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Summand Minimality
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Introduction

Fibonaccis: F0 = 1,F1 = 1,Fn+2 = Fn+1 + Fn.

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2018 = 1597 + 377 + 34 + 8 + 2 = F16 + F13 + F8 + F5 + F2.

Conversely, we can construct the Fibonacci sequence using
this property:

1, 2, 3, 5, 8, 13. . .
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Summand Minimality

Example
18 = 13 + 5 = F6 + F4, legal decomposition, two
summands.
18 = 13 + 3 + 2 = F6 + F3 + F2, non-legal
decomposition, three summands.

Theorem
The Zeckendorf decomposition is summand minimal.

Overall Question
What other recurrences are summand minimal?
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Positive Linear Recurrence Sequences

Definition
A positive linear recurrence sequence (PLRS) is the
sequence given by a recurrence {an} with

an := c1an−1 + · · ·+ ctan−t

and each ci ≥ 0 and c1, ct > 0. We use ideal initial conditions
a−(n−1) = 0, . . . ,a−1 = 0,a0 = 1 and call (c1, . . . , ct) the
signature of the sequence.

Theorem (Cordwell, Hlavacek, Huynh, M., Peterson, Vu)
For a PLRS with signature (c1, c2, . . . , ct), the Generalized
Zeckendorf Decompositions are summand minimal if and only if

c1 ≥ c2 ≥ · · · ≥ ct .
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Proof for Fibonacci Case

Idea of proof:

D = b1F1 + · · ·+ bnFn decomposition of N, set
Ind(D) = b1 · 1 + · · ·+ bn · n.

Move to D′ by
� 2Fk = Fk+1 + Fk−2 (and 2F2 = F3 + F1).
� Fk + Fk+1 = Fk+2 (and F1 + F1 = F2).

Monovariant: Note Ind(D′) ≤ Ind(D).
� 2Fk = Fk+1 + Fk−2: 2k vs 2k − 1.
� Fk + Fk+1 = Fk+2: 2k + 1 vs k + 2.

If not at Zeckendorf decomposition can continue, if at
Zeckendorf cannot. Better: Ind′(D) = b1

√
1 + · · ·+ bn

√
n.
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The Zeckendorf Game
with Alyssa Epstein and Kristen Flint
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Rules

Two player game, alternate turns, last to move wins.

Bins F1, F2, F3, . . . , start with N pieces in F1 and others
empty.

A turn is one of the following moves:
� If have two pieces on Fk can remove and put one

piece at Fk+1 and one at Fk−2
(if k = 1 then 2F1 becomes 1F2)

� If pieces at Fk and Fk+1 remove and add one at Fk+2.

Questions:
Does the game end? How long?
For each N who has the winning strategy?
What is the winning strategy?
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Sample Game

Start with 10 pieces at F1, rest empty.

10 0 0 0 0
[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 1: F1 + F1 = F2
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Sample Game

Start with 10 pieces at F1, rest empty.

8 1 0 0 0
[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 2: F1 + F1 = F2
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Sample Game

Start with 10 pieces at F1, rest empty.

6 2 0 0 0
[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 1: 2F2 = F3 + F1
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Sample Game

Start with 10 pieces at F1, rest empty.

7 0 1 0 0
[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 2: F1 + F1 = F2
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Sample Game

Start with 10 pieces at F1, rest empty.

5 1 1 0 0
[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 1: F2 + F3 = F4.
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Sample Game

Start with 10 pieces at F1, rest empty.
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Sample Game

Start with 10 pieces at F1, rest empty.

3 1 0 1 0
[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 1: F1 + F1 = F2.
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Sample Game

Start with 10 pieces at F1, rest empty.

1 2 0 1 0
[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 2: F1 + F2 = F3.
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Sample Game

Start with 10 pieces at F1, rest empty.

0 1 1 1 0
[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]

Next move: Player 1: F3 + F4 = F5.
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Sample Game

Start with 10 pieces at F1, rest empty.

0 1 0 0 1
[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]

No moves left, Player One wins.
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Sample Game

Player One won in 9 moves.

10 0 0 0 0
8 1 0 0 0
6 2 0 0 0
7 0 1 0 0
5 1 1 0 0
5 0 0 1 0
3 1 0 1 0
1 2 0 1 0

0 1 1 1 0
0 1 0 0 1

[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]
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Sample Game

Player Two won in 10 moves.

10 0 0 0 0
8 1 0 0 0
6 2 0 0 0
7 0 1 0 0
5 1 1 0 0
5 0 0 1 0
3 1 0 1 0
1 2 0 1 0
2 0 1 1 0
0 1 1 1 0
0 1 0 0 1

[F1 = 1] [F2 = 2] [F3 = 3] [F4 = 5] [F5 = 8]
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Games end

Theorem
All games end in finitely many moves.

Proof: The sum of the square roots of the indices is a strict
monovariant.

Adding consecutive terms:
(√

k +
√

k
)
−
√

k + 2 < 0.

Splitting: 2
√

k −
(√

k + 1 +
√

k + 1
)
< 0.

Adding 1’s: 2
√

1−
√

2 < 0.

Splitting 2’s: 2
√

2−
(√

3 +
√

1
)
< 0.
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Games Lengths: I

Upper bound: At most n logφ

(
n
√

5 + 1/2
)

moves.

Fastest game: n − Z (n) moves (Z (n) is the number of
summands in n’s Zeckendorf decomposition).

From always moving on the largest summand possible
(deterministic).
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Games Lengths: II

Figure: Frequency graph of the number of moves in 9,999
simulations of the Zeckendorf Game with random moves when
n = 60 vs a Gaussian. Natural conjecture....
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Winning Strategy

Theorem
Payer Two Has a Winning Strategy

Idea is to show if not, Player Two could steal Player One’s
strategy.

Non-constructive!

Will highlight idea with a simpler game.
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Winning Strategy: Intuition from Dot Game

Two players, alternate. Turn is choosing a dot at (i , j) and
coloring every dot (m,n) with i ≤ m and j ≤ n.

Once all dots colored game ends; whomever goes last loses.

Proof Player 1 has a winning strategy. If have, play; if not, steal.
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Sketch of Proof for Player Two’s Winning Strategy
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Sketch of Proof for Player Two’s Winning Strategy
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Future Work

What if p ≥ 3 people play the Fibonacci game?

Does the number of moves in random games converge to
a Gaussian?

Define k -nacci numbers by Si+1 = Si + Si−1 + · · ·+ Si−k ;
game terminates but who has the winning strategy?
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