1 & /x2—xf-2 X
F(X):lle< 1-x > T 1-x

—x2 4 xfm)”

Use partial fractions and Rouché’s Theorem to find CDF
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Partial Fractions

Write the roots of x" — x? —x — 1 as {a;}[_,, generating
function is

f(n) 00

—Q X J
F(X):l_x_;(2+xf(n)zz Z<E>'

f
i1 f(N)ey " 20‘i2 — i =1
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Partial Fractions

Write the roots of x" — x? —x — 1 as {a;}[_,, generating
function is

f(n) 00

—a j
FX) = 1 = O > (%)

— f(n)aif(n) — 2ai2 — i i Qj

Take the n" coefficient to find the number of m with gaps less
than f(n).
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Partial Fractions

Divide the number of m € [Fy, Fn11) with longest gap < f(n) by
the number of m, which is

FnJrl*Fn = Fn,]_ = 1/2( (1/¢)n l)

The proportion of m € [Fn, Fr11) with L(x) < f(n) is exactly

f(n) n+1
—V5(a) 1\ 1
Z f(n) 2 (ai> (o" = (=1/9)")

i—1 f(N)a" — 208 — o

Now study the roots of x — x? — x + 1.
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Rouché and Roots

When f(n) is large, z'(" is very small for |z| < 1. Thus, by
Rouché’s theorem:

Forf € Nand f > 4, the polynomial p;(z) = zf —z2 —z + 1 has
exactly one root z; with |z;| < .9. Further, z; € R and

Z = % + soasf — oo, Z; converges to %.

7
Zi+¢ |

We only care about the smallest root .
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Getting the CDF

As f grows, only one root goes to 1/¢. The other roots don't
matter. So,
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Getting the CDF

As f grows, only one root goes to 1/¢. The other roots don't
matter. So,

If limp_, o f(N) = oo, the proportion of m with L(m) < f(n) is, as
n — oo

¢Z:(n)
¢+ z;

Take logarithms, Taylor expand, result follows from algebra.

. —Nn _ .
n“—>moo (¢Zf) - nll—>moo <1 o

If f(n) is bounded, then Ps = 0.

Algebra increases greatly for general recurrence.

A
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Current Work
with Minerva Catral, Pari Ford, Pamela Harris & Dawn Nelson
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Current Work
°

Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:

@ cannot take two elements from the same bin, and

@ if have an element from a bin, cannot take anything from
the first s bins to the left or the first s to the right.
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Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:

@ cannot take two elements from the same bin, and

@ if have an element from a bin, cannot take anything from
the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).
Kentucky: These are (s,b) = (1,2).

[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128].
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Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:

@ cannot take two elements from the same bin, and

@ if have an element from a bin, cannot take anything from
the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).
Kentucky: These are (s,b) = (1,2).

[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128].

@ ay, = 2" and agnyq = 3(22H" — (—1)"):
any1 =an_1t+2ap-3,a81 =1l,a=2,a3=3,a4 =4.

A




Current Work
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Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:

@ cannot take two elements from the same bin, and

@ if have an element from a bin, cannot take anything from
the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).
Kentucky: These are (s,b) = (1,2).

[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128].

@ ay, = 2" and agnyq = 3(22H" — (—1)"):
ant1 =ap1t+2a 3,8 =1la=2,a3=3,a3=4.
@ a,.1 = ap_1 + 2ap_3: New as leading term O.

AT




Current Work
°

Gaussian Behavior
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Figure: Plot of the distribution of the number of summands for
100,000 randomly chosen m € [1, ao00) = [1,22°%%) (so m has on the
order of 602 digits).
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Current Work
°
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Figure: Plot of the distribution of gaps for 10,000 randomly chosen
m € [1,a400) = [1,22%9) (so m has on the order of 60 digits).
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Current Work
°

Figure: Plot of the distribution of gaps for 10,000 randomly chosen
m € [1,a400) = [1,2%%9) (so m has on the order of 60 digits). Left
(resp. right): ratio of adjacent even (resp odd) gap probabilities.

Again find geometric decay, but parity issues so break into even
and odd gaps.

AR




Current Work
°

The Fibonacci (or Log Cabin) Quilt: Work in Progress

12 10
4 3
16 5 1 14 5
3 9 | 28 2 8 | 25
2 1
7 6
21 19
1,2,3,4,5,7,9 12, 16, 21, 28, ... 1,2,3,5,6,8,10, 14,19, 25, 33, ...

@ a,.1 = ap_1 + an_2, Non-uniqueness (average number of
decompositions grows exponentially).

@ In process of investigating Gaussianity, Gaps,
Kmina Kave, Kmax, Kgreedy-

AQ
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Generalizations
°

Positive Linear Recurrence Sequences

This method can be greatly generalized to Positive Linear
Recurrence Sequences : linear recurrences with non-negative
coefficients:

Hni1 = CiHn_(,=0) + C2Hn—j, +--- + CLHnj .

Theorem (Zeckendorf's Theorem for  PLRS recurrences)

Any b € N has a unique legal decomposition into sums of Hp,
b :alHil+---+aikH

i

Here legal reduces to non-adjacency of summands in the
Fibonacci case.
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Messier Combinatorics

The number of b € [Hp, Hy 1), with longest gap < f is the
coefficient of X"~ in the generating function:




Generalizations
°

Messier Combinatorics

The number of b € [Hp, Hy 1), with longest gap < f is the
coefficient of X"~ in the generating function:

(C]_ — 1+C2Xt2 + - +C|_Xt") X

1-—x
Xs+l—xf
—)xt (o — 1)xY) ([ ——
xkz;)[ e x4 (o= ) (g ) +
+xt1 _X57+t2_tl+l—xf +-..+Xt|__1 XS—HL_tL*lﬁLl*Xf k
1-x 1-x '




Generalizations
°

Messier Combinatorics

The number of b € [Hp, Hy 1), with longest gap < f is the
coefficient of X"~ in the generating function:

(C]_ — 1+C2Xt2 + - +C|_Xt") X

1-—x
Xs+l—xf
—)xt (o — 1)xY) ([ ——
xkz;)[ e x4 (o= ) (g ) +
+xt1 _X57+t2_tl+l—xf +-..+Xt|__1 XS—HL_tL*lﬁLl*Xf k
1-x 1-x '

A geometric series!




Generalizations
°

Generalized Generating Function

Letf > j.. The number of x € [Hp, Hn11), with longest gap < f
is given by the coefficient of s" in the generating function

1—sh
F(s) = M(s) = STR(S)"
where
M(s) =1 —cy8 —cpstt — . g gt
and

R(S) = Cjy 118" + Cjp 1182 + -+ + (G421 — 1)sh.

and c; and j; are defined as above .




Generalizations
.

What are the extra obstructions?

The coefficients in the partial fraction expansion might blow
up from multiple roots.




Generalizations
.

What are the extra obstructions?

The coefficients in the partial fraction expansion might blow
up from multiple roots.

Theorem (Mean and Variance for "Most Recurrences")

For x in the interval [Hn, Hy 1), the mean longest gap un and
the variance of the longest gap o2 are given by

R(E
Iog TN
(L) YL smallEror + e(n)
_ - €
Hn log A1 log A\; 2 o

and
2

2 T 1
= ——— — — + Small Error n
" " Blogh 12 * +e2(n),
where ¢ (n) tends to zero in the limit, and Small Error comes

from the Euler-Maclaurin Formula. )
DQ
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