Distribution of Gaps in PLRS and Phase Transitions Amanda Bower, Ginny Hogan, Rachel Insoft, Shiyu Li, Philip Tosteson, and Kevin Vissuet; Advisor: Steven J. Miller (sjm1@williams.edu)

1. Distribution of Gaps in Generalized Zeckendorf Decompositions

1.1 Introduction

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; $F_1 = 1$, $F_2 = 2$, $F_3 = 3$, $F_4 = 5$, ...

Zeckendorf's Theorem: Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $2012 = 1597 + 377 + 34 + 3 + 1 = F_{16} + F_{13} + F_8 + F_3 + F_1$.

Lekkerkerker's Theorem: The average number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ tends to $\frac{n}{\varphi^2+1} \approx .276n$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

We can generalize these theorems to all Positive Linear Recurrence Sequences

Positive Linear Recurrence Sequences: $H_{n+1} = c_1H_n + c_2H_{n-1} + \cdots + c_LH_{n-L+1}, n \ge L$ with $H_1 = 1$, $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_n H_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

1.2 Our Results

Kangaroo Recurrence: A Kangaroo recurrence of ℓ hops of length g is defined as $K_{n+1} = K_n + K_{n-g} + K_{n-2g} + \dots + K_{n-\ell g}.$

Theorem: In a Kangaroo Recurrence, the probability of obtaining a gap of length • $j \ge g+1$ is $P(j) = (\lambda_{g,\ell} - 1)^2 \left(\frac{a_1}{C_{\text{Lek}}}\right) \lambda_{g,\ell}^{-j}$.

•
$$j = g$$
 is $P(j) = \left(\frac{a_1}{C_{\text{Lek}}}\right) \lambda_{g,\ell}^{-2g}$.

Proof Idea. Let $X_{i,i+j}(n) = \#\{m \in [K_n, K_{n+1})\}$: decomposition of *m* includes K_i , K_{i+j} , but not K_q for i < q < i + j.

Let Y(n) = total number of gaps in decompositions for integers in $[K_n, K_{n+1})$.

$$P(j) = \lim_{n \to \infty} \frac{1}{Y(n)} \sum_{i=1}^{n-j} X_{i,i+j}(n).$$

Generalized Lekkerkerker $\Rightarrow Y(n) \sim (C_{\text{Lek}}n + d)(K_{n+1} - K_n).$

We can calculate $X_{i,i+j}(n) = \text{Left} * \text{Right} = (K_{i+1} - K_i)(K_{n-i-j+2} - K_{n-i-j+1} - (K_{n-i-j+1} - K_{n-i-j+1} - K_{n-i-j+1})(K_{n-i-j+1} - K_{n-i-j+1} - K_{n-i-j+1})$ $K_{n-i-j})).$

1.3 Generalized Results

Theorem: Let $H_{n+1} = c_1H_n + c_2H_{n-1} + \cdots + c_LH_{n+1-L}$ be a positive linear recurrence of length L where $c_i \ge 1$ for all $1 \le i \le L$. Then

$$P(j) = \begin{cases} 1 - \left(\frac{a_1}{C_{\text{Lek}}}\right) \left(\lambda_1^{-n+2} - \lambda_1^{-n+1} + 2\lambda_1^{-1} + a_1^{-1} - 3\right) & \text{fo} \\ \lambda_1^{-1} \left(\frac{1}{C_{\text{Lek}}}\right) \left(\lambda_1 (1 - 2a_1) + a_1\right) & \text{fo} \end{cases}$$

$$\int \left((\lambda_1 - 1)^2 \left(\frac{a_1}{C_{\text{Lek}}} \right) \lambda_1^{-j} \right)$$
 for

Number Theory and Probability Group - SMALL 2012 - Williams College

or j = 0r j = 1or $j \ge 2$.

2. Longest Gaps in Zeckendorf De

2.1 Introduction

Gaps: If $x \in [F_n, F_{n+1})$ has Zeckendorf decomposition x we define the *gaps* in its decomposition to be $\{g_1, g_1 - g_2, g_1 - g_2, g_2, g_3 - g_2, g_3 - g_3, g_4 - g_4, g_4$ a Zeckendorf decomposition is the gap that is greatest

2.2 Results

Cumulative Distribution Function in Fibbonaccis $[F_n, F_{n+1})$. We prove explicitly the cumulative distribution

Theorem: Let $r = \frac{\phi^2}{\phi^2 + 1}$ (ϕ the golden mean). Define the provided the second s for some fixed $u \in \mathbb{R}$. Then, as $n \to \infty$, the probability the transformation of the probability the probab less than or equal to f(n) converges to

$$\mathbb{P}(L(x) \le f(n, u)) = e^{e^{(1-u)\log u}}$$

Corollary: If f(n, u) grows any **slower** or **faster** than

goes to **0** or **1** respectively.

Mean and Variance We can use the **CDF** to determine the regular distribution mean and variance. Let

$$P(u) = \mathbb{P}\bigg(L(x) \le \frac{\log(\frac{\phi^2}{\phi^2 + 1}n)}{\log\phi}$$

then the distribution of the longest gap is approximately

The mean is given by

$$\mu = \int_{-\infty}^{\infty} u \frac{\mathsf{d}}{\mathsf{d}u} P(u) \mathsf{d}u.$$

In the continuous approximation, the mean is (γ is the E

$$\frac{\log\left(\frac{\phi^2}{\phi^2+1}n\right)}{\log\phi} - \gamma.$$

2.3 General PLRS

There is a critical root, $z_f \rightarrow 1/\lambda_1$ exponentially as $f \rightarrow 1/\lambda_1$

PLRS Cumulative Distribution: Let λ_i be the eigenval coefficients. Define

$$\begin{aligned} \mathcal{G}(x) &= \prod_{i=2}^{L} \left(x - \frac{1}{\lambda_i} \right) \\ \mathcal{P}(x) &= (c_1 - 1)x^{t_1} + c_2 x^{t_2} + \cdots \\ \mathcal{R}(x) &= c_1 x^{t_1} + c_2 x^{t_2} + \cdots + (c_k) \\ \mathcal{M}(x) &= 1 - c_1 x - c_2 x^{t_2 + 1} - \cdots \end{aligned}$$

The cumulative distribution of the longest gap in $[H_n, H_n]$

$$\mathbb{P}(L(x) < f) = \frac{-\mathcal{P}(z_f) / (p_1 \lambda_1 - p_1)}{z_f \mathcal{M}'(z_f) + f \ z_f^f \ \mathcal{R}(z_f) + z_f^{f+1} \mathcal{R}'(z_f)} \left(\frac{1}{z_f \lambda_1}\right)''$$

where there exists ϵ with $1/\lambda_1 < \epsilon < 1$, such that $H(n, f) \ll f\epsilon^n$.

compostions	3. Pha
$=F_n+F_{n-g_1}+F_{n-g_2}+\cdots+F_{n-g_k},$ $\cdots,g_{k-1}-g_k\}.$ The longest gap of n terms of the measure of length.	3.1 Abelian and Non-Abelian Ca Since we are now looking at groups we becomes $S \cdot S = \{xy : x, y \in S\}$, while $x, y \in S\}$.
	Lemma for Sumsets of Cyclic Groups
Pick x randomly from the interval n of x 's longest gap.	$\mathbb{P}(k \notin S$
efine f as $f(n) = \log rn / \log \phi + u$ hat $x \in [F_n, F_{n+1})$ has longest gap	Lemma for Sumdiff of Cyclic Group $\mathbb{P}(k \notin S \cdot S^{-1W}) = \frac{f(n/d)^d}{2^n} \leq (\varphi/2)^n$ where $F(n)$ is the n^{th} Fibonacci number.
$ \phi + \{f(n)\} $	Dihedral Groups: If S is a random subs
$\log n / \log \phi$, then $\mathbb{P}(L(x) \leq f(n))$	$\lim_{n \to \infty} \mathbb{P}(S \cdot$
tion function, and particularly the	[Semi-Direct Products: For the group $\mathbb{P}(S \cdot S = S \cdot S^{-1}) = 1.$
(u) + u + u + u + u + u + u + u + u + u +	Optimal Refinement of Keeler's Theor in S_N , where n is the number of entries $n+r+2$ dishing transpositions in $S_{n+2} \in$ x = n+1, y = n+2. Moreover, this result be replaced by a smaller number.
	Abelian Groups: As the size of an ab $ S \cdot S^{-1} = 1$.
uler- Mascheroni constant)	
∞ . Les of the recurrence, and p_i their	3.2 Probability Decaying in N Martin and O'Bryant, 2006 : Positive p with uniform probability. Hegarty and N bility $p(N) \rightarrow 0$ as $N \rightarrow \infty$, then $ A - A $ Generalized Sumset $A_{s,d} = A + \cdots + A$ d minus signs. Let $h = s + d$. We want and δ for probability $p(N) = cN^{-\delta}$. We c it is the value at which the order of the number of distinct elements.
	Our goal: Extend the results of Hega and determine where the phase trans
$+ c_L x^{\iota_L} (z - 1) x^{t_L} - c_L x^{t_L + 1}.$	Three different cases for δ : Fast Deca $\delta < \frac{h-1}{h}$.
(n+1) is:	Fast Decay: For $\delta > \frac{h-1}{h}$, the set with m
$\left(-\frac{1}{n}\right)^n + H(n - f)$	cal Decay: In the two-case, for $g(x) = 2$ A + A + A,

 $\sum_{k=1}^{m} (-1)^{k-1} \frac{1}{k!} \left(\left(-\frac{3}{8} \right)^k c_k + \frac{1}{k} \right) x^k.$

se Transitions

ases

ve need an analogous definition. So the sumset e the sum-difference becomes $S \cdot S^{-1} = \{xy^{-1} : xy^{-1} \}$

s: If $S, T \subseteq \mathbb{Z}/n\mathbb{Z}$ and if $k \in \mathbb{Z}/n\mathbb{Z}$ then $T \cdot T) = O((3/4)^n)$

Jps: If $S,T \subseteq \mathbb{Z}/n\mathbb{Z}$ and if $k \in \mathbb{Z}/n\mathbb{Z}$ then lere gcd(k, n) = d and f(n) = F(n + 1) + F(n - 1)

set of D_{2n} (if $\alpha \in D_{2n}$ then $\mathbb{P}(\alpha \in S) = 1/2$) then $|S| = |S \cdot S^{-1}| = 1.$

 $\mathbb{Z}/n\mathbb{Z} \rtimes \mathbb{Z}/m\mathbb{Z}$, if either *n* or *m* go to infinity then,

rem: Let $P = C_1 \cdots C_r$ be a product of r disjoint in P. Then P can be undone by a product of γ of each containing at least one of the outside entries t is best possible in the sense that n + r + 2 cannot

belian group approaches infinity, then $\mathbb{P}(|S \cdot S| = 1)$

percentage of sets are MSTD when sets chosen Miller, 2008: When elements chosen with proba-> |A + A| almost surely. For s > d, consider the $A - A - \cdots - A$ where we have s plus signs and to study the size of this set as a function of s,d, call the critical value the phase transition because number of repeated elements is as large as the

rty-Miller to the case of Generalized Sumsets sition occurs for h > 2.

ay: $\delta > \frac{h-1}{h}$; Critical Decay: $\delta = \frac{h-1}{h}$; Slow Decay:

nore differences is larger 100% of the time. Criti- $2\sum \frac{(-1)^{k-1}x^k}{(k+1)!}$, $S \sim g\left(\frac{c^2}{2}\right)N$ and $D \sim g\left(c^2\right)N$. For

 $g(x) = \sum (-1)^{k-1} \left(\frac{1}{k 1 2^k} + \frac{c_k}{(-8)^k} \right) x^k$ with $c_k = \int_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} (x^2 - 1)^k dx$. For A + A - A, $g(x) = \int_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} (x^2 - 1)^k dx$.