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Introduction
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Riemann Zeta Function

ζ(s) =
∞∑

n=1

1
ns

=
∏

p prime

(
1− 1

ps

)−1

, Re(s) > 1.

Functional Equation:

ξ(s) = Γ
(s

2

)
π− s

2 ζ(s) = ξ(1− s).

Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+iγ.
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General L-functions

L(s, f ) =

∞∑

n=1

af (n)
ns

=
∏

p prime

Lp (s, f )
−1 , Re(s) > 1.

Functional Equation:

Λ(s, f ) = Λ∞(s, f )L(s, f ) = Λ(1− s, f ).

Generalized Riemann Hypothesis (GRH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+iγ.
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Mordell-Weil Group

Elliptic curve y2 = x3 + ax + b with rational solutions
P = (x1, y1) and Q = (x2, y2) and connecting line
y = mx + b.

 
 
 
 
 
 
 
 
 
 
 

sP
s

Q s
R

s

P ⊕QE

Addition of distinct points P and Q

�
�
�
�
�
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�
�
�
�
�

s
P

sR

s2P
E

Adding a point P to itself

E(Q) ≈ E(Q)tors ⊕ Zr
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Elliptic curve L-function

E : y2 = x3 + ax + b, associate L-function

L(s,E) =

∞∑

n=1

aE(n)/
√

n
ns

=
∏

p prime

LE(p−s),

where

aE(p) = p −#{(x , y) ∈ (Z/pZ)2 : y2 ≡ x3 + ax + b mod p}.

Birch and Swinnerton-Dyer Conjecture
Rank of group of rational solutions equals order of
vanishing of L(s,E) at s = 1/2.
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One parameter family

E : y2 = x3 + A(T )x + B(T ), A(T ),B(T ) ∈ Z[T ].

Silverman’s Specialization Theorem

Assume (geometric) rank of E/Q(T ) is r . Then for all
t ∈ Z sufficiently large, each Et : y2 = x3 + A(t)x + B(t)
has (geometric) rank at least r .

Average rank conjecture

For a generic one-parameter family of rank r over Q(T ),
expect in the limit half the specialized curves have rank r
and half have rank r + 1.
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Measures of Spacings: n-Level Density and Families

Let φi be even Schwartz functions whose Fourier
Transform is compactly supported, L(s, f ) an L-function
with zeros 1

2 + iγf and conductor Qf :

Dn,f (φ) =
∑

j1,...,jn
ji 6=±jk

φ1

(
γf ,j1

log Qf

2π

)
· · ·φn

(
γf ,jn

log Qf

2π

)
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Measures of Spacings: n-Level Density and Families

Let φi be even Schwartz functions whose Fourier
Transform is compactly supported, L(s, f ) an L-function
with zeros 1

2 + iγf and conductor Qf :

Dn,f (φ) =
∑

j1,...,jn
ji 6=±jk

φ1

(
γf ,j1

log Qf

2π

)
· · ·φn

(
γf ,jn

log Qf

2π

)

Properties of n-level density:
⋄ Individual zeros contribute in limit.
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Measures of Spacings: n-Level Density and Families

Let φi be even Schwartz functions whose Fourier
Transform is compactly supported, L(s, f ) an L-function
with zeros 1

2 + iγf and conductor Qf :

Dn,f (φ) =
∑

j1,...,jn
ji 6=±jk

φ1

(
γf ,j1

log Qf

2π

)
· · ·φn

(
γf ,jn

log Qf

2π

)

Properties of n-level density:
⋄ Individual zeros contribute in limit.
⋄ Most of contribution is from low zeros.
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Measures of Spacings: n-Level Density and Families

Let φi be even Schwartz functions whose Fourier
Transform is compactly supported, L(s, f ) an L-function
with zeros 1

2 + iγf and conductor Qf :

Dn,f (φ) =
∑

j1,...,jn
ji 6=±jk

φ1

(
γf ,j1

log Qf

2π

)
· · ·φn

(
γf ,jn

log Qf

2π

)

Properties of n-level density:
⋄ Individual zeros contribute in limit.
⋄ Most of contribution is from low zeros.
⋄ Average over similar L-functions (family).
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n-Level Density

n-level density: F = ∪FN a family of L-functions ordered
by conductors, φk an even Schwartz function: Dn,F(φ) =

lim
N→∞

1
|FN |

∑

f∈FN

∑

j1,...,jn
ji 6=±jk

φ1

(
log Qf

2π
γj1;f

)
· · ·φn

(
log Qf

2π
γjn;f

)

As N →∞, n-level density converges to
∫

φ(
−→x )ρn,G(F)(

−→x )d−→x =

∫
φ̂(
−→u )ρ̂n,G(F)(

−→u )d−→u .

Conjecture (Katz-Sarnak)
(In the limit) Scaled distribution of zeros near central point
agrees with scaled distribution of eigenvalues near 1 of a
classical compact group.
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Correspondences

Similarities between L-Functions and Nuclei:

Zeros ←→ Energy Levels

Schwartz test function −→ Neutron

Support of test function ←→ Neutron Energy.
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Testing Random Matrix Theory Predictions

Know the right model for large conductors, searching for
the correct model for finite conductors.

In the limit must recover the independent model, and want
to explain data on:

1 Excess Rank: Rank r one-parameter family over
Q(T ): observed percentages with rank ≥ r + 2.

2 First (Normalized) Zero above Central Point: Influence
of zeros at the central point on the distribution of
zeros near the central point.
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Theory and Models
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Orthogonal Random Matrix Models

RMT: SO(2N): 2N eigenvalues in pairs e±iθj , probability
measure on [0, π]N :

dǫ0(θ) ∝
∏

j<k

(cos θk − cos θj)
2
∏

j

dθj .

Independent Model:

A2N,2r =

{(
I2r×2r

g

)
: g ∈ SO(2N − 2r)

}
.

Interaction Model: Sub-ensemble of SO(2N) with the last
2r of the 2N eigenvalues equal +1: 1 ≤ j , k ≤ N − r :

dε2r(θ) ∝
∏

j<k

(cos θk − cos θj)
2
∏

j

(1− cos θj)
2r
∏

j

dθj ,
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Random Matrix Models and One-Level Densities

Fourier transform of 1-level density:

ρ̂0(u) = δ(u) +
1
2
η(u).

Fourier transform of 1-level density (Rank 2, Indep):

ρ̂2,Independent(u) =
[
δ(u) +

1
2
η(u) + 2

]
.

Fourier transform of 1-level density (Rank 2, Interaction):

ρ̂2,Interaction(u) =
[
δ(u) +

1
2
η(u) + 2

]
+ 2(|u| − 1)η(u).
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Comparing the RMT Models

Theorem: M– ’04
For small support, one-param family of rank r over Q(T ):

lim
N→∞

1
|FN |

∑

Et∈FN

∑

j

ϕ

(
log CEt

2π
γEt ,j

)

=

∫
ϕ(x)ρG(x)dx + rϕ(0)

where

G =

{ SO if half odd
SO(even) if all even
SO(odd) if all odd.

Supports Katz-Sarnak, B-SD, and Independent model in limit.
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Data
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RMT: Theoretical Results ( N →∞)

0.5 1 1.5 2

0.5

1

1.5

2

1st normalized evalue above 1: SO(even)
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RMT: Theoretical Results ( N →∞)
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1st normalized evalue above 1: SO(odd)
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Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0

1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

1.2

Figure 4a: 209 rank 0 curves from 14 rank 0 families,
log(cond) ∈ [3.26, 9.98], median = 1.35, mean = 1.36
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Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0

0.5 1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4b: 996 rank 0 curves from 14 rank 0 families,
log(cond) ∈ [15.00, 16.00], median = .81, mean = .86.
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Rank 2 Curves from y2 = x3 − T 2x + T 2 (Rank 2 over Q(T ))
1st Normalized Zero above Central Point

0.5 1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

0.8

1

Figure 5a: 35 curves, log(cond) ∈ [7.8, 16.1], µ̃ = 1.85,
µ = 1.92, σµ = .41
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Rank 2 Curves from y2 = x3 − T 2x + T 2 (Rank 2 over Q(T ))
1st Normalized Zero above Central Point
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Figure 5b: 34 curves, log(cond) ∈ [16.2, 23.3], µ̃ = 1.37,
µ = 1.47, σµ = .34
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Spacings b/w Norm Zeros: Rank 0 One-Param Families over Q(T )

All curves have log(cond) ∈ [15,16];

zj = imaginary part of j th normalized zero above the central point;

863 rank 0 curves from the 14 one-param families of rank 0 over Q(T );

701 rank 2 curves from the 21 one-param families of rank 0 over Q(T ).

863 Rank 0 Curves 701 Rank 2 Curves t-Statistic
Median z2 − z1 1.28 1.30
Mean z2 − z1 1.30 1.34 -1.60
StDev z2 − z1 0.49 0.51
Median z3 − z2 1.22 1.19
Mean z3 − z2 1.24 1.22 0.80
StDev z3 − z2 0.52 0.47
Median z3 − z1 2.54 2.56
Mean z3 − z1 2.55 2.56 -0.38
StDev z3 − z1 0.52 0.52
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Spacings b/w Norm Zeros: Rank 2 one-param families over Q(T )

All curves have log(cond) ∈ [15,16];

zj = imaginary part of the j th norm zero above the central point;

64 rank 2 curves from the 21 one-param families of rank 2 over Q(T );

23 rank 4 curves from the 21 one-param families of rank 2 over Q(T ).

64 Rank 2 Curves 23 Rank 4 Curves t-Statistic
Median z2 − z1 1.26 1.27
Mean z2 − z1 1.36 1.29 0.59
StDev z2 − z1 0.50 0.42
Median z3 − z2 1.22 1.08
Mean z3 − z2 1.29 1.14 1.35
StDev z3 − z2 0.49 0.35
Median z3 − z1 2.66 2.46
Mean z3 − z1 2.65 2.43 2.05
StDev z3 − z1 0.44 0.42
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Rank 2 Curves from Rank 0 & Rank 2 Families over Q(T )

All curves have log(cond) ∈ [15,16];

zj = imaginary part of the j th norm zero above the central point;

701 rank 2 curves from the 21 one-param families of rank 0 over Q(T );

64 rank 2 curves from the 21 one-param families of rank 2 over Q(T ).

701 Rank 2 Curves 64 Rank 2 Curves t-Statistic
Median z2 − z1 1.30 1.26
Mean z2 − z1 1.34 1.36 0.69
StDev z2 − z1 0.51 0.50
Median z3 − z2 1.19 1.22
Mean z3 − z2 1.22 1.29 1.39
StDev z3 − z2 0.47 0.49
Median z3 − z1 2.56 2.66
Mean z3 − z1 2.56 2.65 1.93
StDev z3 − z1 0.52 0.44
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Summary of Data

The repulsion of the low-lying zeros increased with
increasing rank, and was present even for rank 0
curves.

As the conductors increased, the repulsion
decreased.

Statistical tests failed to reject the hypothesis that, on
average, the first three zeros were all repelled equally
(i. e., shifted by the same amount).
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Convergence to the RMT limit: What’s the right matrix size?

RMT + Katz-Sarnak: Limiting behavior for random
matrices as N →∞ and L-functions as conductors
tend to infinity agree.

How well do the classical matrix groups model local
statistics of L-functions outside the scaling limit?
(Arithmetic enters!)
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Convergence to the RMT limit

L: 70 million ζ(s) nearest-neighbor spacings (Odlyzko).

R: Difference b/w ζ(s) and asymptotic CUE curve (dots) compared to

difference b/w CUE of size N0 and asymptotic curve (dashed line)

(from Bogomolny et. al.).
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Convergence to the RMT limit: Incorporating Finite Matrix S ize

Difference b/w nearest-neighbor spacing of ζ(s) zeros and
asymptotic CUE for a billion zeros in window near 2.504× 1015 (dots)
compared to theory that takes into account arithmetic of lower order
terms (full line) (from Bogomolny et. al.).

New model should incorporate finite matrix size....
32
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New Model for Finite Conductors

Replace conductor N with Neffective .
⋄ Arithmetic info, predict with L-function Ratios Conj.
⋄ Do the number theory computation.

Excised Orthogonal Ensembles.
⋄ L(1/2,E) discretized.
⋄ Study matrices in SO(2Neff ) with |ΛA(1)| ≥ ceN .

Painlevé VI differential equation solver.
⋄ Use explicit formulas for densities of Jacobi ensembles.
⋄ Key input: Selberg-Aomoto integral for initial conditions.
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Modeling lowest zero of LE11
(s, χd ) with 0 < d < 400,000

 0
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 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1  1.5  2

Lowest zero for LE11(s, χd) (bar chart), lowest eigenvalue
of SO(2N) with Neff (solid), standard N0 (dashed).
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Modeling lowest zero of LE11
(s, χd ) with 0 < d < 400,000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  0.5  1  1.5  2

Lowest zero for LE11(s, χd) (bar chart); lowest eigenvalue
of SO(2N): Neff = 2 (solid) with discretisation, and

Neff = 2.32 (dashed) without discretisation.
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Ratio’s Conjecture
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History

Farmer (1993): Considered
∫ T

0

ζ(s + α)ζ(1− s + β)

ζ(s + γ)ζ(1− s + δ)
dt ,

conjectured (for appropriate values)

T
(α + δ)(β + γ)

(α + β)(γ + δ)
− T 1−α−β (δ − β)(γ − α)

(α+ β)(γ + δ)
.
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History

Farmer (1993): Considered
∫ T

0

ζ(s + α)ζ(1− s + β)

ζ(s + γ)ζ(1− s + δ)
dt ,

conjectured (for appropriate values)

T
(α + δ)(β + γ)

(α + β)(γ + δ)
− T 1−α−β (δ − β)(γ − α)

(α+ β)(γ + δ)
.

Conrey-Farmer-Zirnbauer (2007): conjecture
formulas for averages of products of L-functions over
families:

RF =
∑

f∈F

ωf
L
(

1
2 + α, f

)

L
(

1
2 + γ, f

) .
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Uses of the Ratios Conjecture

Applications:
⋄ n-level correlations and densities;
⋄ mollifiers;
⋄ moments;
⋄ vanishing at the central point;

Advantages:
⋄ RMT models often add arithmetic ad hoc;
⋄ predicts lower order terms, often to square-root
level.
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Inputs for 1-level density

Approximate Functional Equation:

L(s, f ) =
∑

m≤x

am

ms
+ ǫXL(s)

∑

n≤y

an

n1−s
;

⋄ ǫ sign of the functional equation,
⋄ XL(s) ratio of Γ-factors from functional equation.
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Inputs for 1-level density

Approximate Functional Equation:

L(s, f ) =
∑

m≤x

am

ms
+ ǫXL(s)

∑

n≤y

an

n1−s
;

⋄ ǫ sign of the functional equation,
⋄ XL(s) ratio of Γ-factors from functional equation.

Explicit Formula: g Schwartz test function,

∑

f∈F

ωf

∑

γ

g
(
γ

log Nf

2π

)
=

1
2πi

∫

(c)
−
∫

(1−c)
R′

F(· · · )g (· · · )

⋄ R′
F(r) =

∂
∂α

RF (α, γ)
∣∣∣
α=γ=r

.

41



Intro Old Theory/Models Data/New Model Ratios Conj Excised Ensembles Conclusion / Refs

Procedure (Recipe)

Use approximate functional equation to expand
numerator.
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

µf (h)
hs

,

where µf (h) is the multiplicative function equaling 1
for h = 1, −λf (p) if n = p, χ0(p) if h = p2 and 0
otherwise.
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

µf (h)
hs

,

where µf (h) is the multiplicative function equaling 1
for h = 1, −λf (p) if n = p, χ0(p) if h = p2 and 0
otherwise.
Execute the sum over F , keeping only main
(diagonal) terms.
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

µf (h)
hs

,

where µf (h) is the multiplicative function equaling 1
for h = 1, −λf (p) if n = p, χ0(p) if h = p2 and 0
otherwise.
Execute the sum over F , keeping only main
(diagonal) terms.
Extend the m and n sums to infinity (complete the
products).
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

µf (h)
hs

,

where µf (h) is the multiplicative function equaling 1
for h = 1, −λf (p) if n = p, χ0(p) if h = p2 and 0
otherwise.
Execute the sum over F , keeping only main
(diagonal) terms.
Extend the m and n sums to infinity (complete the
products).
Differentiate with respect to the parameters.
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Procedure (‘Illegal Steps’)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

µf (h)
hs

,

where µf (h) is the multiplicative function equaling 1
for h = 1, −λf (p) if n = p, χ0(p) if h = p2 and 0
otherwise.
Execute the sum over F , keeping only main
(diagonal) terms.
Extend the m and n sums to infinity (complete the
products).
Differentiate with respect to the parameters.
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1-Level Prediction from Ratio’s Conjecture

AE (α, γ)

= Y−1
E (α, γ)×

∏

p|M

(
∞∑

m=0

(
λ(pm)ωm

E

pm(1/2+α)
− λ(p)

p1/2+γ

λ(pm)ωm+1
E

pm(1/2+α)

))
×

∏

p∤M

(
1 +

p
p + 1

(
∞∑

m=1

λ(p2m)

pm(1+2α)
− λ(p)

p1+α+γ

∞∑

m=0

λ(p2m+1)

pm(1+2α)

+
1

p1+2γ

∞∑

m=0

λ(p2m)

pm(1+2α)

))

where

YE (α, γ) =
ζ(1 + 2γ)LE (sym2, 1 + 2α)

ζ(1 + α+ γ)LE(sym2, 1 + α+ γ)
.

Huynh, Morrison and Miller confirmed Ratios’ prediction, which is
48
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1-Level Prediction from Ratio’s Conjecture

1

X∗

∑

d∈F(X )

∑

γd

g
(γd L

π

)

=
1

2LX∗

∫

∞

−∞

g(τ)
∑

d∈F(X )

[

2 log

(√
M|d|
2π

)

+
Γ′

Γ

(

1 +
iπτ

L

)

+
Γ′

Γ

(

1 −
iπτ

L

)

]

dτ

+
1

L

∫

∞

−∞

g(τ)



−
ζ′

ζ

(

1 +
2πiτ

L

)

+
L′E
LE

(

sym2
, 1 +

2πiτ

L

)

−
∞
∑

ℓ=1

(Mℓ − 1) log M

M

(

2+ 2iπτ
L

)

ℓ



 dτ

−
1

L

∞
∑

k=0

∫

∞

−∞

g(τ)
log M

M(k+1)(1+ πiτ
L )

dτ +
1

L

∫

∞

−∞

g(τ)
∑

p∤M

log p

(p + 1)

∞
∑

k=0

λ(p2k+2) − λ(p2k )

p(k+1)(1+ 2πiτ
L )

dτ

−
1

LX∗

∫

∞

−∞

g(τ)
∑

d∈F(X )

[

(

√
M|d|
2π

)

−2iπτ/L Γ(1 − iπτ
L )

Γ(1 + iπτ
L )

ζ(1 + 2iπτ
L )LE (sym2, 1 − 2iπτ

L )

LE (sym2, 1)

×AE

(

−
iπτ

L
,

iπτ

L

)

]

dτ + O(X−1/2+ε
);
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Numerics (J. Stopple): 1,003,083 negative fundamental
discriminants −d ∈ [1012,1012 + 3.3 · 106]

Histogram of normalized zeros (γ ≤ 1, about 4 million).
⋄ Red: main term. ⋄ Blue: includes O(1/ log X ) terms.

⋄ Green: all lower order terms.
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Excised Orthogonal Ensembles
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Excised Orthogonal Ensemble: Preliminaries

Characteristic polynomial of A ∈ SO(2N) is

ΛA(eiθ,N) := det(I−Ae−iθ) =

N∏

k=1

(1−ei(θk−θ))(1−ei(−θk−θ)),

with e±iθ1 , . . . , e±iθN the eigenvalues of A.

Motivated by the arithmetical size constraint on the central
values of the L-functions, consider Excised Orthogonal
Ensemble TX : A ∈ SO(2N) with |ΛA(1,N)| ≥ exp(X ).
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One-Level Densities

One-level density RG(N)
1 for a (circular) ensemble G(N):

RG(N)
1 (θ) = N

∫

. . .

∫

P(θ, θ2, . . . , θN)dθ2 . . . dθN ,

where P(θ, θ2, . . . , θN) is the joint probability density function of eigenphases.
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One-Level Densities

One-level density RG(N)
1 for a (circular) ensemble G(N):

RG(N)
1 (θ) = N

∫

. . .

∫

P(θ, θ2, . . . , θN)dθ2 . . . dθN ,

where P(θ, θ2, . . . , θN) is the joint probability density function of eigenphases.
The one-level density excised orthogonal ensemble:

RTX

1 (θ1) := CX · N
∫ π

0
· · ·

∫ π

0
H(log |ΛA(1,N)| − X )×

×
∏

j<k

(cos θj − cos θk )
2dθ2 · · · dθN ,

Here H(x) denotes the Heaviside function

H(x) =

{

1 for x > 0

0 for x < 0,

and CX is a normalization constant
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One-Level Densities

One-level density RG(N)
1 for a (circular) ensemble G(N):

RG(N)
1 (θ) = N

∫

. . .

∫

P(θ, θ2, . . . , θN)dθ2 . . . dθN ,

where P(θ, θ2, . . . , θN) is the joint probability density function of eigenphases.
The one-level density excised orthogonal ensemble:

RTX

1 (θ1) =
CX
2πi

∫ c+i∞

c−i∞
2Nr exp(−rX )

r
RJN

1 (θ1; r − 1/2,−1/2)dr

where CX is a normalization constant and

RJN
1 (θ1; r − 1/2,−1/2) = N

∫ π

0
· · ·

∫ π

0

N
∏

j=1

w (r−1/2,−1/2)(cos θj)

×
∏

j<k

(cos θj − cos θk )
2dθ2 · · · dθN

is the one-level density for the Jacobi ensemble JN with weight function

w (α,β)(cos θ) = (1−cos θ)α+1/2(1+cos θ)β+1/2, α = r − 1/2 and β = −1/2.
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Results

With CX normalization constant and P(N, r , θ) defined in terms of
Jacobi polynomials,

RTX

1 (θ) =
CX
2πi

∫ c+i∞

c−i∞

exp(−rX )

r
2N2+2Nr−N×

×
N−1
∏

j=0

Γ(2 + j)Γ(1/2 + j)Γ(r + 1/2 + j)
Γ(r + N + j)

×

× (1 − cos θ)r 21−r

2N + r − 1
Γ(N + 1)Γ(N + r)

Γ(N + r − 1/2)Γ(N − 1/2)
P(N, r , θ)dr .

Residue calculus implies RTX

1 (θ) = 0 for d(θ,X ) < 0 and

RTX

1 (θ) = RSO(2N)
1 (θ) + CX

∞
∑

k=0

bk exp((k + 1/2)X ) for d(θ,X ) ≥ 0,

where d(θ,X ) := (2N − 1) log 2 + log(1 − cos θ)− X and bk are
coefficients arising from the residues. As X → −∞, θ fixed,
RTX

1 (θ) → RSO(2N)
1 (θ).
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Numerical check
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R_1: formula
R_1: data

Figure: One-level density of excized SO(2N),N = 2 with cut-off
|ΛA(1,N)| ≥ 0.1. The red curve uses our formula. The blue crosses
give the empirical one-level density of 200,000 numerically generated
matrices.
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Theory vs Experiment
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Figure: Cumulative probability density of the first eigenvalue from
3× 106 numerically generated matrices A ∈ SO(2Nstd) with
|ΛA(1,Nstd)| ≥ 2.188× exp(−Nstd/2) and Nstd = 12 red dots compared
with the first zero of even quadratic twists LE11(s, χd ) with prime
fundamental discriminants 0 < d ≤ 400,000 blue crosses. The
random matrix data is scaled so that the means of the two
distributions agree.
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Conclusion and References
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Conclusion and Future Work

In the limit: Birch and Swinnerton-Dyer, Katz-Sarnak
appear true.

Finite conductors: model with Excised Ensembles (cut-off
on characteristic polynomials due to discretization at
central point).

Future Work: Joint with Owen Barrett and Nathan Ryan
(and possibly some of his students): looking at other GL2
families (and hopefully higher) to study the relationship
between repulsion at finite conductors and central values
(effect of weight, level).
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