RMT 0000000000	Maass oooooo	Gaps (Bulk) 000000000	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs

Number Theory and Probability Group SMALL 2012

L. Alpoge, A. Bower, V. Hogan, R. Insoft, S. Li, V. Luo, S. J. Miller, N. Triantafillou, P. Tosteson, K. Vissuet

http://www.williams.edu/Mathematics/sjmiller/ SMALL, August 7, 2012

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs

Random Matrix Theory (Luo and Triantafillou)

RMT ●000000000	Maass 000000	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Goals					

- We study distributions of structured ensembles. More structure and less averaging leads to new behavior.
- Generalize results on weighted structured ensembles.
- Look at transitions as the amount of structure changes.

For fixed *n*, we consider $N \times N$ weighted Toeplitz matrices, whose entries are iidrv from a *p* with mean 0, variance 1 and finite higher moments and randomly chosen $\epsilon_{ij} \in \{-1, 1\}$ with $Prob(\epsilon_{ij} = 1) = p$. A weighted Toeplitz matrix is of the form

$$\begin{pmatrix} \epsilon_{11}b_0 & \epsilon_{12}b_1 & \cdots & \epsilon_{1(N-1)}b_{N-2} & \epsilon_{1N}b_{N-1} \\ \epsilon_{21}b_1 & \epsilon_{22}b_0 & \cdots & \epsilon_{2(N-1)}b_{N-3} & \epsilon_{2N}b_{N-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \epsilon_{(N-1)1}b_{N-2} & \epsilon_{(N-1)2}b_{N-3} & \cdots & \epsilon_{(N-1)(N-1)}b_0 & \epsilon_{(N-1)N}b_1 \\ \epsilon_{N1}b_{N-1} & \epsilon_{N2}b_{N-2} & \cdots & \epsilon_{N(N-1)}b_1 & \epsilon_{NN}b_0 \end{pmatrix}$$

RMT ○○●○○○○○○○	Maass 000000	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs

Configurations

By eigenvalue trace lemma, k^{th} uncentered moment is

$$\frac{1}{N^{1+k/2}}\mathbb{E}\left(\sum_{i_1,\ldots,i_k}a_{i_1i_2}a_{i_2i_3}\cdots a_{i_{k-1}i_k}a_{i_ki_1}\right)$$

In Toeplitz ensembles, all terms on a diagonal are the same, so we relabel $a_{i_i i_{i+1}}$ as $b_{|i_i - i_{i+1}|}$.

Lemma

The only terms that contribute to the $2k^{\text{th}}$ moment of the limiting spectral measure are terms where the *b*'s are matched in exactly pairs.

RMT ○○○●○○○○○○	Maass oooooo	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Configura	tions				

Lemma

The only terms that contribute to the $2k^{\text{th}}$ moment of the limiting spectral measure are terms where the *b*'s are matched in exactly pairs.

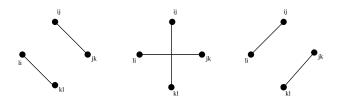
Sketch of Proof: degree of freedom argument.

Idea: Count contribution from each pairing.

If
$$a_{i_j i_{j+1}} = a_{i_k i_{k+1}}$$
, then $|i_j - i_{j+1}| = -|i_k - i_{k+1}|$.

RMT ○○○○●○○○○○	Maass oooooo	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs

Examples of Configurations



In top left configuration, $a_{ij} = a_{jk}$, $a_{li} = a_{kl}$ $\Rightarrow |i - j| = -|j - k|, |l - i| = -|k - l|.$

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
0000000000					

Past Weighted Toeplitz results

Theorem: Beckwith-Miller-Shen (SMALL 2011)

Consider the weighted ensemble where the (i, j)th and (j, i)th entries of these matrices are multiplied by a randomly chosen $\epsilon_{ij} \in \{1, -1\}$, with $Prob(\epsilon_{ij} = 1) = p$.

For p = 1/2, the limiting spectral measure is the semi-circle. For all other p, the limiting measure has unbounded support, converges to original ensemble's limiting measure as $p \rightarrow 1$ (weakly convergent, surely if density is even).

RMT 000000●000	Maass oooooo	Gaps (Bulk) ೦೦೦೦೦೦೦೦೦	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
New Resu	lts				

Theorem: LMT '12

- For palindromic Toeplitz matrices, the depression of the contribution depends only on the crossing number.
- ² Given any matrix ensemble, when p = 1/2, the limiting spectral measure is the semicircle distribution (special dependicies allowed between matrix elements).
- Any distribution that had unbounded or bounded support before weighting still has unbounded or bounded support after weighting.

RMT 0000000●00 Gaps (Bulk)

Maass

Gaps (Longest)

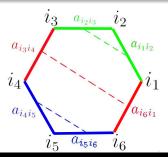
Phase Transition

Sumsets v. Sumdiffs

1. Depression Dependency on Number of Crossings

Theorem: Dependency on Number of Crossings

- For palindromic Toeplitz matrices, depression of contribution depends only on crossing number.
- Dependency does not hold for doubly palindromic Toeplitz, consider 6th moment.



2. Depression of at least $(2p-1)^2$

Theorem: Depression at least $(2p-1)^2$

- x(c) is original contribution from the specified configuration, 2kth moment, and e(c) number of vertices in crossing pairs.
- Consider "nice" ensembles, i.e., highly palindromic Toeplitz.
- Noncrossing: contrib. at most $(x(c) 1)(2p 1)^4 + 1$ and at least $(x(c) - 1)(2p - 1)^{2k} + 1$.
- Crossing: contribution at most x(c)(2p 1)^{e(c)} and at least x(c)(2p 1)^{2k}.

RMT ○○○○○○○○○●	Maass oooooo	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
3. Interpo	lation				

Theorem: Interpolation

- Consider general real symmetric matrix ensemble.
- Noncrossing: contribution to the $2k^{\text{th}}$ moment reduced from x(c) to at most $(2p-1)^2(x(c)-1)+1$.
- Crossing: contribution to $2k^{\text{th}}$ moment reduced from x(c) to at most $(2p-1)^2 x(c)$.
- When $p = \frac{1}{2}$, obtain semicircle distribution.

RMT 0000000000	Maass 000000	Gaps (Bulk) ೦೦೦೦೦೦೦೦೦	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs

Low-lying zeroes of Maass form *L*-functions (Alpoge)

RMT 0000000000	Maass ●ooooo	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Katz-Sarna	ak				

• Birch-Swinnerton-Dyer: values of *L*-functions near a "central point" are ridiculously interesting.

RMT 0000000000	Maass ●oooooo	Gaps (Bulk) ০০০০০০০০০০	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Katz-Sarn	ak				

- Birch-Swinnerton-Dyer: values of *L*-functions near a "central point" are ridiculously interesting.
- Every analytic number theorist ever: zeroes of *L*-functions are ridiculously interesting.

RMT 0000000000	Maass ●oooooo	Gaps (Bulk) ০০০০০০০০০০	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Katz-Sarn	ak				

- Birch-Swinnerton-Dyer: values of *L*-functions near a "central point" are ridiculously interesting.
- Every analytic number theorist ever: zeroes of *L*-functions are ridiculously interesting.

RMT 0000000000	Maass ●oooooo	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Katz-Sarn	ak				

- Birch-Swinnerton-Dyer: values of *L*-functions near a "central point" are ridiculously interesting.
- Every analytic number theorist ever: zeroes of *L*-functions are ridiculously interesting.
- Let's combine the two.

RMT 0000000000	Maass ●oooooo	Gaps (Bulk) ০০০০০০০০০০	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Katz-Sarn	ak				

- Birch-Swinnerton-Dyer: values of *L*-functions near a "central point" are ridiculously interesting.
- Every analytic number theorist ever: zeroes of *L*-functions are ridiculously interesting.
- Let's combine the two. We'll study zeroes of *L*-functions near some central point.

RMT 0000000000	Maass ●ooooo	Gaps (Bulk) ০০০০০০০০০০	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Katz-Sarn	ak				

- Birch-Swinnerton-Dyer: values of *L*-functions near a "central point" are ridiculously interesting.
- Every analytic number theorist ever: zeroes of *L*-functions are ridiculously interesting.
- Let's combine the two. We'll study zeroes of *L*-functions near some central point.
- If we replace Q by F_q(t), we know the Riemann hypothesis (and more: Deligne). Deligne's proof uses the action of a "monodromy group."

RMT 0000000000	Maass ●ooooo	Gaps (Bulk) ০০০০০০০০০০	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Katz-Sarn	ak				

- Birch-Swinnerton-Dyer: values of *L*-functions near a "central point" are ridiculously interesting.
- Every analytic number theorist ever: zeroes of *L*-functions are ridiculously interesting.
- Let's combine the two. We'll study zeroes of *L*-functions near some central point.
- If we replace Q by F_q(t), we know the Riemann hypothesis (and more: Deligne). Deligne's proof uses the action of a "monodromy group." Who is this guy in "real life" (over Q)?

RMT 0000000000	Maass ●ooooo	Gaps (Bulk) ০০০০০০০০০০	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Katz-Sarn	ak				

- Birch-Swinnerton-Dyer: values of *L*-functions near a "central point" are ridiculously interesting.
- Every analytic number theorist ever: zeroes of *L*-functions are ridiculously interesting.
- Let's combine the two. We'll study zeroes of *L*-functions near some central point.
- If we replace Q by F_q(t), we know the Riemann hypothesis (and more: Deligne). Deligne's proof uses the action of a "monodromy group." Who is this guy in "real life" (over Q)?
- Katz-Sarnak: study the distribution of zeroes (of a family of *L*-functions) near this central point (via hitting them with neutrons), and you shall find out...

RMT 0000000000	Maass o●oooo	Gaps (Bulk) ೦೦೦೦೦೦೦೦೦	Gaps (Longest) 0000000	Phase Transition	Sumsets v. Sumdiffs

• Iwaniec-Luo-Sarnak figured it out for modular forms: it's $O := \lim_{n\to\infty} O(n)$, whatever that means.

RMT 0000000000	Maass o●oooo	Gaps (Bulk) ೦೦೦೦೦೦೦೦೦	Gaps (Longest) 0000000	Phase Transition	Sumsets v. Sumdiffs

- Iwaniec-Luo-Sarnak figured it out for modular forms: it's $O := \lim_{n\to\infty} O(n)$, whatever that means.
- Modular forms "are" two-dimensional representations (hom.s Gal(Q̄/Q) → GL₂(something)).

RMT 0000000000	Maass o●oooo	Gaps (Bulk) ೦೦೦೦೦೦೦೦೦	Gaps (Longest) 0000000	Phase Transition	Sumsets v. Sumdiffs

- Iwaniec-Luo-Sarnak figured it out for modular forms: it's $O := \lim_{n\to\infty} O(n)$, whatever that means.
- Modular forms "are" two-dimensional representations (hom.s Gal(ℚ/ℚ) → GL₂(something)).
- But they're not all two-dimensional representations.

RMT 0000000000	Maass o●oooo	Gaps (Bulk) ೦೦೦೦೦೦೦೦೦	Gaps (Longest) 0000000	Phase Transition	Sumsets v. Sumdiffs

- Iwaniec-Luo-Sarnak figured it out for modular forms: it's $O := \lim_{n\to\infty} O(n)$, whatever that means.
- Modular forms "are" two-dimensional representations (hom.s Gal(ℚ/ℚ) → GL₂(something)).
- But they're not all two-dimensional representations. What's left are the *Maass forms*.

RMT 0000000000	Maass o●oooo	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs

- Iwaniec-Luo-Sarnak figured it out for modular forms: it's $O := \lim_{n \to \infty} O(n)$, whatever that means.
- Modular forms "are" two-dimensional representations (hom.s Gal(Q/Q) → GL₂(something)).
- But they're not all two-dimensional representations. What's left are the *Maass forms*.
- Last year's SMALL group figured out what the monodromy group *should* be: O.

RMT 0000000000	Maass o●oooo	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs

- Iwaniec-Luo-Sarnak figured it out for modular forms: it's $O := \lim_{n \to \infty} O(n)$, whatever that means.
- Modular forms "are" two-dimensional representations (hom.s Gal(Q/Q) → GL₂(something)).
- But they're not all two-dimensional representations. What's left are the *Maass forms*.
- Last year's SMALL group figured out what the monodromy group *should* be: O. I proved it.

RMT 0000000000	Maass o●oooo	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs

- Iwaniec-Luo-Sarnak figured it out for modular forms: it's $O := \lim_{n \to \infty} O(n)$, whatever that means.
- Modular forms "are" two-dimensional representations (hom.s Gal(Q/Q) → GL₂(something)).
- But they're not all two-dimensional representations. What's left are the *Maass forms*.
- Last year's SMALL group figured out what the monodromy group *should* be: O. I proved it.
- Let's find out how!

RMT 0000000000	Maass oo●ooo	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs

But first, a fun aside. (Something I found during YMC.)

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
	000000				

- But first, a fun aside. (Something I found during YMC.)
- Goldfeld-Kontorovich (famous number theorist and his former student):

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
	000000				

- But first, a fun aside. (Something I found during YMC.)
- Goldfeld-Kontorovich (famous number theorist and his former student): "we obtain the low-lying zero densities for...GL(3) Maass forms."

- RMT
 Maass
 Gaps (Bulk)
 Gaps (Longest)
 Phase Transition
 Sumsets v. Sumdiffs

 000000000
 00000000
 0000000
 000000
 000000
 00000000
 - But first, a fun aside. (Something I found during YMC.)
 - Goldfeld-Kontorovich (famous number theorist and his former student): "we obtain the low-lying zero densities for...GL(3) Maass forms."
 - "The methods presented here are capable of wide generalization... it should be possible to determine the symmetry types of families associated to...GL(n) for any n ≥ 2. We hope to return to this topic in a future publication."

Theorem

Research is not for the faint of heart.

RMT 0000000000	Maass ooo●oo	Gaps (Bulk) ০০০০০০০০০	Gaps (Longest) 0000000	Phase Transition	Sumsets v. Sumdiffs
My proof					

 Main method: a trace formula (a huge common generalization of Schur's orthogonality of characters and Poisson's summation formula).

RMT 0000000000	Maass ooo●oo	Gaps (Bulk) ০০০০০০০০০০	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
My proof					

- Main method: a trace formula (a huge common generalization of Schur's orthogonality of characters and Poisson's summation formula).
- Main insights:
- First: throw out everything from before and start from scratch.

RMT 0000000000	Maass ooo●oo	Gaps (Bulk) ০০০০০০০০০০	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
My proof					

- Main method: a trace formula (a huge common generalization of Schur's orthogonality of characters and Poisson's summation formula).
- Main insights:
- First: throw out everything from before and start from scratch.
- Second: use the only real tool of analytic number theory: contour integration. (Push a contour "off to ∞ ".)

RMT 0000000000	Maass ooo●oo	Gaps (Bulk) ০০০০০০০০০০	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
My proof					

- Main method: a trace formula (a huge common generalization of Schur's orthogonality of characters and Poisson's summation formula).
- Main insights:
- First: throw out everything from before and start from scratch.
- Second: use the only real tool of analytic number theory: contour integration. (Push a contour "off to ∞ ".)
- Third: use Poisson summation.

RMT 0000000000	Maass ooo●oo	Gaps (Bulk) ০০০০০০০০০০	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
My proof					

- Main method: a trace formula (a huge common generalization of Schur's orthogonality of characters and Poisson's summation formula).
- Main insights:
- First: throw out everything from before and start from scratch.
- Second: use the only real tool of analytic number theory: contour integration. (Push a contour "off to ∞ ".)
- Third: use Poisson summation.
- Fourth: use Fourier inversion (and Taylor expand copiously).

RMT 0000000000	Maass oooo∙o	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
My proof ((continue	ed)			

• Fifth (and most important): if A = B, then B = A.

RMT 0000000000	Maass oooo∙o	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
My proof (continue	ed)			

• Fifth (and most important): if *A* = *B*, then *B* = *A*. With this leap of imagination, apply Poisson summation again!

- Fifth (and most important): if *A* = *B*, then *B* = *A*. With this leap of imagination, apply Poisson summation again!
- Sixth: Integrals with a very quickly oscillating factor (that doesn't stop) are tiny.

- Fifth (and most important): if *A* = *B*, then *B* = *A*. With this leap of imagination, apply Poisson summation again!
- Sixth: Integrals with a very quickly oscillating factor (that doesn't stop) are tiny.
- Seventh: Sums are ugly. Integrals are nice. So smooth out sums into integrals!

- Fifth (and most important): if *A* = *B*, then *B* = *A*. With this leap of imagination, apply Poisson summation again!
- Sixth: Integrals with a very quickly oscillating factor (that doesn't stop) are tiny.
- Seventh: Sums are ugly. Integrals are nice. So smooth out sums into integrals!
- Eighth: Don't be afraid to assume GRH if you are trying to say something about the zeroes of generalized *L*-functions...

- Fifth (and most important): if *A* = *B*, then *B* = *A*. With this leap of imagination, apply Poisson summation again!
- Sixth: Integrals with a very quickly oscillating factor (that doesn't stop) are tiny.
- Seventh: Sums are ugly. Integrals are nice. So smooth out sums into integrals!
- Eighth: Don't be afraid to assume GRH if you are trying to say something about the zeroes of generalized *L*-functions...
- Ninth: Never give up!!!

- Fifth (and most important): if *A* = *B*, then *B* = *A*. With this leap of imagination, apply Poisson summation again!
- Sixth: Integrals with a very quickly oscillating factor (that doesn't stop) are tiny.
- Seventh: Sums are ugly. Integrals are nice. So smooth out sums into integrals!
- Eighth: Don't be afraid to assume GRH if you are trying to say something about the zeroes of generalized *L*-functions...
- Ninth: Never give up!!! Oh, and apply Poisson summation four more times.

- Fifth (and most important): if *A* = *B*, then *B* = *A*. With this leap of imagination, apply Poisson summation again!
- Sixth: Integrals with a very quickly oscillating factor (that doesn't stop) are tiny.
- Seventh: Sums are ugly. Integrals are nice. So smooth out sums into integrals!
- Eighth: Don't be afraid to assume GRH if you are trying to say something about the zeroes of generalized *L*-functions...
- Ninth: Never give up!!! Oh, and apply Poisson summation four more times.

$$A = B = A = B = A = B = \cdots$$

RMT 0000000000	Maass ooooo●	Gaps (Bulk) ೦೦೦೦೦೦೦೦೦	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
My proof (continue	ed)			

• And, most importantly, ask your computer if things you're trying to prove are actually true.

RMT 0000000000	Maass ooooo●	Gaps (Bulk) ೦೦೦೦೦೦೦೦೦	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
My proof (continue	ed)			

- And, most importantly, ask your computer if things you're trying to prove are actually true.
- Hopefully most of that made sense to everybody.

- And, most importantly, ask your computer if things you're trying to prove are actually true.
- Hopefully most of that made sense to everybody.
- If you're itching to know what has kept me locked away for all these weeks, the above encodes a writeup with 13 parameters, final error terms that take up entire pages, and a (fully detailed) writeup that will take about 100 pages, if not more.

- And, most importantly, ask your computer if things you're trying to prove are actually true.
- Hopefully most of that made sense to everybody.
- If you're itching to know what has kept me locked away for all these weeks, the above encodes a writeup with 13 parameters, final error terms that take up entire pages, and a (fully detailed) writeup that will take about 100 pages, if not more.
- Yuck!!!

- And, most importantly, ask your computer if things you're trying to prove are actually true.
- Hopefully most of that made sense to everybody.
- If you're itching to know what has kept me locked away for all these weeks, the above encodes a writeup with 13 parameters, final error terms that take up entire pages, and a (fully detailed) writeup that will take about 100 pages, if not more.
- Yuck!!! The summary I gave is more fun, I think!

- And, most importantly, ask your computer if things you're trying to prove are actually true.
- Hopefully most of that made sense to everybody.
- If you're itching to know what has kept me locked away for all these weeks, the above encodes a writeup with 13 parameters, final error terms that take up entire pages, and a (fully detailed) writeup that will take about 100 pages, if not more.
- Yuck!!! The summary I gave is more fun, I think!

Thanks!!!!

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs

Gaps in Generalized Zeckendorf Decompositions (Bower, Insoft, Li and Tosteson)

RMT 0000000000	Maass ooooooo	Gaps (Bulk) ●○○○○○○○○	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Previous	Results				

RMT 0000000000	Maass 000000	Gaps (Bulk) ●○○○○○○○	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Previous	Results				

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

RMT 0000000000	Maass 000000	Gaps (Bulk) ●○○○○○○○○	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Previous	Results				

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: 2012 = $1597 + 377 + 34 + 3 + 1 = F_{16} + F_{13} + F_8 + F_3 + F_1$.

RMT 0000000000	Maass oooooo	Gaps (Bulk) ●○○○○○○○	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Previous	Results				

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:

 $2012 = 1597 + 377 + 34 + 3 + 1 = F_{16} + F_{13} + F_8 + F_3 + F_1.$

Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ tends to $\frac{n}{\varphi^2+1} \approx .276n$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L$$

with $H_1 = 1$, $H_{n+1} = c_1H_n + c_2H_{n-1} + \cdots + c_nH_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L$$

with $H_1 = 1$, $H_{n+1} = c_1H_n + c_2H_{n-1} + \cdots + c_nH_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

Zeckendorf

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L$$

with $H_1 = 1$, $H_{n+1} = c_1H_n + c_2H_{n-1} + \cdots + c_nH_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

- Zeckendorf
- Lekkerkerker: Average number summands is $C_{\text{Lek}}n + d$.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L$$

with $H_1 = 1$, $H_{n+1} = c_1H_n + c_2H_{n-1} + \cdots + c_nH_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

- Zeckendorf
- Lekkerkerker: Average number summands is $C_{\text{Lek}}n + d$.
- Central Limit Type Theorem

RMT 0000000000	Maass oooooo	Gaps (Bulk) ○○●○○○○○○	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Distributi	on of Ga	าร			

$$i_n - i_{n-1}, i_{n-1} - i_{n-2}, \ldots, i_2 - i_1.$$

$$i_n - i_{n-1}, i_{n-1} - i_{n-2}, \ldots, i_2 - i_1.$$

Example: For $H_1 + H_8 + H_{18}$, the gaps are 7 and 10.

0000000000	000000	00000000	000000	00000	00000000000000		
Distribution of Gaps							

$$i_n - i_{n-1}, i_{n-1} - i_{n-2}, \ldots, i_2 - i_1.$$

Example: For $H_1 + H_8 + H_{18}$, the gaps are 7 and 10.

Definition

Let $P_n(m)$ be the probability that a gap for a decomposition in $[H_n, H_{n+1})$ is of length *m*.

RMT 0000000000	Maass oooooo	Gaps (Bulk) ○○●○○○○○○	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Distributio	n of Con				

$$i_n - i_{n-1}, i_{n-1} - i_{n-2}, \ldots, i_2 - i_1.$$

Example: For $H_1 + H_8 + H_{18}$, the gaps are 7 and 10.

Definition

Let $P_n(m)$ be the probability that a gap for a decomposition in $[H_n, H_{n+1})$ is of length *m*.

Big Question: What is $P(m) = \lim_{n\to\infty} P_n(m)$? Big Question: What is the distribution of the longest gap?

Positive Linear Recurrences of Any Length

Theorem

Let $H_{n+1} = c_1 H_n + \cdots + c_L H_{n+1-L}$ be a Positive Linear Recurrence Sequence, then, if $j \ge L$,

$$P(j) = (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right) \lambda_1^{-j},$$

where λ_1 is the largest root of the characteristic polynomial of the recurrence.

 RMT
 Maass
 Gaps (Bulk)
 Gaps (Longest)
 Phase Transition
 Sumsets v. Sumdiffs

 000000000
 000000
 000000
 000000
 000000
 0000000

Positive Linear Recurrences of Any Length

Theorem

Let $H_{n+1} = c_1 H_n + \cdots + c_L H_{n+1-L}$ be a Positive Linear Recurrence Sequence, then, if $j \ge L$,

$$P(j) = (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right) \lambda_1^{-j},$$

where λ_1 is the largest root of the characteristic polynomial of the recurrence.

What can we say about the distribution of gaps < L for any PLRS?

Positive Linear Recurrences of Any Length

Theorem

Let $H_{n+1} = c_1H_n + c_2H_{n-1} + \cdots + c_LH_{n+1-L}$ be a positive linear recurrence of length L where $c_i \ge 1$ for all $1 \le i \le L$. Then P(j) =

$$\begin{cases} 1 - \left(\frac{a_1}{C_{Lek}}\right) (\lambda_1^{-n+2} - \lambda_1^{-n+1} + 2\lambda_1^{-1} + a_1^{-1} - 3) & j = 0\\ \lambda_1^{-1} \left(\frac{1}{C_{Lek}}\right) (\lambda_1 (1 - 2a_1) + a_1) & j = 1\\ (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right) \lambda_1^{-j} & j \ge 2 \end{cases}$$

RMT 0000000000	Maass 000000	Gaps (Bulk) ○○○○●○○○	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs

Theorem

If
$$j \ge 2$$
, then $P(j) = (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right) \lambda_1^{-j}$.

Let $X_{i,i+j}(n) = \#\{m \in [H_n, H_{n+1}): \text{ decomposition of } m \text{ includes } H_i, H_{i+j}, \text{ but not } H_q \text{ for } i < q < i+j\}.$

RMT 0000000000	Maass oooooo	Gaps (Bulk) ○○○○●○○○	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs

Theorem

If
$$j \ge 2$$
, then $P(j) = (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right) \lambda_1^{-j}$.

Let $X_{i,i+j}(n) = \#\{m \in [H_n, H_{n+1}): \text{ decomposition of } m \text{ includes } H_i, H_{i+j}, \text{ but not } H_q \text{ for } i < q < i+j\}.$

Let Y(n) = total number of gaps in decompositions for integers in [H_n , H_{n+1}).

		Sumsets v. Sumdiffs

Theorem

If
$$j \ge 2$$
, then $P(j) = (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right) \lambda_1^{-j}$.

Let $X_{i,i+j}(n) = \#\{m \in [H_n, H_{n+1}): \text{ decomposition of } m \text{ includes } H_i, H_{i+j}, \text{ but not } H_q \text{ for } i < q < i+j\}.$

Let Y(n) = total number of gaps in decompositions for integers in [H_n , H_{n+1}).

$$P(j) = \lim_{n \to \infty} \frac{1}{Y(n)} \sum_{i=1}^{n-j} X_{i,i+j}(n).$$

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
		000000000			

Theorem

If
$$j \ge 2$$
, then $P(j) = (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right) \lambda_1^{-j}$.

Let $X_{i,i+j}(n) = \#\{m \in [H_n, H_{n+1}): \text{ decomposition of } m \text{ includes } H_i, H_{i+j}, \text{ but not } H_q \text{ for } i < q < i+j\}.$

Let Y(n) = total number of gaps in decompositions for integers in [H_n , H_{n+1}).

$$P(j) = \lim_{n \to \infty} \frac{1}{Y(n)} \sum_{i=1}^{n-j} X_{i,i+j}(n).$$

Generalized Lekkerkerker:

$$\Rightarrow Y(n) \sim (C_{Lek}n + d)(H_{n+1} - H_n).$$

71

A Quick Counting Lesson: How do we count $X_{i,i+j}$?

We need to see the number of legal decompositions with a gap of length j.

Can count how many legal decompositions exist to the left and right of the gap.

Lemma

Let $H_{n+1} = c_1 H_n + \cdots + c_L H_{n+1-L}$ be a Positive Linear Recurrence Sequence, then the number of legal decompositions which contain H_m as the largest summand is $H_{m+1} - H_m$.

RMT 0000000000	Maass oooooo	Gaps (Bulk) ○○○○○○●○	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Calculatin	a Xii i				

1,1+1

If
$$j \ge 2$$
, then $P(j) = (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right) \lambda_1^{-j}$.

In the interval $[H_n, H_{n+1}]$: How many decompositions contain a gap from H_i to H_{i+j} ?

RMT 0000000000	Maass 000000	Gaps (Bulk) ○○○○○○●○	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Calculatin	a X				

T, I+I

If
$$j \ge 2$$
, then $P(j) = (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right) \lambda_1^{-j}$.

In the interval $[H_n, H_{n+1}]$: How many decompositions contain a gap from H_i to H_{i+j} ?

Left: For the indices less than *i*: $H_{i+1} - H_i$ choices.

RMT 0000000000	Maass oooooo	Gaps (Bulk) ○○○○○○●○	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Calculatin	$\mathbf{g} X_{i,i+i}$				

If
$$j \ge 2$$
, then $P(j) = (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right) \lambda_1^{-j}$.

In the interval $[H_n, H_{n+1}]$: How many decompositions contain a gap from H_i to H_{i+j} ?

Left: For the indices less than *i*: $H_{i+1} - H_i$ choices.

Right: For the indices greater than i + j: $H_{n-i-j+2} - H_{n-i-j+1} - (H_{n-i-j+1} - H_{n-i-j})$ choices.

RMT 0000000000	Maass oooooo	Gaps (Bulk) ○○○○○○●○	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Calculatin	$\mathbf{g} X_{i,i+i}$				

If
$$j \ge 2$$
, then $P(j) = (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right) \lambda_1^{-j}$.

In the interval $[H_n, H_{n+1}]$: How many decompositions contain a gap from H_i to H_{i+j} ?

Left: For the indices less than *i*: $H_{i+1} - H_i$ choices.

Right: For the indices greater than i + j: $H_{n-i-j+2} - H_{n-i-j+1} - (H_{n-i-j+1} - H_{n-i-j})$ choices.

So
$$X_{i,i+j}(n) =$$
Left * Right =
 $(H_{i+1} - H_i)(H_{n-i-j+2} - H_{n-i-j+1} - (H_{n-i-j+1} - H_{n-i-j})).$

RMT 00000000000	Maass oooooo	Gaps (Bulk) ○○○○○○○●	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Final Step	s of the	Proof			

For sufficiently large *n*, $H_n \approx a_1 \lambda_1^n$.

RMT 00000000000	Maass oooooo	Gaps (Bulk) ○○○○○○○●	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Final Step	os of the	Proof			

For sufficiently large *n*, $H_n \approx a_1 \lambda_1^n$.

Then with some algebra...

RMT 00000000000	Maass 000000	Gaps (Bulk) ○○○○○○○●	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Final Step	s of the	Proof			

For sufficiently large *n*, $H_n \approx a_1 \lambda_1^n$.

Then with some algebra...

$$P(j) = (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right) \lambda_1^{-j}$$
.

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs

Gaps in Generalized Zeckendorf Decompositions (Bower, Insoft, Li and Tosteson)

RMT 0000000000	Maass 000000	Gaps (Bulk) 000000000	Gaps (Longest) ●○○○○○○	Phase Transition	Sumsets v. Sumdiffs
Longest G	ap:				

Big question: Given a random number *x* in the interval $[F_n, F_{n+1})$, what is the probability that *x* has longest gap equal to *r*?

RMT 0000000000	Maass 000000	Gaps (Bulk) 000000000	Gaps (Longest) ○●○○○○○	Phase Transition	Sumsets v. Sumdiffs
Our Metho	d				

RMT 0000000000	Maass oooooo	Gaps (Bulk) 000000000	Gaps (Longest) ○●○○○○○	Phase Transition	Sumsets v. Sumdiffs
Our Metho	d				

• Recast the problem through combinatorics.

RMT 0000000000	Maass oooooo	Gaps (Bulk) ೦೦೦೦೦೦೦೦೦	Gaps (Longest) ○●○○○○○	Phase Transition	Sumsets v. Sumdiffs
Our Metho	d				

- Recast the problem through combinatorics.
- Obtain generating functions!

RMT 0000000000	Maass oooooo	Gaps (Bulk) 000000000	Gaps (Longest) ○●○○○○○	Phase Transition	Sumsets v. Sumdiffs
Our Metho	d				

- Recast the problem through combinatorics.
- Obtain generating functions!
- Get the important relationships.

RMT 0000000000	Maass oooooo	Gaps (Bulk) 000000000	Gaps (Longest) ○●○○○○○	Phase Transition	Sumsets v. Sumdiffs
Our Metho	d				

- Recast the problem through combinatorics.
- Obtain generating functions!
- Get the important relationships.
- Analyze limiting behavior.

RMT 0000000000	Maass oooooo	Gaps (Bulk) ೦೦೦೦೦೦೦೦೦	Gaps (Longest) ○○●○○○○	Phase Transition	Sumsets v. Sumdiffs
Cumulativ	o Distrib	ution Fund	stion		

Pick *x* randomly from the interval $[F_n, F_{n+1}]$. We prove explicitly the cumulative distribution of *x*'s longest gap.

Cumulative Distribution Function

Pick *x* randomly from the interval $[F_n, F_{n+1}]$. We prove explicitly the cumulative distribution of *x*'s longest gap.

Theorem

Let $r = \phi^2/(\phi^2 + 1)$. Set $f(n) = \log rn / \log \phi + u$ for some fixed $u \in \mathbb{Z}$. As $n \to \infty$, the probability that $x \in [F_n, F_{n+1})$ has longest gap at most f(n) converges to

$$\mathbb{P}(L(x) \leq f(n)) = e^{e^{(1-u)\log \phi + \{f(n)\}}}$$

Cumulative Distribution Function

Pick *x* randomly from the interval $[F_n, F_{n+1}]$. We prove explicitly the cumulative distribution of *x*'s longest gap.

Theorem

Let $r = \phi^2/(\phi^2 + 1)$. Set $f(n) = \log rn / \log \phi + u$ for some fixed $u \in \mathbb{Z}$. As $n \to \infty$, the probability that $x \in [F_n, F_{n+1})$ has longest gap at most f(n) converges to

$$\mathbb{P}(L(x) \leq f(n)) = e^{e^{(1-u)\log\phi + \{f(n)\}}}$$

Immediate Corollary: If f(n, u) grows any **slower** or *faster* than log $n/\log \phi$, then $\mathbb{P}(L(x) \le f(n))$ goes to **0** or **1** respectively.

RMT 0000000000	Maass 000000	Gaps (Bulk) 000000000	Gaps (Longest) ○○○●○○○	Phase Transition	Sumsets v. Sumdiffs
Mean and	Variance	•			

Let

$$P(u) = \mathbb{P}\left(L(x) \leq \frac{\log(\frac{\phi^2}{\phi^2+1}n)}{\log \phi} + u\right),$$

Let

$$P(u) = \mathbb{P}\left(L(x) \leq \frac{\log(\frac{\phi^2}{\phi^2+1}n)}{\log \phi} + u\right),$$

then the distribution of the longest gap is **approximately** $\frac{d}{du}P(u)$.

Let

$$P(u) = \mathbb{P}\left(L(x) \leq \frac{\log(\frac{\phi^2}{\phi^2+1}n)}{\log \phi} + u\right),$$

then the distribution of the longest gap is **approximately** $\frac{d}{du}P(u)$.

The mean is given by

$$\mu = \int_{-\infty}^{\infty} u \frac{\mathrm{d}}{\mathrm{d}u} P(u) \mathrm{d}u.$$

The variance follows similarly.

RMT 0000000000	Maass oooooo	Gaps (Bulk) ০০০০০০০০০	Gaps (Longest) ○○○●○○	Phase Transition	Sumsets v. Sumdiffs

Mean and Variance

So the mean is about

$$\mu = \frac{\log\left(\frac{\phi^2}{\phi^2 + 1}\right)}{\log \phi} + \int_{-\infty}^{\infty} e^{-e^{(1-u)\log \phi}} e^{(1-u)\log \phi} \log \phi \, \mathrm{d}u.$$

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
0000000000	000000	000000000	0000000	00000	00000000000000

Mean and Variance

So the mean is about

$$\mu = \frac{\log\left(\frac{\phi^2}{\phi^2 + 1}\right)}{\log \phi} + \int_{-\infty}^{\infty} e^{-e^{(1-u)\log \phi}} e^{(1-u)\log \phi} \log \phi \, \mathrm{d}u.$$

$$= \frac{1}{\log \phi} \left(\log \left(\frac{\phi^2}{\phi^2 + 1} \right) - \int_0^\infty \log(w) \cdot e^{-w} \, \mathrm{d}w \right).$$

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
0000000000	000000	000000000	0000000	00000	000000000000000

Mean and Variance

So the mean is about

$$\mu = \frac{\log\left(\frac{\phi^2}{\phi^2 + 1}\right)}{\log \phi} + \int_{-\infty}^{\infty} e^{-e^{(1-u)\log \phi}} e^{(1-u)\log \phi} \log \phi \, \mathrm{d}u.$$

$$= \frac{1}{\log \phi} \left(\log \left(\frac{\phi^2}{\phi^2 + 1} \right) - \int_0^\infty \log(w) \cdot e^{-w} \, \mathrm{d}w \right).$$

Theorem

In the continuous approximation, the mean is

$$\frac{\log\left(\frac{\phi^2}{\phi^2+1}n\right)}{\log\phi} - \gamma.$$

 RMT
 Maass
 Gaps (Bulk)
 Gaps (Longest)
 Phase Transition
 Sumsets v. Sumdiffs

 000000000
 00000000
 00000000
 00000000
 000000
 000000000

 Positive Linear Recurrence Sequences

This method can be greatly generalized to Positive

Linear Recurrence Sequences (linear recurrences with non-negative coefficients). WLOG:

$$H_{n+1} = c_1 H_{n-(t_1=0)} + c_2 H_{n-t_2} + \cdots + c_L H_{n-t_L}$$

 RMT
 Maass
 Gaps (Bulk)
 Gaps (Longest)
 Phase Transition
 Sumsets v. Sumdiffs

 000000000
 00000000
 00000000
 00000000
 000000
 000000000

 Positive Linear Recurrence Sequences

This method can be greatly generalized to **Positive** Linear Recurrence Sequences (linear recurrences with non-negative coefficients). WLOG:

$$H_{n+1} = c_1 H_{n-(t_1=0)} + c_2 H_{n-t_2} + \cdots + c_L H_{n-t_L}.$$

Theorem (Zeckendorf's Theorem for *PLRS* **recurrences)**

Any $b \in \mathbb{N}$ has a unique **legal** decomposition into sums of H_n , $b = a_1 H_{i_1} + \cdots + a_{i_k} H_{i_k}$.

Here **legal** reduces to non-adjacency of summands in the Fibonacci case.

Generating Function for PLRS

The **number** of $b \in [H_n, H_{n+1})$, with longest gap < f is the coefficient of x^{n-s} in the generating function:

$$\begin{split} \sum_{k\geq 0} \left[\left((c_1-1)x^{t_1} + \dots + (c_L-1)x^{t_L} \right) \left(\frac{x^{s+1} - x^f}{1-x} \right) + x^{t_1} \left(\frac{x^{s+t_2-t_1+1} - x^f}{1-x} \right) + \dots + x^{t_{L-1}} \left(\frac{x^{s+t_L-t_{L-1}} + 1 - x^f}{1-x} \right) \right]^k \times \\ \frac{1}{1-x} \left(c_1 - 1 + c_2 x^{t_2} + \dots + c_L x^{t_L} \right) \end{split}$$

A geometric series!

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs

Phase Transitions (Hogan)

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
0000000000	oooooo	000000000	೦೦೦೦೦೦೦	●○○○○	
Past Resu	ilts				

Martin and O'Bryant, 2006: Positive percentage of sets are MSTD (more sum than difference) when sets chosen with uniform probability. Surprising:
 x + y = y + x but x - y usually not y - x.

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
0000000000	oooooo	000000000	೦೦೦೦೦೦೦	●○○○○	
Past Resu	ilts				

Martin and O'Bryant, 2006: Positive percentage of sets are MSTD (more sum than difference) when sets chosen with uniform probability. Surprising:
 x + y = y + x but x - y usually not y - x.

• Iyer, Lazarev, Miller, Zhang, 2011: Generalized results above to an arbitrary number of summands.

RMT 0000000000	Maass 000000	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs

Phase Transition

Theorem (Hegarty-Miller): $\mathscr{S} = |A + A|, \ \mathscr{D} = |A - A|,$ $g(x) := 2\left(\frac{e^{-x} - (1-x)}{x}\right).$ Take $k \in \{0, \dots, N-1\}$ with probability $p(N) \to 0$, then if • $p(N) = o(N^{-1/2}):$

 $\mathscr{S} \sim \frac{(N \cdot p(N))^2}{2}$ and $\mathscr{D} \sim 2\mathscr{S} \sim (N \cdot p(N))^2$. • $p(N) = \mathbf{c} \cdot N^{-1/2}$:

$$\mathscr{S} \sim g\left(rac{c^2}{2}
ight) N$$
 and $\mathscr{D} \sim g(c^2)N$

• $N^{-1/2} = o(p(N))$: Let $\mathscr{S}^c := (2N+1) - \mathscr{S}$, $\mathscr{D}^c := (2N+1) - \mathscr{D}$. Then $\mathscr{S}^c \sim 2 \cdot \mathscr{D}^c \sim 4/p(N)^2$.

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
0000000000	oooooo	000000000	೦೦೦೦೦೦೦	○○●○○	

Generalized Sumsets

Definition

For s > d, consider the Generalized Sumset $A_{s,d} = A + \cdots + A - A - \cdots - A$ where we have *s* plus signs and *d* minus signs. Let h = s + d.

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
0000000000	oooooo	000000000	0000000	○○●○○	

Generalized Sumsets

Definition

For s > d, consider the Generalized Sumset $A_{s,d} = A + \cdots + A - A - \cdots - A$ where we have *s* plus signs and *d* minus signs. Let h = s + d.

We want to study the size of this set as a function of *s*,*d*, and δ for $p(N) = cN^{-\delta}$.

Our goal: Extend the results of Hegarty-Miller to the case of Generalized Sumsets and determine where the phase transition occurs for h > 2.

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
0000000000	oooooo	೦೦೦೦೦೦೦೦೦	೦೦೦೦೦೦೦	○○○●○	
Cases for	δ				

To answer, we must consider three different cases for δ .

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
0000000000	000000	000000000	೦೦೦೦೦೦೦	○○○●○	
Cases for	δ				

To answer, we must consider three different cases for δ .

- Fast Decay: $\delta > \frac{h-1}{h}$.
- Critical Decay: $\delta = \frac{h-1}{h}$.
- Slow Decay: $\delta < \frac{h-1}{h}$.

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
0000000000	oooooo	000000000	೦೦೦೦೦೦೦	○○○●○	
Cases for	δ				

To answer, we must consider three different cases for δ .

- Fast Decay: $\delta > \frac{h-1}{h}$.
- Critical Decay: $\delta = \frac{h-1}{h}$.
- Slow Decay: $\delta < \frac{h-1}{h}$.

These three cases correspond to the speed at which the probability of choosing elements decays to 0.

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
0000000000	000000	000000000	೦೦೦೦೦೦೦	○○○○●	
Fast Decay	/				

• For $\delta > \frac{h-1}{h}$, the set with more differences is larger 100% of the time.

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
0000000000	000000	০০০০০০০০০০	೦೦೦೦೦೦೦	○○○○●	
Fast Deca	у				

- For $\delta > \frac{h-1}{h}$, the set with more differences is larger 100% of the time.
- Compute the number of distinct *h*-tuples.

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
0000000000	000000	০০০০০০০০০০	೦೦೦೦೦೦೦	○○○○●	
Fast Deca	у				

- For $\delta > \frac{h-1}{h}$, the set with more differences is larger 100% of the time.
- Compute the number of distinct *h*-tuples.
- For *h*-tuples *a* = (*a*₁, · · · , *a_h*), *b* = (*b*₁, · · · , *b_h*), define indicator variable *Y_{a,b}* to be 1 when *a* and *b* generate the same element.

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
0000000000	000000	০০০০০০০০০০	೦೦೦೦೦೦೦	○○○○●	
Fast Deca	у				

- For $\delta > \frac{h-1}{h}$, the set with more differences is larger 100% of the time.
- Compute the number of distinct *h*-tuples.
- For *h*-tuples *a* = (*a*₁, · · · , *a_h*), *b* = (*b*₁, · · · , *b_h*), define indicator variable *Y_{a,b}* to be 1 when *a* and *b* generate the same element.
- Bound the expected value and variance of the sum of these indicator variables.

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
0000000000	000000	০০০০০০০০০০	೦೦೦೦೦೦೦	○○○○●	
Fast Deca	у				

- For $\delta > \frac{h-1}{h}$, the set with more differences is larger 100% of the time.
- Compute the number of distinct *h*-tuples.
- For *h*-tuples *a* = (*a*₁, · · · , *a_h*), *b* = (*b*₁, · · · , *b_h*), define indicator variable *Y_{a,b}* to be 1 when *a* and *b* generate the same element.
- Bound the expected value and variance of the sum of these indicator variables.
- Chebyshev's Inequality: $\operatorname{Prob}(|X \mu_X| \ge k\sigma_X) \le 1/k^2$.

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs

Sumsets vs Sumdifferences (Vissuet)

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
0000000000	oooooo	000000000	೦೦೦೦೦೦೦		●○○○○○○○○○○○○○

• Sumset := $S + S = \{xy : x, y \in S\}$

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
0000000000	oooooo	০০০০০০০০০০	೦೦೦೦೦೦೦		•••••••

• Sumset := $S + S = \{xy : x, y \in S\}$

Underdog

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
0000000000	oooooo	000000000	೦೦೦೦೦೦೦		●○○○○○○○○○○○○○

• Sumset :=
$$S + S = \{xy : x, y \in S\}$$

Underdog

• Weakness: For abelian groups we have that xy = yx

RMT 0000000000	Maass oooooo	Gaps (Bulk) ০০০০০০০০০০	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs

• Sumdifference := $S - S = \{xy^{-1} : x, y \in S\}$

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
0000000000	000000	০০০০০০০০০০	೦೦೦೦೦೦೦		○●○○○○○○○○○○○○

• Sumdifference $:= S - S = \{xy^{-1} : x, y \in S\}$

Reigning Champion

RMT 0000000000	Maass 000000	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs

Reigning Champion

• Weakness: $x \cdot x^{-1}$ is the identity $\forall x \in S$.

RMT 0000000000	Maass 000000	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Rules of th	ne match				

RMT 0000000000	Maass 000000	Gaps (Bulk) ೦೦೦೦೦೦೦೦೦	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Rules of th	ne match				

• The match will consist of 3 different venues and will be best 2 out of 3.

RMT 0000000000	Maass oooooo	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Rules of t	he match)			

• The match will consist of 3 different venues and will be best 2 out of 3.

• Question that needs to be asked before we start:

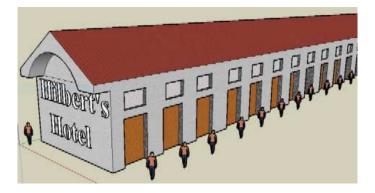
RMT 0000000000	Maass 000000	Gaps (Bulk) ೦೦೦೦೦೦೦೦೦	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Rules of th	ne match				

• The match will consist of 3 different venues and will be best 2 out of 3.

• Question that needs to be asked before we start:

• Are You Ready To Rumbblillee?

RMT 0000000000	Maass oooooo	Gaps (Bulk) ೦೦೦೦೦೦೦೦೦	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
First Venu	e				



RMT 0000000000	Maass oooooo	Gaps (Bulk) ০০০০০০০০০০	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
The Match	1				

 Sumsets terribly loses the first 13 of ℵ₀ rounds because there does not exist a subset of [0, 14] such that |S + S| > |S - S|.

RMT 0000000000	Maass oooooo	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
The Match	ì				

 Sumsets terribly loses the first 13 of ℵ₀ rounds because there does not exist a subset of [0, 14] such that |S + S| > |S - S|.

 However, In Round 14, with the help of Conway, Sumset gets a jab in with the set: {0,2,3,4,7,11,12,14}.

RMT 0000000000	Maass oooooo	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
The Match	ì				

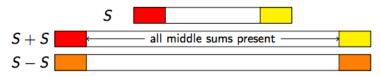
 Sumsets terribly loses the first 13 of ℵ₀ rounds because there does not exist a subset of [0, 14] such that |S + S| > |S - S|.

 However, In Round 14, with the help of Conway, Sumset gets a jab in with the set: {0,2,3,4,7,11,12,14}.

 With the help of Coaches Martin and O'Bryant, Sumsets realizes that if he wants to win it has to concentrate on having a better "fringe."

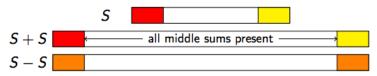
RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
0000000000	oooooo	০০০০০০০০০০	೦೦೦೦೦೦೦		○○○○○●○○○○○○○○
Sumset's	tactics				

 Key Idea: In the Z case, fringe matters most, middle sums and differences are present with high probability



RMT 0000000000	Maass oooooo	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Sumset's	tactics				

 Key Idea: In the Z case, fringe matters most, middle sums and differences are present with high probability



 If we choose the "fringe" of S cleverly, the middle of S will become largely irrelevant. - Martin and O'Bryant's inspiring words

RMT 0000000000	Maass oooooo	Gaps (Bulk) ೦೦೦೦೦೦೦೦೦	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
First resul	lts				

• So with the help of Martin and O'Bryant, Sumsets learns that there exists a positive percentage of subsets that are sum dominated.

RMT 0000000000	Maass oooooo	Gaps (Bulk) ೦೦೦೦೦೦೦೦೦	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
First resu	lts				

• So with the help of Martin and O'Bryant, Sumsets learns that there exists a positive percentage of subsets that are sum dominated.

• Sadly the percentage of sum dominated sets is estimated to be .00045%.

RMT 0000000000	Maass oooooo	Gaps (Bulk) ೦೦೦೦೦೦೦೦೦	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
First resu	lts				

• So with the help of Martin and O'Bryant, Sumsets learns that there exists a positive percentage of subsets that are sum dominated.

- Sadly the percentage of sum dominated sets is estimated to be .00045%.
- Sumset loses the first bout.

RMT 0000000000	Maass 000000	Gaps (Bulk) ೦೦೦೦೦೦೦೦೦	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
The Seco	nd Venue)			

RMT 0000000000	Maass oooooo	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
The Secor	nd Venue				

RMT 0000000000	Maass 000000	Gaps (Bulk) 000000000	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
The Match	Round	1			

 Sumset faces some difficulties in the Z/nZ venue because there is no fringe.

RMT 0000000000	Maass oooooo	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
The Match	Round	1			

• Sumset faces some difficulties in the $\mathbb{Z}/n\mathbb{Z}$ venue because there is no fringe.

• Luckily for Sumset, because carousel go round and round there are know many ways to write each element.

RMT 0000000000	Maass 000000	Gaps (Bulk) ০০০০০০০০০	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
The Match	Round	1			

• Sumset faces some difficulties in the $\mathbb{Z}/n\mathbb{Z}$ venue because there is no fringe.

• Luckily for Sumset, because carousel go round and round there are know many ways to write each element.

Theorem

If we let S be a random subset of $\mathbb{Z}/n\mathbb{Z}$ (if $\alpha \in D_{2n}$ then $\mathbb{P}(\alpha \in S) = 1/2$) then

$$\lim_{n\to\infty}\mathbb{P}(|\mathbf{S}\cdot\mathbf{S}|=|\mathbf{S}\cdot\mathbf{S}^{-1}|)=1.$$

RMT 0000000000	Maass oooooo	Gaps (Bulk) ೦೦೦೦೦೦೦೦೦	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
The Match	n Round	2			

Theorem

Similar results hold for Abelian Groups, Dihedral Groups, and Semi-direct Products of cyclic groups.

RMT 0000000000	Maass oooooo	Gaps (Bulk) ೦೦೦೦೦೦೦೦೦	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
The Match	Round	2			

Theorem

Similar results hold for Abelian Groups, Dihedral Groups, and Semi-direct Products of cyclic groups.

Although for any finite n, there are more subsets S of D_{2n} such that |S + S| > |S - S|, the judges still decided to call the boat a draw due to limiting behavior.

RMT	Maass	Gaps (Bulk)	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
0000000000	oooooo	೦೦೦೦೦೦೦೦೦	೦೦೦೦೦೦೦		○○○○○○○○●○○○
The Third	Venue				

RMT 0000000000	Maass 000000	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
The Third	Venue				

RMT 0000000000	Maass 000000	Gaps (Bulk) 000000000	Gaps (Longest) 0000000	Phase Transition	Sumsets v. Sumdiffs
The Match	1				

• The free group was Sumset's strength, it is no longer in an abelian group.

RMT 0000000000	Maass 000000	Gaps (Bulk) 000000000	Gaps (Longest) 0000000	Phase Transition	Sumsets v. Sumdiffs
The Match	1				

• The free group was Sumset's strength, it is no longer in an abelian group.

 Not only that, but Sumdifference's weakness is still there (x ⋅ x⁻¹ is the identity for all x ∈ S).

RMT 0000000000	Maass 000000	Gaps (Bulk) ೦೦೦೦೦೦೦೦೦	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
The Match	1				

• The free group was Sumset's strength, it is no longer in an abelian group.

 Not only that, but Sumdifference's weakness is still there (x ⋅ x⁻¹ is the identity for all x ∈ S).

• The match was very one sided.

RMT 0000000000	Maass oooooo	Gaps (Bulk) 000000000	Gaps (Longest) ೦೦೦೦೦೦೦	Phase Transition	Sumsets v. Sumdiffs
Ping Pong	J				

Theorem (Free Group)

If we let $\langle a, b \rangle_I$ be all words up to length I and $S \subseteq \langle a, b \rangle_I$ then as I goes to infinity we have that:

 $\mathbb{P}(|S \cdot S| \ge |S \cdot S^{-1}|) = 1.$

RMT 0000000000	Maass oooooo	Gaps (Bulk) ೦೦೦೦೦೦೦೦೦	Gaps (Longest)	Phase Transition	Sumsets v. Sumdiffs
147			TAKE THAT JM DIFFERENCE!		