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Introduction
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Why study zeros of L-functions?

Infinitude of primes, primes in arithmetic progression.

Chebyshev’s bias: π3,4(x) ≥ π1,4(x) ‘most’ of the time.

Birch and Swinnerton-Dyer conjecture.

Goldfeld, Gross-Zagier: bound for h(D) from
L-functions with many central point zeros.

Even better estimates for h(D) if a positive
percentage of zeros of ζ(s) are at most 1/2− ϵ of the
average spacing to the next zero.
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Distribution of zeros

ζ(s) ̸= 0 for Re(s) = 1: π(x), πa,q(x).

GRH: error terms.

GSH: Chebyshev’s bias.

Analytic rank, adjacent spacings: h(D).
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Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at
t1, t2, t3, . . . .

Question: What rules govern the spacings between the ti?

Examples:
Spacings b/w Energy Levels of Nuclei.
Spacings b/w Eigenvalues of Matrices.
Spacings b/w Primes.
Spacings b/w nkα mod 1.
Spacings b/w Zeros of L-functions.
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Sketch of proofs

In studying many statistics, often three key steps:
1 Determine correct scale for events.

2 Develop an explicit formula relating what we want to
study to something we understand.

3 Use an averaging formula to analyze the quantities
above.

It is not always trivial to figure out what is the correct
statistic to study!
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Riemann Zeta Function

ζ(s) =
∞∑

n=1

1
ns =

∏
p prime

(
1− 1

ps

)−1

, Re(s) > 1.

Functional Equation:

ξ(s) = Γ
(s

2

)
π− s

2 ζ(s) = ξ(1− s).

Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+iγ.

Observation: Spacings b/w zeros appear same as b/w
eigenvalues of Complex Hermitian matrices A

T
= A.
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General L-functions

L(s, f ) =
∞∑

n=1

af (n)
ns =

∏
p prime

Lp (s, f )
−1 , Re(s) > 1.

Functional Equation:

Λ(s, f ) = Λ∞(s, f )L(s, f ) = Λ(1− s, f ).

Generalized Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+iγ.

Observation: Spacings b/w zeros appear same as b/w
eigenvalues of Complex Hermitian matrices A

T
= A.
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Zeros of ζ(s) vs GUE

70 million spacings b/w adjacent zeros of ζ(s), starting at
the 1020th zero (from Odlyzko).
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Explicit Formula (Contour Integration)

−ζ ′(s)
ζ(s)

= − d
ds

log ζ(s) = − d
ds

log
∏

p

(
1− p−s)−1

=
d
ds

∑
p

log
(
1− p−s)

=
∑

p

log p · p−s

1− p−s =
∑

p

log p
ps + Good(s).
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Explicit Formula (Contour Integration)

−ζ ′(s)
ζ(s)

= − d
ds

log ζ(s) = − d
ds

log
∏

p

(
1− p−s)−1

=
d
ds

∑
p

log
(
1− p−s)

=
∑

p

log p · p−s

1− p−s =
∑

p

log p
ps + Good(s).

Contour Integration:∫
− ζ ′(s)

ζ(s)
xs

s
ds vs

∑
p

log p
∫ (

x
p

)s ds
s
.
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Explicit Formula (Contour Integration)
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ds
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ds
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∏
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1− p−s)−1

=
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ds
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Explicit Formula (Contour Integration)

−ζ ′(s)
ζ(s)

= − d
ds

log ζ(s) = − d
ds

log
∏

p

(
1− p−s)−1

=
d
ds

∑
p

log
(
1− p−s)

=
∑

p

log p · p−s

1− p−s =
∑

p

log p
ps + Good(s).

Contour Integration (see Fourier Transform arising):∫
− ζ ′(s)

ζ(s)
ϕ(s)ds vs

∑
p

log p
∫

ϕ(s)e−σ log pe−it log pds.

Knowledge of zeros gives info on coefficients.
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Explicit Formula: Examples

Cuspidal Newforms: Let F be a family of cupsidal
newforms (say weight k , prime level N and possibly split
by sign) L(s, f ) =

∑
n λf (n)/ns. Then

1
|F|

∑
f∈F

∑
γf

ϕ

(
logR
2π

γf

)
= ϕ̂(0) +

1
2
ϕ(0)− 1

|F|
∑
f∈F

P(f ;ϕ)

+ O
(
log logR
logR

)
P(f ;ϕ) =

∑
p∤N

λf (p)ϕ̂
(
log p
logR

)
2 log p
√

p logR
.
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Measures of Spacings: n-Level Correlations

{αj} increasing sequence, box B ⊂ Rn−1.

n-level correlation

lim
N→∞

#

{
(
αj1 − αj2 , . . . , αjn−1 − αjn

)
∈ B, ji ̸= jk

}
N

(Instead of using a box, can use a smooth test function.)
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Measures of Spacings: n-Level Correlations

{αj} increasing sequence, box B ⊂ Rn−1.
1 Normalized spacings of ζ(s) starting at 1020

(Odlyzko).
2 2 and 3-correlations of ζ(s) (Montgomery, Hejhal).
3 n-level correlations for all automorphic cupsidal

L-functions (Rudnick-Sarnak).
4 n-level correlations for the classical compact groups

(Katz-Sarnak).
5 Insensitive to any finite set of zeros.
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Measures of Spacings: n-Level Density and Families

ϕ(x) :=
∏

i ϕi(xi), ϕi even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

Dn,f (ϕ) =
∑

j1,...,jn
distinct

ϕ1

(
Lfγ

(j1)
f

)
· · ·ϕn

(
Lfγ

(jn)
f

)

1 Individual zeros contribute in limit.
2 Most of contribution is from low zeros.
3 Average over similar curves (family).

Katz-Sarnak Conjecture
For a ‘nice’ family of L-functions, the n-level density
depends only on a symmetry group attached to the family.
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Normalization of Zeros

Local (hard, use Cf ) vs Global (easier, use logC =
|FN |−1∑

f∈FN
logCf ). Hope: ϕ a good even test function

with compact support, as |F| → ∞,

1
|FN |

∑
f∈FN

Dn,f (ϕ) =
1
|FN |

∑
f∈FN

∑
j1,...,jn
ji ̸=±jk

∏
i

ϕi

(
logCf

2π
γ
(ji )
E

)

→
∫
· · ·
∫

ϕ(x)Wn,G(F)(x)dx .

Katz-Sarnak Conjecture
As Cf →∞ the behavior of zeros near 1/2 agrees with
N →∞ limit of eigenvalues of a classical compact group.
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1-Level Densities

The Fourier Transforms for the 1-level densities are

̂W1,SO(even)(u) = δ0(u) +
1
2
η(u)

Ŵ1,SO(u) = δ0(u) +
1
2

̂W1,SO(odd)(u) = δ0(u)−
1
2
η(u) + 1

Ŵ1,Sp(u) = δ0(u)−
1
2
η(u)

Ŵ1,U(u) = δ0(u)

where δ0(u) is the Dirac Delta functional and

η(u) =

{ 1 if |u| < 1
1
2 if |u| = 1
0 if |u| > 1
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Correspondences

Similarities between L-Functions and Nuclei:

Zeros ←→ Energy Levels

Schwartz test function −→ Neutron

Support of test function ←→ Neutron Energy.
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Some Number Theory Results

Orthogonal: Iwaniec-Luo-Sarnak, Ricotta-Royer:
1-level density for holomorphic even weight k
cuspidal newforms of square-free level N (SO(even)
and SO(odd) if split by sign).
Symplectic: Rubinstein, Gao, Levinson-Miller, and
Entin, Roddity-Gershon and Rudnick: n-level
densities for twists L(s, χd) of the zeta-function.
Unitary: Fiorilli-Miller, Hughes-Rudnick: Families of
Primitive Dirichlet Characters.
Orthogonal: Miller, Young: One and two-parameter
families of elliptic curves.
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Main Tools

1 Control of conductors: Usually monotone, gives scale
to study low-lying zeros.

2 Explicit Formula: Relates sums over zeros to sums
over primes.

3 Averaging Formulas: Petersson formula in
Iwaniec-Luo-Sarnak, Orthogonality of characters in
Fiorilli-Miller, Gao, Hughes-Rudnick, Levinson-Miller,
Rubinstein.
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Applications of n-level density

One application: bounding the order of vanishing at the
central point.
Average rank · ϕ(0) ≤

∫
ϕ(x)WG(F)(x)dx if ϕ non-negative.

Can also use to bound the percentage that vanish to
order r for any r .

Theorem (Miller, Hughes-Miller)
Using n-level arguments, for the family of cuspidal
newforms of prime level N →∞ (split or not split by sign),
for any r there is a cr such that probability of at least r
zeros at the central point is at most cnr−n.

Better results using 2-level than Iwaniec-Luo-Sarnak
using the 1-level for r ≥ 5.
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Elliptic Curves
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Mordell-Weil Group

Elliptic curve y2 = x3 + ax + b with rational solutions
P = (x1, y1) and Q = (x2, y2) and connecting line
y = mx + b.

   
   

   
  sP sQ sR

s
P ⊕QE

Addition of distinct points P and Q

���
���

���
��sP
sR

s2P
E

Adding a point P to itself

E(Q) ≈ E(Q)tors ⊕ Zr
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Elliptic curve L-function

E : y2 = x3 + ax + b, associate L-function

L(s,E) =
∞∑

n=1

aE(n)/
√

n
ns =

∏
p prime

LE(p−s),

where

aE(p) = p −#{(x , y) ∈ (Z/pZ)2 : y2 ≡ x3 + ax + b mod p}.

Birch and Swinnerton-Dyer Conjecture
Rank of group of rational solutions equals order of
vanishing of L(s,E) at s = 1/2.
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One parameter family

E : y2 = x3 + A(T )x + B(T ), A(T ),B(T ) ∈ Z[T ].

Silverman’s Specialization Theorem
Assume (geometric) rank of E/Q(T ) is r . Then for all
t ∈ Z sufficiently large, each Et : y2 = x3 + A(t)x + B(t)
has (geometric) rank at least r .

Average rank conjecture
For a generic one-parameter family of rank r over Q(T ),
expect in the limit half the specialized curves have rank r
and half have rank r + 1.
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Testing Random Matrix Theory Predictions

Know the right model for large conductors, searching for
the correct model for finite conductors.

In the limit must recover the independent model, and want
to explain data on:

1 Excess Rank: Rank r one-parameter family over
Q(T ): observed percentages with rank ≥ r + 2.

2 First (Normalized) Zero above Central Point: Influence
of zeros at the central point on the distribution of
zeros near the central point.
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Theory and Models
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Orthogonal Random Matrix Models

RMT: SO(2N): 2N eigenvalues in pairs e±iθj , probability
measure on [0, π]N :

dϵ0(θ) ∝
∏
j<k

(cos θk − cos θj)
2
∏

j

dθj .

Independent Model:

A2N,2r =

{(
I2r×2r

g

)
: g ∈ SO(2N − 2r)

}
.

Interaction Model: Sub-ensemble of SO(2N) with the last
2r of the 2N eigenvalues equal +1: 1 ≤ j , k ≤ N − r :

dε2r (θ) ∝
∏
j<k

(cos θk − cos θj)
2
∏

j

(1− cos θj)
2r
∏

j

dθj ,
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Random Matrix Models and One-Level Densities

Fourier transform of 1-level density:

ρ̂0(u) = δ(u) +
1
2
η(u).

Fourier transform of 1-level density (Rank 2, Indep):

ρ̂2,Independent(u) =
[
δ(u) +

1
2
η(u) + 2

]
.

Fourier transform of 1-level density (Rank 2, Interaction):

ρ̂2,Interaction(u) =
[
δ(u) +

1
2
η(u) + 2

]
+ 2(|u| − 1)η(u).
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Comparing the RMT Models

Theorem: M– ’04
For small support, one-param family of rank r over Q(T ):

lim
N→∞

1
|FN |

∑
Et∈FN

∑
j

φ

(
logCEt

2π
γEt ,j

)
=

∫
φ(x)ρG(x)dx + rφ(0)

where

G =

{ SO if half odd
SO(even) if all even
SO(odd) if all odd.

Supports Katz-Sarnak, B-SD, and Independent model in limit.
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Data

37



Introduction Elliptic Curves Old Theory/Models Data/New Model Ratios Conj Excised Conclusion/Refs 1-Level Results

RMT: Theoretical Results (N →∞)

0.5 1 1.5 2

0.5

1

1.5

2

1st normalized evalue above 1: SO(even)
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RMT: Theoretical Results (N →∞)

0.5 1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

1.2

1st normalized evalue above 1: SO(odd)
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Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0

1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

1.2

Figure 4a: 209 rank 0 curves from 14 rank 0 families,
log(cond) ∈ [3.26,9.98], median = 1.35, mean = 1.36
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Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0

0.5 1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4b: 996 rank 0 curves from 14 rank 0 families,
log(cond) ∈ [15.00,16.00], median = .81, mean = .86.
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Rank 2 Curves from y2 = x3 − T 2x + T 2 (Rank 2 over Q(T ))
1st Normalized Zero above Central Point

0.5 1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

0.8

1

Figure 5a: 35 curves, log(cond) ∈ [7.8,16.1], µ̃ = 1.85,
µ = 1.92, σµ = .41
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Rank 2 Curves from y2 = x3 − T 2x + T 2 (Rank 2 over Q(T ))
1st Normalized Zero above Central Point

0.5 1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

0.8

1

Figure 5b: 34 curves, log(cond) ∈ [16.2,23.3], µ̃ = 1.37,
µ = 1.47, σµ = .34
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Spacings b/w Norm Zeros: Rank 0 One-Param Families over Q(T )

All curves have log(cond) ∈ [15, 16];

zj = imaginary part of j th normalized zero above the central point;

863 rank 0 curves from the 14 one-param families of rank 0 over Q(T );

701 rank 2 curves from the 21 one-param families of rank 0 over Q(T ).

863 Rank 0 Curves 701 Rank 2 Curves t-Statistic
Median z2 − z1 1.28 1.30
Mean z2 − z1 1.30 1.34 -1.60
StDev z2 − z1 0.49 0.51
Median z3 − z2 1.22 1.19
Mean z3 − z2 1.24 1.22 0.80
StDev z3 − z2 0.52 0.47
Median z3 − z1 2.54 2.56
Mean z3 − z1 2.55 2.56 -0.38
StDev z3 − z1 0.52 0.52
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Spacings b/w Norm Zeros: Rank 2 one-param families over Q(T )

All curves have log(cond) ∈ [15, 16];

zj = imaginary part of the j th norm zero above the central point;

64 rank 2 curves from the 21 one-param families of rank 2 over Q(T );

23 rank 4 curves from the 21 one-param families of rank 2 over Q(T ).

64 Rank 2 Curves 23 Rank 4 Curves t-Statistic
Median z2 − z1 1.26 1.27
Mean z2 − z1 1.36 1.29 0.59
StDev z2 − z1 0.50 0.42
Median z3 − z2 1.22 1.08
Mean z3 − z2 1.29 1.14 1.35
StDev z3 − z2 0.49 0.35
Median z3 − z1 2.66 2.46
Mean z3 − z1 2.65 2.43 2.05
StDev z3 − z1 0.44 0.42
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Rank 2 Curves from Rank 0 & Rank 2 Families over Q(T )

All curves have log(cond) ∈ [15, 16];

zj = imaginary part of the j th norm zero above the central point;

701 rank 2 curves from the 21 one-param families of rank 0 over Q(T );

64 rank 2 curves from the 21 one-param families of rank 2 over Q(T ).

701 Rank 2 Curves 64 Rank 2 Curves t-Statistic
Median z2 − z1 1.30 1.26
Mean z2 − z1 1.34 1.36 0.69
StDev z2 − z1 0.51 0.50
Median z3 − z2 1.19 1.22
Mean z3 − z2 1.22 1.29 1.39
StDev z3 − z2 0.47 0.49
Median z3 − z1 2.56 2.66
Mean z3 − z1 2.56 2.65 1.93
StDev z3 − z1 0.52 0.44
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Summary of Data

The repulsion of the low-lying zeros increased with
increasing rank, and was present even for rank 0
curves.

As the conductors increased, the repulsion
decreased.

Statistical tests failed to reject the hypothesis that, on
average, the first three zeros were all repelled equally
(i. e., shifted by the same amount).
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Convergence to the RMT limit: What’s the right matrix size?

RMT + Katz-Sarnak: Limiting behavior for random
matrices as N →∞ and L-functions as conductors
tend to infinity agree.

How well do the classical matrix groups model local
statistics of L-functions outside the scaling limit?
(Arithmetic enters!)
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Convergence to the RMT limit

L: 70 million ζ(s) nearest-neighbor spacings (Odlyzko).

R: Difference b/w ζ(s) and asymptotic CUE curve (dots) compared to

difference b/w CUE of size N0 and asymptotic curve (dashed line)

(from Bogomolny et. al.).
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Convergence to the RMT limit: Incorporating Finite Matrix Size

Difference b/w nearest-neighbor spacing of ζ(s) zeros and
asymptotic CUE for a billion zeros in window near 2.504× 1015 (dots)
compared to theory that takes into account arithmetic of lower order
terms (full line) (from Bogomolny et. al.).

New model should incorporate finite matrix size....
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New Model for Finite Conductors

Replace conductor N with Neffective.
⋄ Arithmetic info, predict with L-function Ratios Conj.
⋄ Do the number theory computation.

Excised Orthogonal Ensembles.
⋄ L(1/2,E) discretized.
⋄ Study matrices in SO(2Neff ) with |ΛA(1)| ≥ ceN .

Painlevé VI differential equation solver.
⋄ Use explicit formulas for densities of Jacobi ensembles.
⋄ Key input: Selberg-Aomoto integral for initial conditions.
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Modeling lowest zero of LE11(s, χd) with 0 < d < 400,000
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 0  0.5  1  1.5  2

Lowest zero for LE11(s, χd) (bar chart), lowest eigenvalue
of SO(2N) with Neff (solid), standard N0 (dashed).
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Modeling lowest zero of LE11(s, χd) with 0 < d < 400,000
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Lowest zero for LE11(s, χd) (bar chart); lowest eigenvalue
of SO(2N): Neff = 2 (solid) with discretisation, and

Neff = 2.32 (dashed) without discretisation.
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Ratio’s Conjecture
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History

Farmer (1993): Considered∫ T

0

ζ(s + α)ζ(1− s + β)

ζ(s + γ)ζ(1− s + δ)
dt ,

conjectured (for appropriate values)

T
(α + δ)(β + γ)

(α + β)(γ + δ)
− T 1−α−β (δ − β)(γ − α)

(α + β)(γ + δ)
.

Conrey-Farmer-Zirnbauer (2007): conjecture
formulas for averages of products of L-functions over
families:

RF =
∑
f∈F

ωf
L
(

1
2 + α, f

)
L
(

1
2 + γ, f

) .
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History

Farmer (1993): Considered∫ T

0

ζ(s + α)ζ(1− s + β)
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conjectured (for appropriate values)
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(α + δ)(β + γ)

(α + β)(γ + δ)
− T 1−α−β (δ − β)(γ − α)

(α + β)(γ + δ)
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Conrey-Farmer-Zirnbauer (2007): conjecture
formulas for averages of products of L-functions over
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RF =
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f∈F
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L
(
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2 + α, f

)
L
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1
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Uses of the Ratios Conjecture

Applications:
⋄ n-level correlations and densities;
⋄ mollifiers;
⋄ moments;
⋄ vanishing at the central point;

Advantages:
⋄ RMT models often add arithmetic ad hoc;
⋄ predicts lower order terms, often to square-root
level.
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Inputs for 1-level density

Approximate Functional Equation:

L(s, f ) =
∑
m≤x

am

ms + ϵXL(s)
∑
n≤y

an

n1−s ;

⋄ ϵ sign of the functional equation,
⋄ XL(s) ratio of Γ-factors from functional equation.

Explicit Formula: g Schwartz test function,∑
f∈F

ωf

∑
γ

g
(
γ
logNf

2π

)
=

1
2πi

∫
(c)
−
∫
(1−c)

R′
F(· · · )g (· · · )

⋄ R′
F(r) =

∂
∂α

RF(α, γ)
∣∣∣
α=γ=r

.
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Inputs for 1-level density

Approximate Functional Equation:

L(s, f ) =
∑
m≤x

am

ms + ϵXL(s)
∑
n≤y

an

n1−s ;

⋄ ϵ sign of the functional equation,
⋄ XL(s) ratio of Γ-factors from functional equation.

Explicit Formula: g Schwartz test function,∑
f∈F

ωf

∑
γ

g
(
γ
logNf

2π

)
=

1
2πi

∫
(c)
−
∫
(1−c)

R′
F(· · · )g (· · · )

⋄ R′
F(r) =

∂
∂α

RF(α, γ)
∣∣∣
α=γ=r

.
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.

Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

µf (h)
hs ,

where µf (h) is the multiplicative function equaling 1
for h = 1, −λf (p) if n = p, χ0(p) if h = p2 and 0
otherwise.
Execute the sum over F , keeping only main
(diagonal) terms.
Extend the m and n sums to infinity (complete the
products).
Differentiate with respect to the parameters.
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

µf (h)
hs ,

where µf (h) is the multiplicative function equaling 1
for h = 1, −λf (p) if n = p, χ0(p) if h = p2 and 0
otherwise.

Execute the sum over F , keeping only main
(diagonal) terms.
Extend the m and n sums to infinity (complete the
products).
Differentiate with respect to the parameters.
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

µf (h)
hs ,

where µf (h) is the multiplicative function equaling 1
for h = 1, −λf (p) if n = p, χ0(p) if h = p2 and 0
otherwise.
Execute the sum over F , keeping only main
(diagonal) terms.

Extend the m and n sums to infinity (complete the
products).
Differentiate with respect to the parameters.
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

µf (h)
hs ,

where µf (h) is the multiplicative function equaling 1
for h = 1, −λf (p) if n = p, χ0(p) if h = p2 and 0
otherwise.
Execute the sum over F , keeping only main
(diagonal) terms.
Extend the m and n sums to infinity (complete the
products).

Differentiate with respect to the parameters.
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Procedure (Recipe)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

µf (h)
hs ,

where µf (h) is the multiplicative function equaling 1
for h = 1, −λf (p) if n = p, χ0(p) if h = p2 and 0
otherwise.
Execute the sum over F , keeping only main
(diagonal) terms.
Extend the m and n sums to infinity (complete the
products).
Differentiate with respect to the parameters.
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Procedure (‘Illegal Steps’)

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

µf (h)
hs ,

where µf (h) is the multiplicative function equaling 1
for h = 1, −λf (p) if n = p, χ0(p) if h = p2 and 0
otherwise.
Execute the sum over F , keeping only main
(diagonal) terms.
Extend the m and n sums to infinity (complete the
products).
Differentiate with respect to the parameters.
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1-Level Prediction from Ratio’s Conjecture

AE(α, γ)

= Y−1
E (α, γ)×

∏
p|M

( ∞∑
m=0

(
λ(pm)ωm

E

pm(1/2+α)
− λ(p)

p1/2+γ

λ(pm)ωm+1
E

pm(1/2+α)

))
×

∏
p∤M

(
1 +

p
p + 1

( ∞∑
m=1

λ(p2m)

pm(1+2α) −
λ(p)

p1+α+γ

∞∑
m=0

λ(p2m+1)

pm(1+2α)

+
1

p1+2γ

∞∑
m=0

λ(p2m)

pm(1+2α)

))

where

YE(α, γ) =
ζ(1 + 2γ)LE(sym2,1 + 2α)

ζ(1 + α+ γ)LE(sym2,1 + α+ γ)
.

Huynh, Morrison and Miller confirmed Ratios’ prediction, which is
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1-Level Prediction from Ratio’s Conjecture

1

X∗

∑
d∈F(X)

∑
γd

g
( γd L

π

)

=
1

2LX∗

∫ ∞

−∞
g(τ)

∑
d∈F(X)

[
2 log

(√
M|d|
2π

)
+

Γ′

Γ

(
1 +

iπτ

L

)
+

Γ′

Γ

(
1 −

iπτ

L

)]
dτ

+
1

L

∫ ∞

−∞
g(τ)

−
ζ′

ζ

(
1 +

2πiτ

L

)
+

L′E
LE

(
sym2

, 1 +
2πiτ

L

)
−

∞∑
ℓ=1

(Mℓ − 1) log M

M

(
2+ 2iπτ

L

)
ℓ

 dτ

−
1

L

∞∑
k=0

∫ ∞

−∞
g(τ)

log M

M(k+1)(1+πiτ
L )

dτ +
1

L

∫ ∞

−∞
g(τ)

∑
p∤M

log p

(p + 1)

∞∑
k=0

λ(p2k+2) − λ(p2k )

p(k+1)(1+ 2πiτ
L )

dτ

−
1

LX∗

∫ ∞

−∞
g(τ)

∑
d∈F(X)

[(√
M|d|
2π

)−2iπτ/L Γ(1 − iπτ
L )

Γ(1 + iπτ
L )

ζ(1 + 2iπτ
L )LE (sym2, 1 − 2iπτ

L )

LE (sym2, 1)

×AE

(
−

iπτ

L
,

iπτ

L

)]
dτ + O(X−1/2+ε);
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Numerics (J. Stopple): 1,003,083 negative fundamental
discriminants −d ∈ [1012,1012 + 3.3 · 106]

Histogram of normalized zeros (γ ≤ 1, about 4 million).
⋄ Red: main term. ⋄ Blue: includes O(1/ logX ) terms.

⋄ Green: all lower order terms.
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Excised Orthogonal Ensembles
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Excised Orthogonal Ensemble: Preliminaries

Characteristic polynomial of A ∈ SO(2N) is

ΛA(eiθ,N) := det(I−Ae−iθ) =
N∏

k=1

(1−ei(θk−θ))(1−ei(−θk−θ)),

with e±iθ1 , . . . ,e±iθN the eigenvalues of A.

Motivated by the arithmetical size constraint on the central
values of the L-functions, consider Excised Orthogonal
Ensemble TX : A ∈ SO(2N) with |ΛA(1,N)| ≥ exp(X ).
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One-Level Densities

One-level density RG(N)
1 for a (circular) ensemble G(N):

RG(N)
1 (θ) = N

∫
. . .

∫
P(θ, θ2, . . . , θN)dθ2 . . . dθN ,

where P(θ, θ2, . . . , θN) is the joint probability density function of eigenphases.
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One-Level Densities

One-level density RG(N)
1 for a (circular) ensemble G(N):

RG(N)
1 (θ) = N

∫
. . .

∫
P(θ, θ2, . . . , θN)dθ2 . . . dθN ,

where P(θ, θ2, . . . , θN) is the joint probability density function of eigenphases.
The one-level density excised orthogonal ensemble:

RTX
1 (θ1) := CX · N

∫ π

0
· · ·

∫ π

0
H(log |ΛA(1,N)| − X )×

×
∏
j<k

(cos θj − cos θk )
2dθ2 · · · dθN ,

Here H(x) denotes the Heaviside function

H(x) =

{
1 for x > 0
0 for x < 0,

and CX is a normalization constant
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One-Level Densities

One-level density RG(N)
1 for a (circular) ensemble G(N):

RG(N)
1 (θ) = N

∫
. . .

∫
P(θ, θ2, . . . , θN)dθ2 . . . dθN ,

where P(θ, θ2, . . . , θN) is the joint probability density function of eigenphases.
The one-level density excised orthogonal ensemble:

RTX
1 (θ1) =

CX

2πi

∫ c+i∞

c−i∞
2Nr exp(−rX )

r
RJN

1 (θ1; r − 1/2,−1/2)dr

where CX is a normalization constant and

RJN
1 (θ1; r − 1/2,−1/2) = N

∫ π

0
· · ·

∫ π

0

N∏
j=1

w (r−1/2,−1/2)(cos θj)

×
∏
j<k

(cos θj − cos θk )
2dθ2 · · · dθN

is the one-level density for the Jacobi ensemble JN with weight function

w (α,β)(cos θ) = (1−cos θ)α+1/2(1+cos θ)β+1/2, α = r − 1/2 and β = −1/2.
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Results

With CX normalization constant and P(N, r , θ) defined in terms of
Jacobi polynomials,

RTX
1 (θ) =

CX

2πi

∫ c+i∞

c−i∞

exp(−rX )

r
2N2+2Nr−N×

×
N−1∏
j=0

Γ(2 + j)Γ(1/2 + j)Γ(r + 1/2 + j)
Γ(r + N + j)

×

× (1 − cos θ)r 21−r

2N + r − 1
Γ(N + 1)Γ(N + r)

Γ(N + r − 1/2)Γ(N − 1/2)
P(N, r , θ) dr .

Residue calculus implies RTX
1 (θ) = 0 for d(θ,X ) < 0 and

RTX
1 (θ) = RSO(2N)

1 (θ) + CX

∞∑
k=0

bk exp((k + 1/2)X ) for d(θ,X ) ≥ 0,

where d(θ,X ) := (2N − 1) log 2 + log(1 − cos θ)−X and bk are
coefficients arising from the residues. As X → −∞, θ fixed,
RTX

1 (θ) → RSO(2N)
1 (θ).
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Numerical check
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R_1: formula
R_1: data

Figure: One-level density of excized SO(2N),N = 2 with cut-off
|ΛA(1,N)| ≥ 0.1. The red curve uses our formula. The blue crosses
give the empirical one-level density of 200,000 numerically generated
matrices.
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Theory vs Experiment
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Figure: Cumulative probability density of the first eigenvalue from
3× 106 numerically generated matrices A ∈ SO(2Nstd) with
|ΛA(1,Nstd)| ≥ 2.188× exp(−Nstd/2) and Nstd = 12 red dots compared
with the first zero of even quadratic twists LE11(s, χd ) with prime
fundamental discriminants 0 < d ≤ 400,000 blue crosses. The
random matrix data is scaled so that the means of the two
distributions agree.
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Conclusion and References
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Conclusion and Future Work

In the limit: Birch and Swinnerton-Dyer, Katz-Sarnak
appear true.

Finite conductors: model with Excised Ensembles (cut-off
on characteristic polynomials due to discretization at
central point).

Future Work: Joint with Owen Barrett and Nathan Ryan
(and possibly some of his students): looking at other GL2
families (and hopefully higher) to study the relationship
between repulsion at finite conductors and central values
(effect of weight, level).
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Limiting Behavior
(joint with John Goes)
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Comparing the RMT Models

Theorem: M– ’04
For small support, one-param family of rank r over Q(T ):

lim
N→∞

1
|FN |

∑
Et∈FN

∑
j

φ

(
logCEt

2π
γEt ,j

)
=

∫
φ(x)ρG(x)dx + rφ(0)

where

G =

{ SO if half odd
SO(even) if all even
SO(odd) if all odd

Confirm Katz-Sarnak, B-SD predictions for small support.

Supports Independent and not Interaction model in the limit.
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Previous Results on low-lying zeros

Expect zeros near central point of size 1
logNE

.

Mestre: zero with imaginary part at most B
log logNE

.

Goal: bound (from above and below) number of zeros in a
neighborhood of size 1

logNE
near the central point in a family.

82



Introduction Elliptic Curves Old Theory/Models Data/New Model Ratios Conj Excised Conclusion/Refs 1-Level Results

One-Level Density: Sketch of result

1
|F|

∑
f∈F

∑
γ̃j,f

ϕ(γ̃j,f ) =

(
r +

1
2

)
ϕ(0) + ϕ̂(0) + O

(
log logR
logR

)

1
|F|

∑
f∈F

∑
|̃γ j,f |≤τ

ϕ(γ̃j,f ) ≥
(

r +
1
2

)
ϕ(0) + ϕ̂(0) + O

(
log logR
logR

)

Nave(τ,R)ϕ(0) ≥
(

r +
1
2

)
ϕ(0) + ϕ̂(0) + O

(
log logR
logR

)

Nave(τ,R) ≥
(

r +
1
2

)
+

ϕ̂(0)
ϕ(0)

+ O
(
log logR
logR

)
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One-Level Density: Sketch of result
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2
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log logR
logR
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1
2
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log logR
logR
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1
2

)
+
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+ O
(
log logR
logR

)
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ϕ(0) + ϕ̂(0) + O

(
log logR
logR

)

1
|F|

∑
f∈F

∑
|̃γ j,f |≤τ

ϕ(γ̃j,f ) ≥
(

r +
1
2

)
ϕ(0) + ϕ̂(0) + O

(
log logR
logR

)

Nave(τ,R)ϕ(0) ≥
(

r +
1
2

)
ϕ(0) + ϕ̂(0) + O

(
log logR
logR

)

Nave(τ,R) ≥
(

r +
1
2

)
+

ϕ̂(0)
ϕ(0)

+ O
(
log logR
logR

)
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One-Level Density: Sketch of result
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Towards an average version of Birch and Swinnerton-Dyer

Theorem (Goes, M–)

Let τ = C(ϕ)/σ, where σ is the support of ϕ̂, C(ϕ) is constant
depending on the choice of test function, and Nave(τ,R) the
average number of normalized zeros in (−τ, τ) for t ∈ [R,2R].
Then assuming GRH

Nave(τ,R) ≥
(

r +
1
2

)
+

ϕ̂(0)
ϕ(0)

+ O
(
log logR
logR

)
.

Technical requirements for ϕ:
ϕ even, positive in (−τ, τ), negative elsewhere;
ϕ monotonically decreasing on (0, τ);
ϕ differentiable;
ϕ̂ compactly supported in (−σ, σ).
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Construction Preliminaries

Convolution:

(A ∗ B)(x) =

∫ ∞

−∞
A(t)B(x − t)dt .

Fourier Transform:

Â(y) =

∫ ∞

−∞
A(x)e−2πixydx

Â′′(y) = −(2πy)2Â(y).

Lemma: ̂(A ∗ B)(y) = Â(y) · B̂(y);
in particular, ̂(A ∗ A)(y) = Â(y)2 ≥ 0 if A is even.
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Constructing good ϕ’s

Let h be supported in (−1,1).

Let f (x) = h(2x/σ), so f supported in (−σ/2, σ/2).

Let g(x) = (f ∗ f )(x), so g supported in (−σ, σ).
ĝ(y) = f̂ (y)2.

Let ϕ(y) := ̂(g + β2g′′)(y) = f̂ (y)2 (1− (2πβy)2).
For β sufficiently small above is non-negative.
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Constructing good ϕ’s (cont)

Nave(τ,R) is average number of zeros in (−τ, τ), and

Nave(τ,R) ≥
(

r +
1
2

)
+

ϕ̂(0)
ϕ(0)

+ O
(
log logR
logR

)
.

Want to maximize ϕ̂(0)/ϕ(0), which is

Pβ :=
(
∫ 1

0 h(u)2du) + (2β
σ )2(

∫ 1
0 h(u)h′′(u)du)

σ(
∫ 1

0 h(u)du)2
.

90



Introduction Elliptic Curves Old Theory/Models Data/New Model Ratios Conj Excised Conclusion/Refs 1-Level Results

Birch and Swinnerton-Dyer on “average”

Setting Pβ = 0 gives β = C(h)σ gives

Theorem (Goes, M–)
Assume GRH and let β = C(h)σ so that Pβ = 0. Then there are
on average at least r + 1

2 normalized zeros within the band
(− 1

2πC(h)σ ,
1

2πC(h)σ ) for t ∈ [R,2R].

Using h(x) = (1− x2)2 gives at least r + 1
2 normalized zeros on

average within the band ≈ (−0.551329
σ , 0.551329

σ )
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Results for certain test functions

h(x) = 0 for |x | > 1, and
Class: h(x) = (1− x2k )2j ,(j , k ∈ Z)
Optimum: h(x) = (1− x2)2

gives interval approximately
(
−0.551329

σ , 0.551329
σ

)
.

Class: h(x) = exp
(
−1/(1− x2k )

)
,(k ∈ Z)

Optimum: h(x) = exp
(
−1/(1− x2)

)
gives approximately

(
−0.558415

σ , 0.558415
σ

)
.

Class: h(x) = exp
(
−k/(1− x2)

)
Optimum: h(x) = exp

(
−.754212/(1− x2)

)
gives approximately

(
−0.552978

σ , 0.552978
σ

)
.
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Upper bounds

Theorem (Goes, M–)
For an elliptic curve with explicit formulas as above, the number
of normalized zeros within (−τ, τ) is bounded above by

(r + 1
2) +

(r+ 1
2 )(ψ(0)−ψ(τ))+ψ̂(0)

ψ(τ) , for all strictly positive, even test
functions monotonically decreasing over (0,∞).
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