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1. Distribution of Gaps in Generalized Zeckendorf Decompositions

1.1 Introduction

Fibonacci Numbers: Fn+1 = Fn + Fn−1; F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem: Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 2012 = 1597 + 377 + 34 + 3 + 1 = F16 + F13 + F8 + F3 + F1.

Lekkerkerker’s Theorem: The average number of summands in the Zeckendorf de-
composition for integers in [Fn, Fn+1) tends to n

ϕ2+1
≈ .276n, where ϕ = 1+

√
5

2 is the golden
mean.

We can generalize these theorems to all Positive Linear Recurrence Sequences

Positive Linear Recurrence Sequences: Hn+1 = c1Hn+c2Hn−1+· · ·+cLHn−L+1, n ≥ L
with H1 = 1, Hn+1 = c1Hn + c2Hn−1 + · · · + cnH1 + 1, n < L, coefficients ci ≥ 0; c1, cL > 0
if L ≥ 2; c1 > 1 if L = 1.

1.2 Our Results

Kangaroo Recurrence: A Kangaroo recurrence of ` hops of length g is defined as
Kn+1 = Kn +Kn−g +Kn−2g + · · · +Kn−`g.

Theorem: In a Kangaroo Recurrence, the probability of obtaining a gap of length

• j ≥ g + 1 is P (j) = (λg,` − 1)2
(
a1
CLek

)
λ
−j
g,`.

• j = g is P (j) =
(
a1
CLek

)
λ
−2g
g,` .

Proof Idea. Let Xi,i+j(n) = #{m ∈ [Kn, Kn+1): decomposition of m includes Ki, Ki+j, but
not Kq for i < q < i + j}.

Let Y (n) = total number of gaps in decompositions for integers in [Kn, Kn+1).

P (j) = lim
n→∞

1

Y (n)

n−j∑
i=1

Xi,i+j(n).

Generalized Lekkerkerker⇒ Y (n) ∼ (CLekn + d)(Kn+1 −Kn).

We can calculateXi,i+j(n) = Left∗Right = (Ki+1−Ki)(Kn−i−j+2−Kn−i−j+1−(Kn−i−j+1−
Kn−i−j)).

1.3 Generalized Results

Theorem: Let Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn+1−L be a positive linear recurrence of
length L where ci ≥ 1 for all 1 ≤ i ≤ L. Then

P (j) =


1− ( a1

CLek
)(λ−n+21 − λ−n+11 + 2λ−11 + a−11 − 3) for j = 0

λ−11 ( 1
CLek

)(λ1(1− 2a1) + a1) for j = 1

(λ1 − 1)2
(
a1
CLek

)
λ
−j
1 for j ≥ 2.

2. Longest Gaps in Zeckendorf Decompostions

2.1 Introduction
Gaps: If x ∈ [Fn, Fn+1) has Zeckendorf decomposition x = Fn+Fn−g1+Fn−g2+· · ·+Fn−gk,
we define the gaps in its decomposition to be {g1, g1−g2, · · · , gk−1−gk}. The longest gap of
a Zeckendorf decomposition is the gap that is greatest in terms of the measure of length.

2.2 Results
Cumulative Distribution Function in Fibbonaccis Pick x randomly from the interval
[Fn, Fn+1). We prove explicitly the cumulative distribution of x’s longest gap.

Theorem: Let r = φ2/(φ2 + 1) (φ the golden mean). Define f as f (n) = log rn/ log φ + u
for some fixed u ∈ R. Then, as n→∞, the probability that x ∈ [Fn, Fn+1) has longest gap
less than or equal to f (n) converges to

P(L(x) ≤ f (n, u)) = ee
(1−u) log φ+{f(n)}

Corollary: If f (n, u) grows any slower or faster than log n/ log φ, then P(L(x) ≤ f (n))

goes to 0 or 1 respectively.

Mean and Variance
We can use the CDF to determine the regular distribution function, and particularly the
mean and variance. Let

P (u) = P
(
L(x) ≤

log( φ2

φ2+1
n)

log φ
+ u

)
,

then the distribution of the longest gap is approximately d
duP (u).

The mean is given by

µ =

∫ ∞
−∞

u
d

du
P (u)du.

In the continuous approximation, the mean is (γ is the Euler- Mascheroni constant)

log
(

φ2

φ2+1
n
)

log φ
− γ.

2.3 General PLRS
There is a critical root , zf → 1/λ1 exponentially as f →∞.

PLRS Cumulative Distribution: Let λi be the eigenvalues of the recurrence, and pi their
coefficients. Define

G(x) =

L∏
i=2

(
x− 1

λi

)
P(x) = (c1 − 1)xt1 + c2x

t2 + · · · + cLx
tL

R(x) = c1x
t1 + c2x

t2 + · · · + (cL − 1)xtL

M(x) = 1− c1x− c2xt2+1 − · · · − cLxtL+1.

The cumulative distribution of the longest gap in [Hn, Hn+1) is:

P(L(x) < f ) =
−P(zf ) / (p1λ1 − p1)

zfM′(zf ) + f z
f
f R(zf ) + z

f+1
f R′(zf )

(
1

zfλ1

)n
+H(n, f )

where there exists ε with 1/λ1 < ε < 1, such that H(n, f )� fεn.

3. Phase Transitions

3.1 Abelian and Non-Abelian Cases
Since we are now looking at groups we need an analogous definition. So the sumset
becomes S · S = {xy : x, y ∈ S}., while the sum-difference becomes S · S−1 = {xy−1 :
x, y ∈ S}.

Lemma for Sumsets of Cyclic Groups: If S, T ⊆ Z/nZ and if k ∈ Z/nZ then

P(k /∈ S · T ) = O((3/4)n)

Lemma for Sumdiff of Cyclic Groups: If S, T ⊆ Z/nZ and if k ∈ Z/nZ then
P(k /∈ S · S−1W ) =

f (n/d)d

2n ≤ (ϕ/2)n where gcd(k, n) = d and f (n) = F (n + 1) + F (n − 1)

where F (n) is the nth Fibonacci number.

Dihedral Groups: If S is a random subset of D2n (if α ∈ D2n then P(α ∈ S) = 1/2) then

lim
n→∞

P(|S · S| = |S · S−1|) = 1.

[Semi-Direct Products: For the group Z/nZ o Z/mZ, if either n or m go to infinity then,
P(|S · S| = |S · S−1|) = 1.

Optimal Refinement of Keeler’s Theorem: Let P = C1 · · ·Cr be a product of r disjoint
in SN , where n is the number of entries in P . Then P can be undone by a product of γ of
n+ r + 2 dishing transpositions in Sn+2 each containing at least one of the outside entries
x = n+1, y = n+2. Moreover, this result is best possible in the sense that n+ r+2 cannot
be replaced by a smaller number.

Abelian Groups: As the size of an abelian group approaches infinity, then P(|S · S| =
|S · S−1|) = 1.

3.2 Probability Decaying in N

Martin and O’Bryant, 2006: Positive percentage of sets are MSTD when sets chosen
with uniform probability. Hegarty and Miller, 2008: When elements chosen with proba-
bility p(N) → 0 as N → ∞, then |A − A| > |A + A| almost surely. For s > d, consider the
Generalized Sumset As,d = A + · · · + A − A − · · · − A where we have s plus signs and
d minus signs. Let h = s + d. We want to study the size of this set as a function of s,d,
and δ for probability p(N) = cN−δ. We call the critical value the phase transition because
it is the value at which the order of the number of repeated elements is as large as the
number of distinct elements.

Our goal: Extend the results of Hegarty-Miller to the case of Generalized Sumsets
and determine where the phase transition occurs for h > 2.

Three different cases for δ: Fast Decay: δ > h−1
h ; Critical Decay: δ = h−1

h ; Slow Decay:
δ < h−1

h .
Fast Decay: For δ > h−1

h , the set with more differences is larger 100% of the time. Criti-

cal Decay: In the two-case, for g(x) = 2
∑ (−1)k−1xk

(k+1)!
, S ∼ g

(
c2

2

)
N and D ∼ g

(
c2
)
N . For

A + A + A,

g(x) =
∑

(−1)k−1
(

1
k12k

+ ck
(−8)k

)
xk with ck =

∫ 1√
3

− 1√
3

(x2 − 1)kdx. For A + A − A, g(x) =∑m
k=1(−1)k−1

1
k!((−

3
8)
kck +

1
k)x

k.


