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Introduction

Definition 1.1
For k ∈ R, define

π(x) :=
∑
p≤x

1 and πk(x) :=
∑
p≤x

pk ,

where p denotes a prime number here and throughout; π(x) is the
prime-counting function.

Definition 1.2
For real x ≥ 0, define the logarithmic integral

li(x) :=

∫ x

0

dt

log t
.

Li (Polymath 2023) Power Sums of Primes in Arithmetic Progression 01/06/2024 2 / 22



Introduction

Definition 1.1
For k ∈ R, define

π(x) :=
∑
p≤x

1 and πk(x) :=
∑
p≤x

pk ,

where p denotes a prime number here and throughout; π(x) is the
prime-counting function.

Definition 1.2
For real x ≥ 0, define the logarithmic integral

li(x) :=

∫ x

0

dt

log t
.

Li (Polymath 2023) Power Sums of Primes in Arithmetic Progression 01/06/2024 2 / 22



Introduction

Definition 1.3

Let f and g be two functions defined on R>0, and g(x) be strictly positive
for all large enough values of x . We say

f (x) = O(g(x)) as x → ∞

if there exist constants M and x0 such that

|f (x)| ≤ M|g(x)| for all x ≥ x0.
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Introduction

Definition 1.4

Let f and g be two functions defined on R>0, and g(x) be strictly positive
for all large enough values of x . We say

f (x) ∼ g(x) as x → ∞,

read f (x) is asymptotic to g(x), if

lim
x→∞

f (x)

g(x)
= 1.
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Historical Context

In 1896, Vallée-Poussin proved that

π(x) ∼ li(x) as x → ∞,

which is known as the prime number theorem.

Vallée-Poussin also estimated the error term in the prime number theorem
by proving that

π(x) = li(x) + O
(
x exp

(
−c

√
log x

))
(x ≥ 2)

where c is a positive constant.

In 1958, Korobov and Vinogradov proved

π(x) = li(x) + O
(
x exp

(
−c(log x)3/5(log log x)−1/5

))
(x ≥ 2).
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Historical Context

In 2016, Gerard and Washington proved that πk(x) is asymptotic to π(xk+1):

πk(x)− π(xk+1)

=

{
O
(
xk+1 exp

(
−A(log x)3/5(log log x)−1/5

))
if k ∈ (0,∞),

O
(
xk+1 exp

(
−(k + 1)3/5A(log x)3/5(log log x)−1/5

))
if k ∈ (−1, 0),

where A = .2098.

This result greatly contributes to approximate sums of powers of primes in
arithmetic progression in our research.
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Statement of Main Results

Definition 1.5
For k ∈ R, define

π(x ;m, n) =
∑
p≤x

p≡n (mod m)

1 and πk(x ;m, n) =
∑
p≤x

p≡n (mod m)

pk ,

where m, n ∈ Z>0 are coprime, with n a unit in Z/mZ.

Also, recall the definition of Euler’s totient function:

φ(m) = #{x ∈ N : x ≤ m and gcd(x ,m) = 1},

which counts the number of positive integers up to m which are coprime to
m.
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Statement of Main Results

Vallée-Poussin also proved the prime number theorem on arithmetic
progressions, concluding that

π(x ;m, n) ∼ π(x)

φ(m)
∼ li(x)

φ(m)
as x → ∞,

where gcd(m, n) = 1.

In 1935, Page and Siegel separately proved that

π(x ;m, n) =
li(x)

φ(m)
+ O

(
x exp

(
−1

2
α
√

log x

))
(x ≥ 2)

where α is a positive constant.

We use the above version of the prime number theorem on arithmetic
progressions to obtain our main result.
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Statement of Main Results

Theorem 2.1 (Boran, Byun, Li, Miller, Reyes 2023)

Fix a real number k > −1 and positive integers m, n ∈ Z>0 such that
gcd(m, n) = 1. Then we can approximate the number of primes p ≡ n
(mod m) less than xk+1 by the sum of k-powers of primes p ≡ n (mod m)
less than a real number x :

πk(x ;m, n)− π(xk+1;m, n)

=

{
O
(
xk+1 exp

(
− 1

2α
√
log x

))
if k > 0,

O
(
xk+1 exp

(
− 1

2α
√
(k + 1) log x

))
if − 1 < k < 0,

where α is a positive constant.

Proof: Riemann–Stieltjes integral.
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Statement of Main Results

Theorem 2.2 (Boran, Byun, Li, Miller, Reyes 2023)

Fix a real number k > −1 and positive integers m, n ∈ Z>0 such that
gcd(m, n) = 1. Then∫ ∞

1

πk(t;m, n)− π(tk+1;m, n)

tk+2
dt = − log(k + 1)

(k + 1)φ(m)
.

Further,

− log(k + 1)

(k + 1)φ(m)
< 0 (k > 0)

− log(k + 1)

(k + 1)φ(m)
> 0 (−1 < k < 0).

Proof: Integration by parts.
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Discussion

Question 1

Theorem 2.1 indicates that π(xk+1;m, n) can be well approximated by
πk(x ;m, n).

Can we quantify the magnitude of the error for some specific data examples?
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Discussion

Question 2
Theorem 2.2 suggests that∫ ∞

1

πk(t;m, n)− π(tk+1;m, n)

tk+2
dt = − log(k + 1)

(k + 1)φ(m)
.

Therefore, it seems there is a trend that

πk(x ;m, n)− π(xk+1;m, n)

tends to be negative when k > 0 and tends to be positive that when
−1 < k < 0.

Can we confirm this trend through data analysis?
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Discussion

Remark

We will see how closely πk(x
1/(k+1);m, n) approximates π(x ;m, n) through

data. Utilizing High Performance Computing, we provide calculations of
various examples for different values of k , m, and n.

In the following examples,

Error (x , k ;m, n) :=
π(x ;m, n)− πk(x

1/(k+1);m, n)

π(x ;m, n)
.

Remember that∫ ∞

1

πk(t;m, n)− π(tk+1;m, n)

tk+2
dt = − log(k + 1)

(k + 1)φ(m)
.
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Discussion

Figure: π(x ; 4, 1) and π1(x
1/2; 4, 1).
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Discussion

Figure: π(x ; 4, 1) and π1/2(x
2/3; 4, 1).
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Discussion

Figure: π(x ; 4, 1) and π−1/10(x
10/9; 4, 1).
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Discussion

Figure: π(x ; 5, 1) and π−1/10(x
10/9; 5, 1).
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Discussion

Remark ∫ ∞

1

πk(t;m, n)− π(tk+1;m, n)

tk+2
dt = − log(k + 1)

(k + 1)φ(m)
.

The integral computation in Theorem 2.2 confirms the observations from
our data that

πk(x ;m, n)− π(xk+1;m, n)

tends to be negative when k > 0, and tends to be positive when
−1 < k < 0 for large values of x .

Note that this does not definitively specify the sign of the error for given
large values of x . We can only conclude that the “net” sign will either be
negative or positive for specific k .
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Future Direction

Remark

A more refined approach to evaluating πk(x ;m, n)− π(xk+1;m, n) when x is
sufficiently large necessitates the utilization of the Riemann ζ-function and
the Riemann Hypothesis to analyze the bias between π(x ;m, n) and li(x).

Riemann Hypothesis

Riemann ζ-function: ζ(s) =
∞∑
n=1

1/ns .

The Riemann zeta function has its zeros only at the negative even integers
and complex numbers with real part 1/2.

Li (Polymath 2023) Power Sums of Primes in Arithmetic Progression 01/06/2024 19 / 22



Future Direction

Remark

A more refined approach to evaluating πk(x ;m, n)− π(xk+1;m, n) when x is
sufficiently large necessitates the utilization of the Riemann ζ-function and
the Riemann Hypothesis to analyze the bias between π(x ;m, n) and li(x).

Riemann Hypothesis

Riemann ζ-function: ζ(s) =
∞∑
n=1

1/ns .

The Riemann zeta function has its zeros only at the negative even integers
and complex numbers with real part 1/2.

Li (Polymath 2023) Power Sums of Primes in Arithmetic Progression 01/06/2024 19 / 22



Future Direction

Theorem 3.1 (possible)

There exists M > 0 such that for every 0 < k ≤ M, the followings are
equivalent:

1 Riemann hypothesis.

2 ∫ x

1
πk(t;m, n)− π(tk+1;m, n) dt < 0 for all x sufficiently large.
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