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Introduction

2



Intro Old Theory/Models Data/New Model Ratios Conj Excised Ensembles Explanation

Riemann Zeta Function

ζ(s) =
∞∑

n=1

1
ns

=
∏

p prime

(
1 −

1
ps

)−1

, Re(s) > 1.

Functional Equation:

ξ(s) = Γ
(s

2

)
π− s

2 ζ(s) = ξ(1 − s).

Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+iγ.
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General L-functions

L(s, f ) =

∞∑

n=1

af (n)
ns

=
∏

p prime

Lp (s, f )
−1 , Re(s) > 1.

Functional Equation:

Λ(s, f ) = Λ∞(s, f )L(s, f ) = Λ(1 − s, f ).

Generalized Riemann Hypothesis (GRH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+iγ.
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Mordell-Weil Group

Elliptic curve y2 = x3 + ax + b with rational solutions
P = (x1, y1) and Q = (x2, y2) and connecting line
y = mx + b.

 
 
 
 
 
 
 
 
 
 
 

sP
s

Q s
R

s

P ⊕ QE

Addition of distinct points P and Q

�
�
�
�
�
�
�
�
�
�
�

s
P

sR

s2P
E

Adding a point P to itself

E(Q) ≈ E(Q)tors ⊕ Zr
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Elliptic curve L-function

E : y2 = x3 + ax + b, associate L-function

L(s,E) =

∞∑

n=1

aE(n)
ns

=
∏

p prime

LE(p−s),

where

aE(p) = p −#{(x , y) ∈ (Z/pZ)2 : y2 ≡ x3 + ax + b mod p}.

Birch and Swinnerton-Dyer Conjecture
Rank of group of rational solutions equals order of
vanishing of L(s,E) at s = 1/2.
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One parameter family

E : y2 = x3 + A(T )x + B(T ), A(T ),B(T ) ∈ Z[T ].

Silverman’s Specialization Theorem

Assume (geometric) rank of E/Q(T ) is r . Then for all
t ∈ Z sufficiently large, each Et : y2 = x3 + A(t)x + B(t)
has (geometric) rank at least r .

Average rank conjecture

For a generic one-parameter family of rank r over Q(T ),
expect in the limit half the specialized curves have rank r
and half have rank r + 1.
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Measures of Spacings: n-Level Correlations

{αj} increasing sequence of numbers, B ⊂ Rn−1 a
compact box. Define the n-level correlation by

lim
N→∞

#

{(
αj1 − αj2 , . . . , αjn−1 − αjn

)
∈ B, ji 6= jk

}

N

Instead of using a box, can use a smooth test function.
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Measures of Spacings: n-Level Correlations

1 Normalized spacings of ζ(s) starting at 1020 (Odlyzko)

70 million spacings between adjacent normalized zeros of
ζ(s), starting at the 1020th zero (from Odlyzko)
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Measures of Spacings: n-Level Correlations

{αj} increasing sequence of numbers, B ⊂ Rn−1 a
compact box. Define the n-level correlation by

lim
N→∞

#

{(
αj1 − αj2 , . . . , αjn−1 − αjn

)
∈ B, ji 6= jk

}

N
Instead of using a box, can use a smooth test function.

1 Normalized spacings of ζ(s) starting at 1020 (Odlyzko)
2 Pair and triple correlations of ζ(s) (Montgomery,

Hejhal)
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Measures of Spacings: n-Level Correlations

{αj} increasing sequence of numbers, B ⊂ Rn−1 a
compact box. Define the n-level correlation by

lim
N→∞

#

{(
αj1 − αj2 , . . . , αjn−1 − αjn

)
∈ B, ji 6= jk

}

N
Instead of using a box, can use a smooth test function.

1 Normalized spacings of ζ(s) starting at 1020 (Odlyzko)
2 Pair and triple correlations of ζ(s) (Montgomery,

Hejhal)
3 n-level correlations for all automorphic cupsidal

L-functions (Rudnick-Sarnak)
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Measures of Spacings: n-Level Correlations

{αj} increasing sequence of numbers, B ⊂ Rn−1 a
compact box. Define the n-level correlation by

lim
N→∞

#

{(
αj1 − αj2 , . . . , αjn−1 − αjn

)
∈ B, ji 6= jk

}

N
Instead of using a box, can use a smooth test function.

1 Normalized spacings of ζ(s) starting at 1020 (Odlyzko)
2 Pair and triple correlations of ζ(s) (Montgomery,

Hejhal)
3 n-level correlations for all automorphic cupsidal

L-functions (Rudnick-Sarnak)
4 n-level correlations for the classical compact groups

(Katz-Sarnak)
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Measures of Spacings: n-Level Correlations

{αj} increasing sequence of numbers, B ⊂ Rn−1 a
compact box. Define the n-level correlation by

lim
N→∞

#

{(
αj1 − αj2 , . . . , αjn−1 − αjn

)
∈ B, ji 6= jk

}

N
Instead of using a box, can use a smooth test function.

1 Normalized spacings of ζ(s) starting at 1020 (Odlyzko)
2 Pair and triple correlations of ζ(s) (Montgomery,

Hejhal)
3 n-level correlations for all automorphic cupsidal

L-functions (Rudnick-Sarnak)
4 n-level correlations for the classical compact groups

(Katz-Sarnak)
5 insensitive to any finite set of zeros
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Measures of Spacings: n-Level Density and Families

Let gi be even Schwartz functions whose Fourier
Transform is compactly supported, L(s, f ) an L-function
with zeros 1

2 + iγf and conductor Qf :

Dn,f (g) =
∑

j1,...,jn
ji 6=±jk

g1

(
γf ,j1

log Qf

2π

)
· · ·gn

(
γf ,jn

log Qf

2π

)
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Measures of Spacings: n-Level Density and Families

Let gi be even Schwartz functions whose Fourier
Transform is compactly supported, L(s, f ) an L-function
with zeros 1

2 + iγf and conductor Qf :

Dn,f (g) =
∑

j1,...,jn
ji 6=±jk

g1

(
γf ,j1

log Qf

2π

)
· · ·gn

(
γf ,jn

log Qf

2π

)

Properties of n-level density:
⋄ Individual zeros contribute in limit
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Measures of Spacings: n-Level Density and Families

Let gi be even Schwartz functions whose Fourier
Transform is compactly supported, L(s, f ) an L-function
with zeros 1

2 + iγf and conductor Qf :

Dn,f (g) =
∑

j1,...,jn
ji 6=±jk

g1

(
γf ,j1

log Qf

2π

)
· · ·gn

(
γf ,jn

log Qf

2π

)

Properties of n-level density:
⋄ Individual zeros contribute in limit
⋄ Most of contribution is from low zeros
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Measures of Spacings: n-Level Density and Families

Let gi be even Schwartz functions whose Fourier
Transform is compactly supported, L(s, f ) an L-function
with zeros 1

2 + iγf and conductor Qf :

Dn,f (g) =
∑

j1,...,jn
ji 6=±jk

g1

(
γf ,j1

log Qf

2π

)
· · ·gn

(
γf ,jn

log Qf

2π

)

Properties of n-level density:
⋄ Individual zeros contribute in limit
⋄ Most of contribution is from low zeros
⋄ Average over similar L-functions (family)
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n-Level Density

n-level density: F = ∪FN a family of L-functions ordered
by conductors, gk an even Schwartz function: Dn,F(g) =

lim
N→∞

1
|FN |

∑

f∈FN

∑

j1,...,jn
ji 6=±jk

g1

(
log Qf

2π
γj1;f

)
· · ·gn

(
log Qf

2π
γjn;f

)

As N → ∞, n-level density converges to
∫

g(−→x )ρn,G(F)(
−→x )d−→x =

∫
ĝ(−→u )ρ̂n,G(F)(

−→u )d−→u .

Conjecture (Katz-Sarnak)
(In the limit) Scaled distribution of zeros near central point
agrees with scaled distribution of eigenvalues near 1 of a
classical compact group.
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Testing Random Matrix Theory Predictions

Know the right model for large conductors, searching for
the correct model for finite conductors.

In the limit must recover the independent model, and want
to explain data on:

1 Excess Rank: Rank r one-parameter family over
Q(T ): observed percentages with rank ≥ r + 2.

2 First (Normalized) Zero above Central Point: Influence
of zeros at the central point on the distribution of
zeros near the central point.
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Theory and Models
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Orthogonal Random Matrix Models

RMT: SO(2N): 2N eigenvalues in pairs e±iθj , probability
measure on [0, π]N :

dǫ0(θ) ∝
∏

j<k

(cos θk − cos θj)
2
∏

j

dθj .

Independent Model:

A2N,2r =

{(
I2r×2r

g

)
: g ∈ SO(2N − 2r)

}
.

Interaction Model: Sub-ensemble of SO(2N) with the last
2r of the 2N eigenvalues equal +1: 1 ≤ j , k ≤ N − r :

dε2r(θ) ∝
∏

j<k

(cos θk − cos θj)
2
∏

j

(1 − cos θj)
2r
∏

j

dθj ,
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Random Matrix Models and One-Level Densities

Fourier transform of 1-level density:

ρ̂0(u) = δ(u) +
1
2
η(u).

Fourier transform of 1-level density (Rank 2, Indep):

ρ̂2,Independent(u) =
[
δ(u) +

1
2
η(u) + 2

]
.

Fourier transform of 1-level density (Rank 2, Interaction):

ρ̂2,Interaction(u) =
[
δ(u) +

1
2
η(u) + 2

]
+ 2(|u| − 1)η(u).
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Comparing the RMT Models

Theorem: M– ’04
For small support, one-param family of rank r over Q(T ):

lim
N→∞

1
|FN |

∑

Et∈FN

∑

j

ϕ

(
log CEt

2π
γEt ,j

)

=

∫
ϕ(x)ρG(x)dx + rϕ(0)

where

G =

{ SO if half odd
SO(even) if all even
SO(odd) if all odd.

Supports Katz-Sarnak, B-SD, and Independent model in limit.
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Data
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RMT: Theoretical Results ( N → ∞)

0.5 1 1.5 2

0.5

1

1.5

2

1st normalized evalue above 1: SO(even)
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RMT: Theoretical Results ( N → ∞)

0.5 1 1.5 2 2.5
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0.4
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0.8
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1.2

1st normalized evalue above 1: SO(odd)
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Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0

1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

1.2

Figure 4a: 209 rank 0 curves from 14 rank 0 families,
log(cond) ∈ [3.26, 9.98], median = 1.35, mean = 1.36
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Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0

0.5 1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4b: 996 rank 0 curves from 14 rank 0 families,
log(cond) ∈ [15.00, 16.00], median = .81, mean = .86.
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Spacings b/w Norm Zeros: Rank 0 One-Param Families over Q(T )

All curves have log(cond) ∈ [15,16];

zj = imaginary part of j th normalized zero above the central point;

863 rank 0 curves from the 14 one-param families of rank 0 over Q(T );

701 rank 2 curves from the 21 one-param families of rank 0 over Q(T ).

863 Rank 0 Curves 701 Rank 2 Curves t-Statistic
Median z2 − z1 1.28 1.30
Mean z2 − z1 1.30 1.34 -1.60
StDev z2 − z1 0.49 0.51
Median z3 − z2 1.22 1.19
Mean z3 − z2 1.24 1.22 0.80
StDev z3 − z2 0.52 0.47
Median z3 − z1 2.54 2.56
Mean z3 − z1 2.55 2.56 -0.38
StDev z3 − z1 0.52 0.52
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Spacings b/w Norm Zeros: Rank 2 one-param families over Q(T )

All curves have log(cond) ∈ [15,16];

zj = imaginary part of the j th norm zero above the central point;

64 rank 2 curves from the 21 one-param families of rank 2 over Q(T );

23 rank 4 curves from the 21 one-param families of rank 2 over Q(T ).

64 Rank 2 Curves 23 Rank 4 Curves t-Statistic
Median z2 − z1 1.26 1.27
Mean z2 − z1 1.36 1.29 0.59
StDev z2 − z1 0.50 0.42
Median z3 − z2 1.22 1.08
Mean z3 − z2 1.29 1.14 1.35
StDev z3 − z2 0.49 0.35
Median z3 − z1 2.66 2.46
Mean z3 − z1 2.65 2.43 2.05
StDev z3 − z1 0.44 0.42
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Rank 2 Curves from Rank 0 & Rank 2 Families over Q(T )

All curves have log(cond) ∈ [15,16];

zj = imaginary part of the j th norm zero above the central point;

701 rank 2 curves from the 21 one-param families of rank 0 over Q(T );

64 rank 2 curves from the 21 one-param families of rank 2 over Q(T ).

701 Rank 2 Curves 64 Rank 2 Curves t-Statistic
Median z2 − z1 1.30 1.26
Mean z2 − z1 1.34 1.36 0.69
StDev z2 − z1 0.51 0.50
Median z3 − z2 1.19 1.22
Mean z3 − z2 1.22 1.29 1.39
StDev z3 − z2 0.47 0.49
Median z3 − z1 2.56 2.66
Mean z3 − z1 2.56 2.65 1.93
StDev z3 − z1 0.52 0.44
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Summary of Data

The repulsion of the low-lying zeros increased with
increasing rank, and was present even for rank 0
curves.

As the conductors increased, the repulsion
decreased.

Statistical tests failed to reject the hypothesis that, on
average, the first three zeros were all repelled equally
(i. e., shifted by the same amount).
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New Model for Finite Conductors

Replace conductor N with Neffective .
⋄ Arithmetic info, predict with L-function Ratios Conj.
⋄ Do the number theory computation.

Excised Orthogonal Ensembles.
⋄ L(1/2,E) discretized.
⋄ Study matrices in SO(2Neff ) with |ΛA(1)| ≥ ceN .

Painlevé VI differential equation solver.
⋄ Use explicit formulas for densities of Jacobi ensembles.
⋄ Key input: Selberg-Aomoto integral for initial conditions.
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Modeling lowest zero of LE11
(s, χd ) with 0 < d < 400,000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1  1.5  2

Lowest zero for LE11(s, χd) (bar chart), lowest eigenvalue
of SO(2N) with Neff (solid), standard N0 (dashed).
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Modeling lowest zero of LE11
(s, χd ) with 0 < d < 400,000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  0.5  1  1.5  2

Lowest zero for LE11(s, χd) (bar chart); lowest eigenvalue
of SO(2N): Neff = 2 (solid) with discretisation, and

Neff = 2.32 (dashed) without discretisation.
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Ratio’s Conjecture
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History

Farmer (1993): Considered
∫ T

0

ζ(s + α)ζ(1 − s + β)

ζ(s + γ)ζ(1 − s + δ)
dt ,

conjectured (for appropriate values)

T
(α + δ)(β + γ)

(α + β)(γ + δ)
− T 1−α−β (δ − β)(γ − α)

(α+ β)(γ + δ)
.
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History

Farmer (1993): Considered
∫ T

0

ζ(s + α)ζ(1 − s + β)

ζ(s + γ)ζ(1 − s + δ)
dt ,

conjectured (for appropriate values)

T
(α + δ)(β + γ)

(α + β)(γ + δ)
− T 1−α−β (δ − β)(γ − α)

(α+ β)(γ + δ)
.

Conrey-Farmer-Zirnbauer (2007): conjecture
formulas for averages of products of L-functions over
families:

RF =
∑

f∈F

ωf
L
(

1
2 + α, f

)

L
(

1
2 + γ, f

) .
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Uses of the Ratios Conjecture

Applications:
⋄ n-level correlations and densities;
⋄ mollifiers;
⋄ moments;
⋄ vanishing at the central point;

Advantages:
⋄ RMT models often add arithmetic ad hoc;
⋄ predicts lower order terms, often to square-root
level.

39



Intro Old Theory/Models Data/New Model Ratios Conj Excised Ensembles Explanation

Inputs for 1-level density

Approximate Functional Equation:

L(s, f ) =
∑

m≤x

am

ms
+ ǫXL(s)

∑

n≤y

an

n1−s
;

⋄ ǫ sign of the functional equation,
⋄ XL(s) ratio of Γ-factors from functional equation.
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Inputs for 1-level density

Approximate Functional Equation:

L(s, f ) =
∑

m≤x

am

ms
+ ǫXL(s)

∑

n≤y

an

n1−s
;

⋄ ǫ sign of the functional equation,
⋄ XL(s) ratio of Γ-factors from functional equation.

Explicit Formula: g Schwartz test function,

∑

f∈F

ωf

∑

γ

g
(
γ

log Nf

2π

)
=

1
2πi

∫

(c)
−

∫

(1−c)
R′

F(· · · )g (· · · )

⋄ R′
F(r) =

∂
∂α

RF (α, γ)
∣∣∣
α=γ=r

.
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

µf (h)
hs

,

where µf (h) is the multiplicative function equaling 1
for h = 1, −λf (p) if n = p, χ0(p) if h = p2 and 0
otherwise.
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

µf (h)
hs

,

where µf (h) is the multiplicative function equaling 1
for h = 1, −λf (p) if n = p, χ0(p) if h = p2 and 0
otherwise.
Execute the sum over F , keeping only main
(diagonal) terms.
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

µf (h)
hs

,

where µf (h) is the multiplicative function equaling 1
for h = 1, −λf (p) if n = p, χ0(p) if h = p2 and 0
otherwise.
Execute the sum over F , keeping only main
(diagonal) terms.
Extend the m and n sums to infinity (complete the
products).
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

µf (h)
hs

,

where µf (h) is the multiplicative function equaling 1
for h = 1, −λf (p) if n = p, χ0(p) if h = p2 and 0
otherwise.
Execute the sum over F , keeping only main
(diagonal) terms.
Extend the m and n sums to infinity (complete the
products).
Differentiate with respect to the parameters.
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Procedure (‘Illegal Steps’)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

µf (h)
hs

,

where µf (h) is the multiplicative function equaling 1
for h = 1, −λf (p) if n = p, χ0(p) if h = p2 and 0
otherwise.
Execute the sum over F , keeping only main
(diagonal) terms.
Extend the m and n sums to infinity (complete the
products).
Differentiate with respect to the parameters.
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1-Level Prediction from Ratio’s Conjecture

AE (α, γ)

= Y−1
E (α, γ)×

∏

p|M

(
∞∑

m=0

(
λ(pm)ωm

E

pm(1/2+α)
−

λ(p)
p1/2+γ

λ(pm)ωm+1
E

pm(1/2+α)

))
×

∏

p∤M

(
1 +

p
p + 1

(
∞∑

m=1

λ(p2m)

pm(1+2α)
−

λ(p)
p1+α+γ

∞∑

m=0

λ(p2m+1)

pm(1+2α)

+
1

p1+2γ

∞∑

m=0

λ(p2m)

pm(1+2α)

))

where

YE (α, γ) =
ζ(1 + 2γ)LE (sym2, 1 + 2α)

ζ(1 + α+ γ)LE(sym2, 1 + α+ γ)
.

Huynh, Morrison and Miller confirmed Ratios’ prediction, which is
48
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1-Level Prediction from Ratio’s Conjecture

1

X∗

∑

d∈F(X )

∑

γd

g
(γd L

π

)

=
1

2LX∗

∫

∞

−∞

g(τ)
∑

d∈F(X )

[

2 log

(√
M|d|
2π

)

+
Γ′

Γ

(

1 +
iπτ

L

)

+
Γ′

Γ

(

1 −
iπτ

L

)

]

dτ

+
1

L

∫

∞

−∞

g(τ)



−
ζ′

ζ

(

1 +
2πiτ

L

)

+
L′E
LE

(

sym2
, 1 +

2πiτ

L

)

−
∞
∑

ℓ=1

(Mℓ − 1) log M

M

(

2+ 2iπτ
L

)

ℓ



 dτ

−
1

L

∞
∑

k=0

∫

∞

−∞

g(τ)
log M

M(k+1)(1+ πiτ
L )

dτ +
1

L

∫

∞

−∞

g(τ)
∑

p∤M

log p

(p + 1)

∞
∑

k=0

λ(p2k+2) − λ(p2k )

p(k+1)(1+ 2πiτ
L )

dτ

−
1

LX∗

∫

∞

−∞

g(τ)
∑

d∈F(X )

[

(

√
M|d|
2π

)

−2iπτ/L Γ(1 − iπτ
L )

Γ(1 + iπτ
L )

ζ(1 + 2iπτ
L )LE (sym2, 1 − 2iπτ

L )

LE (sym2, 1)

×AE

(

−
iπτ

L
,

iπτ

L

)

]

dτ + O(X−1/2+ε
);
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Numerics (J. Stopple): 1,003,083 negative fundamental
discriminants −d ∈ [1012,1012 + 3.3 · 106]

Histogram of normalized zeros (γ ≤ 1, about 4 million).
⋄ Red: main term. ⋄ Blue: includes O(1/ log X ) terms.

⋄ Green: all lower order terms.
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Excised Orthogonal Ensembles
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Excised Orthogonal Ensemble: Preliminaries

Characteristic polynomial of A ∈ SO(2N) is

ΛA(eiθ,N) := det(I−Ae−iθ) =

N∏

k=1

(1−ei(θk−θ))(1−ei(−θk−θ)),

with e±iθ1 , . . . , e±iθN the eigenvalues of A.

Motivated by the arithmetical size constraint on the central
values of the L-functions, consider Excised Orthogonal
Ensemble TX : A ∈ SO(2N) with |ΛA(1,N)| ≥ exp(X ).
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One-Level Densities

One-level density RG(N)
1 for a (circular) ensemble G(N):

RG(N)
1 (θ) = N

∫

. . .

∫

P(θ, θ2, . . . , θN)dθ2 . . . dθN ,

where P(θ, θ2, . . . , θN) is the joint probability density function of eigenphases.
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One-Level Densities

One-level density RG(N)
1 for a (circular) ensemble G(N):

RG(N)
1 (θ) = N

∫

. . .

∫

P(θ, θ2, . . . , θN)dθ2 . . . dθN ,

where P(θ, θ2, . . . , θN) is the joint probability density function of eigenphases.
The one-level density excised orthogonal ensemble:

RTX

1 (θ1) := CX · N
∫ π

0
· · ·

∫ π

0
H(log |ΛA(1,N)| − X )×

×
∏

j<k

(cos θj − cos θk )
2dθ2 · · · dθN ,

Here H(x) denotes the Heaviside function

H(x) =

{

1 for x > 0

0 for x < 0,

and CX is a normalization constant
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One-Level Densities

One-level density RG(N)
1 for a (circular) ensemble G(N):

RG(N)
1 (θ) = N

∫

. . .

∫

P(θ, θ2, . . . , θN)dθ2 . . . dθN ,

where P(θ, θ2, . . . , θN) is the joint probability density function of eigenphases.
The one-level density excised orthogonal ensemble:

RTX

1 (θ1) =
CX
2πi

∫ c+i∞

c−i∞
2Nr exp(−rX )

r
RJN

1 (θ1; r − 1/2,−1/2)dr

where CX is a normalization constant and

RJN
1 (θ1; r − 1/2,−1/2) = N

∫ π

0
· · ·

∫ π

0

N
∏

j=1

w (r−1/2,−1/2)(cos θj)

×
∏

j<k

(cos θj − cos θk )
2dθ2 · · · dθN

is the one-level density for the Jacobi ensemble JN with weight function

w (α,β)(cos θ) = (1−cos θ)α+1/2(1+cos θ)β+1/2, α = r − 1/2 and β = −1/2.
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Results

With CX normalization constant and P(N, r , θ) defined in terms of
Jacobi polynomials,

RTX

1 (θ) =
CX
2πi

∫ c+i∞

c−i∞

exp(−rX )

r
2N2+2Nr−N×

×
N−1
∏

j=0

Γ(2 + j)Γ(1/2 + j)Γ(r + 1/2 + j)
Γ(r + N + j)

×

× (1 − cos θ)r 21−r

2N + r − 1
Γ(N + 1)Γ(N + r)

Γ(N + r − 1/2)Γ(N − 1/2)
P(N, r , θ)dr .

Residue calculus implies RTX

1 (θ) = 0 for d(θ,X ) < 0 and

RTX

1 (θ) = RSO(2N)
1 (θ) + CX

∞
∑

k=0

bk exp((k + 1/2)X ) for d(θ,X ) ≥ 0,

where d(θ,X ) := (2N − 1) log 2 + log(1 − cos θ)− X and bk are
coefficients arising from the residues. As X → −∞, θ fixed,
RTX

1 (θ) → RSO(2N)
1 (θ).
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Numerical check

 0
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 0  1  2  3  4  5  6

R_1: formula
R_1: data

Figure: One-level density of excized SO(2N),N = 2 with cut-off
|ΛA(1,N)| ≥ 0.1. The red curve uses our formula. The blue crosses
give the empirical one-level density of 200,000 numerically generated
matrices.
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Theory vs Experiment
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Figure: Cumulative probability density of the first eigenvalue from
3 × 106 numerically generated matrices A ∈ SO(2Nstd) with
|ΛA(1,Nstd)| ≥ 2.188 × exp(−Nstd/2) and Nstd = 12 red dots compared
with the first zero of even quadratic twists LE11(s, χd ) with prime
fundamental discriminants 0 < d ≤ 400,000 blue crosses. The
random matrix data is scaled so that the means of the two
distributions agree.
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Another Explanation
(This section is by Simon Marshall)
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Waldspurger’s special value formula

Can explain observed repulsion using Waldspurger’s formula
and some complex analysis.

Waldspurger’s formula

L(1/2,E × χd ) = κEcE (|d |)2|d |−1/2, where cE (|d |) ∈ Z.
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Waldspurger’s special value formula

Can explain observed repulsion using Waldspurger’s formula
and some complex analysis.

Waldspurger’s formula

L(1/2,E × χd ) = κEcE (|d |)2|d |−1/2, where cE (|d |) ∈ Z.

⇒ If L(1/2,E × χd ) 6= 0, then L(1/2,E × χd) ≫E |d |−1/2.
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Waldspurger’s special value formula

Can explain observed repulsion using Waldspurger’s formula
and some complex analysis.

Waldspurger’s formula

L(1/2,E × χd ) = κEcE (|d |)2|d |−1/2, where cE (|d |) ∈ Z.

⇒ If L(1/2,E × χd ) 6= 0, then L(1/2,E × χd) ≫E |d |−1/2.
By combining this with Jensen’s formula obtain

Theorem: Marshall, ’11

Define γd to be the height of the lowest nonreal zero of
L(s,E × χd). If L(1/2,E × χd ) 6= 0 then we have

ln |γd |

ln |d |
≥ −1/4 + OE,ǫ(ln ln |d |−1+ǫ).
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Connection with large-scale zero repulsion

Repulsion |γd | ≫ d−1/4+o(1) on a much smaller scale than
the mean zero spacing (ln |d |)−1. Why should it imply
anything about the rescaled limiting density of zeros?
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Connection with large-scale zero repulsion

Repulsion |γd | ≫ d−1/4+o(1) on a much smaller scale than
the mean zero spacing (ln |d |)−1. Why should it imply
anything about the rescaled limiting density of zeros?

The answer is because it holds for every member of a
(conjecturally) large family of L-functions.

The family of nonvanishing quadratic twists

Define D0(E) and LD by

D0(E) = {d | d fundamental, L(1/2,E × χd) 6= 0},

LD = {|γd | ln |d | : d ∈ D0(E),D/2 ≤ |d | ≤ D}.

By ‘minimal rank conjecture’, expect D0(E) to have ≫ D
elements of size at most D, so |LD| ≫ D.
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The limiting distribution vanishes at the origin

Suppose LD has limiting distribution of the form ρ(x)dx , ρ a
smooth function on [0,∞). If ρ vanishes to order r at the origin,
then for sufficiently large D we have

Prob(∃ x ∈ LD : x ≤ D−1/(r+1)) ≥ δ > 0.
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The limiting distribution vanishes at the origin

Suppose LD has limiting distribution of the form ρ(x)dx , ρ a
smooth function on [0,∞). If ρ vanishes to order r at the origin,
then for sufficiently large D we have

Prob(∃ x ∈ LD : x ≤ D−1/(r+1)) ≥ δ > 0.

Contradicts |γd | ≫ d−1/4+o(1) if r ≤ 2, thus r ≥ 3.
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The limiting distribution vanishes at the origin

Suppose LD has limiting distribution of the form ρ(x)dx , ρ a
smooth function on [0,∞). If ρ vanishes to order r at the origin,
then for sufficiently large D we have

Prob(∃ x ∈ LD : x ≤ D−1/(r+1)) ≥ δ > 0.

Contradicts |γd | ≫ d−1/4+o(1) if r ≤ 2, thus r ≥ 3.

Disagrees with the Katz-Sarnak heuristics, as they predict
a limiting distribution which does not vanish at the origin.

Similar results hold in the case of first order vanishing,
using the Gross-Zagier formula in place of Waldspurger.
One again finds a disagreement with Katz-Sarnak.
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