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Probability Review
Probability density:
o p(z) = 0;
o [7 plz)dx =1;
e X random variable with density(z): Prob (X € [a, ]) f p(x

Mean(average valug) = [ zp(x)dz.

Variance(how spread outy? = [ (z — u)*p(z)dx.

Independencawo random variables are independent if knowledge of o
does not give knowledge of the other.



Numerical Observation: Pythagorean Won-Loss Formula

Parameters:
e RS <. average number of runs scored per game,

e RA 4. average number of runs allowed per game;

e 7. SOMe parameter, constant for a sport.

Bill James’ Won-Loss Formula (NUMERICAL Observation):
RSobsfy
Rsobsfy + RJAobsfy

Won — Loss Percentage =

For baseballzy originally taken a2.
Numerical studies show bestis aboutl.82.
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Modeling the Real World
Guidelines for Modeling:
e Model should capture key features of the system;
e Model should be mathematically tractable (solvable).

In general these are conflicting goals. How should we try and model be
ball games?

Possible Model:
e Runs Scored and Runs Allowed independent random variables;

e frs(x), gra(y): probability density functions for runs scored (allowed
e Reduced to calculating

/x frs@ara@ldy| dz or SIS frs@oralh

Jysz i i<t




Problems with the Model

Reduced to calculating

/x Frs@ara@dy| dz or ST ST frs()grals)

yse | i<

Problems with the model:
e Can the integral (or sum) be completed in closed form?
e Are the runs scored and allowed independent random variables?
e \What arefgq andgr s ?



Three Parameter Weibull
Welibull distribution:

(258) " eI it 2 g

otherwise.

flz;o,8,7) =

o OR

e o. scale (meters versus centimeters);
e 3: origin (translation, zero point);
e v: shape (behavior nearand at infinity).

Various values give different shapes, but can we find, v such that it fits
observed data? Is the Weibull theoretically tractable?



Weibull Integrations
Let f(x; «, B, ) be the probability density of a Weibull( 3, v):

v (z=8\"" —(@=B)a)T
flz;a,B,v) = {O‘( a ) ‘ te=p
0 otherwise.

Fors € C with the real part ok greater than, recall thel'-function:

Let 1, 3, denote the mean gf(x; o, 3,7).



Welibull Integrations (Continued)

o0 —1
/ L (97 — 5)” (=) a)y.,
ﬁ 8 (8%

00 B B v—1
_ / . 5.1(%‘ ﬁ) —e=B)/0) gy 4 5
b,

Change variables: = (M)7 Thendu = 2 (ﬂ) i dz and

Ha, B,y

O
1 _
Ha,By = /o au’ e du +

A similar calculation determines the variance.



Derivation of the Pythagorean Won-Loss Formula

Theorem: Pythagorean Won-Loss Formula:Let the runs scored and al-
lowed per game be two independent random variables drawn from Weli

distributions(agrg, 3,v) and (agra, 3,7); arg andag s are chosen so that
the means ar&S andRA. If v > 0 then

(RS — )"
(RS = )7+ (RA = 5)7

Won-Loss Percentages, RA, 5,v) =

Proof.Let X andY be independent random variables with Weibull distr
butions(agrg, 3,7) and(agra, 5, v) respectively.
RS — 0 RA — (3
R NI e A (AN

We need only calculate the probability th&t exceedsY. We use the
iIntegral of a probability density Is.



O

Prof( X > Y) / ﬁ/ f(z;ars, B,7) f(y; ara, 8,7v)dy dx
r= yz

/ / 7 (w ) (y—ﬂ)“e (53 a,
=3 QRS \ ORS QRA \ @RA
)7

16 aRs /x 8 (y )716_(0%/&)7(@

y=0 ARA

X

RA

:z: 0 &¥RS (C)‘RS I ]

_ / g ( ) ~(olans) [1 — =(e/ora)] g
r=0 YRS \X¥RS

v—1
o / * ( v ) o—(#/0) gq.
=0 @RS \*RS

where we have set

i_ 1+ 1 _O‘RS+O‘RA
= 5+ =

al O‘Rs ARA O‘RSO‘RA




8 OO v—1
Prob(X >Y) = 1— 1(5) el@/a) 4y
QpgJo @\
gl
_ 1_()‘T
RS v
_ ;L 9Rs%RaA
v Y
ARg YRS T ARA
o
_ RS
7 v
ARg T ARA
We substitute the relations foizg andag 4 and find that

(RS — )"
(RS —8)7+ (RA = 5)7

Prob X >Y) =

NoteRS — 3 estimateRS, ., RA — 3 estimateRA ;...
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Best Fit Welbulls to Data: Method of Least Squares

Minimized the sum of squares of the error from the runs scored data f
the sum of squares of the error from the runs allowed data.

e Bin(k) is thex™ bin;

o RS s(k) (resp.RA;(k)) the observed number of games with the nun
ber of runs scored (allowed) iBin(k);

e Ala, 3,7, k) the area under the Weibull with parametens 3, ) in
Bin(k).

Find the values ofapq, ara, v) that minimize
#Bins
D (RSgps(k) — #Cames - A(ags, —-5,7, k)7

k=1
#DBins

+ Y (RAs(k) — #Games - A(apy, —.5,7,k))°.
k=1
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Best Fit Welibulls to Data: Method of Maximum Likelihood

The likelihood function depends onig, apa, 8 = —.5,7.

Let A(a, —.5, 7, k) denote the area iBin(k) of the Weibull with parame-
tersa, —.5,v. The sample likelihood functioh(arg, aga, —.5,7) IS

#Bins

#Games _—_—
A —. k obs
<RSObS<1)7 vy RSObS<#BiHS)> ]4;1_[1 (&RS’ 57 s )
#Bins
#Games R (b
. A —.5 k obs\"V)
<RAObS<1>7 SR RAObs(#BiHS)) ]}—[ <OZRA7 Vs )

For each team we find the values of the parametgks ar s and~ that
maximize the likelihood. Computationally, it is equivalent to maximiz
the logarithm of the likelihood, and we may ignore the multinomial coef

cients are they are independent of the parameters.

12



Best Fit Weibulls to Data (Method of Maximum Likelihood)

Pl ot s of RS (predi ctedvs observed) and RA (predi ctedvs observed) for t he Bost on Red Sox

25}

5 10 15 20 20

Using as bins
—.5,.5| U .5, 1.5| U --- U [7.5,8.5] U |8.5,9.5] U [9.5,11.5] U [11.5,00).
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Pl ot s of RS (predi ctedvs observed) and RA (predi ctedvs observed) for t he NewYor k Yankees
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Pl ot s of RS (predi ctedvs observed) and RA (predi ctedvs observed) for theBaltinoreOiol es
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Pl ot s of RS (predi ctedvs observed) and RA (predi ctedvs observed) for t he Tanpa Bay Devi | Rays
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Pl ot s of RS (predi ctedvs observed) and RA (predi ct edvs observed) for t he Toront o Bl ue Jays
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Pl ot s of RS (predi ctedvs observed) and RA (predi ct edvs observed) for the M nnesot aTw ns
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Pl ot s of RS (predi ctedvs observed) and RA (predi ctedvs observed) for t he Chi cago Wi t e Sox
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Pl ot s of RS (predi ctedvs observed) and RA (predi ct edvs observed) for t he d evel and | ndi ans
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Pl ot s of RS (predictedvs observed) and RA (predi ctedvs observed) for theDetroit Tigers
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Pl ot s of RS (predi ctedvs observed) and RA (predi ctedvs observed) for the Kansas Gty Royal s

25} [ ]
25}
20 20!
9] 15
10 10i
7
10 15 20 5 10 15 20

22



Pl ot s of RS (predi ctedvs observed) and RA (predi ctedvs observed) for t he Los Angel es Angel s
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Pl ot s of RS (predi ctedvs observed) and RA (predi ctedvs observed) for t he Cakl and At hl eti cs
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Pl ot s of RS (predi ctedvs observed) and RA (predi ctedvs observed) for t he Texas Rangers
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Pl ot s of RS (predi ctedvs observed) and RA (predi ctedvs observed) for the Seattl e Mari ners
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Best Fit Welbulls to Data (Continued)
The fitslook good, but are they? Dg?-tests:

e Let Bin(k) denote the!" bin.

e O, .. the observed number of games where the team’s runs scored
Bin(r) and the runs allowed are Bin(c).

0. O . .
o Fp.= 2. #ga%gs' "¢ is the expected frequency of céell ¢).

e Then

#Rows #Columns

(Orc — Erc)’
Z Z TCETCTC
r=1 c=1

)

is a? distribution with(#Rows — 1)(#Columns — 1) degrees of free-
dom.
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Best Fit Welbulls to Data (Continued)

For independence of runs scored and allowed, use bins

0,1) U [1,2) U [2,3) U--- U [8,9) U [9,10) U [10,11) U [11, 00).

Have anr x ¢ contingency table (withr = ¢ = 12); however, there are
structural zerogruns scored and allowed per game can never be equal
(Essentially)),,, = 0 for all ». We use the iterative fitting procedure to ob
tain maximum likelihood estimators for thg. ., the expected frequency of
cell (r, ¢) under the assumption that, given that the runs scored and allo
are distinct, the runs scored and allowed are independent.

Forl <rc <12 letE\) = 1if r £ cand0if r = c. Set
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Then
EYVx, ) 2 BYCY i vis odd

EYVx, /2 BUTY i vis even,

and ,
Erc = lim E'I(“,c)S

{—00
the iterations converge very quickly. (If we had a complete two-dimensic
contingency table, then the iteration reduces to the standard values, na

Ere=> . O >0 " e / #Games.). Note

Orc Erc
>y !

r=1 c=1
cET

is approximately a? distribution with (12 — 1) — 12 = 109 degrees of
freedom. The corresponding critical thresholds are 134.4 (atthidevel)
and 146.3 (at thed% level).
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Team RS+RA y2: 20 d.f. Indep x2: 109 d.f

Bost on Red Sox 15. 63 83. 19
New Yor k Yankees 12. 60 129. 13
Baltinore Oriol es 29. 11 116. 88
Tanpa Bay Devil Rays 13. 67 111. 08
Toronto Bl ue Jays 41. 18 100. 11
M nnesota Tw ns 17. 46 97. 93
Chi cago Wiite Sox 22.51 153. 07
Cl evel and | ndi ans 17. 88 107. 14
Detroit Tigers 12. 50 131. 27
Kansas City Royal s 28. 18 111. 45
Los Angel es Angel s 23.19 125.13
Cakl and At hletics 30. 22 133.72
Texas Rangers 16. 57 111. 96
Seattle Mariners 21. 57 141. 00

20 d.f.: 31.41 (at thes% level) and 37.57 (at theo% level).
109 d.f.: 134.4 (at th&5% level) and 146.3 (at thed% level).

Bonferroni Adjustment:
20 d.f.. 41.14 (at thes>% level) and 46.38 (at thed% level).
109 d.f.: 152.9 (atthe5% level) and 162.2 (at the9% level).
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Testing the Model: Data from Method of Maximum Likelihood

Team Obs Wins Pred Wins ObsPerc PredPerc GamesDiff

Bost on Red Sox 98 93.0 0. 605 0.574 5.03 ]
New Yor k Yankees 101 87.5 0.623 0. 540 13. 49 ]
Baltinmore Orioles 78 83.1 0.481 0. 513 -5.08 ]
Tanpa Bay Devil Rays 70 69. 6 0. 435 0.432 0. 38 ]
Toronto Bl ue Jays 67 74.6 0.416 0. 464 -7.65 ]
M nnesota Tw ns 92 84.7 0.568 0. 523 7.31 ]
Chi cago Wi te Sox 83 85.3 0. 512 0. 527 -2.33 ]
Cl evel and | ndi ans 80 80.0 0. 494 0. 494 0. ]
Detroit Tigers 72 80.0 0. 444 0. 494 -8. 02 ]
Kansas City Royal s 58 68. 7 0. 358 0.424 -10. 65 ]
Los Angel es Angel s 92 87.5 0. 568 0. 540 4.53 ]
Cakl and Athletics 91 84.0 0. 562 0. 519 6. 99 ]
Texas Rangers 89 87.3 0. 549 0. 539 1.71 ]
Seattle Mariners 63 70.7 0. 389 0. 436 -7. 66 ]

~v: mean= 1.74, standard deviatios .06, median= 1.76;
close to numerically observed valuelo$2.

The mean number of the difference between observed and predicted
was—.13 with a standard deviation ¢f11 (and a median of.19).

If we consider just the absolute value of the difference then we have am
of 5.77 with a standard deviation &85 (and a median of.04).

31



Conclusions

e Can find parameters such that the Weibulls are good fits to the data;
e The runs scored and allowed per game are statistically independent
e The Pythagorean Won-Loss Formula is a consequence of our mode

e Our best value of of about 1.74 is close to the observed best 1.82.
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Future Work

e Micro-analysis: runs scored and allowed are not entirely independ
(big lead, close game), run production smaller for inter-league game
NL parks, et cetera.

e \WWhat about other sports? Does the same model work? How-ddes
pend on the sport?

e Are there other probability distributions that give integrals which can
determined in closed form?
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Appendix: Proof of Central Limit Theorem: Notation

Convolution of f andg:

hly) = /R F(o)gly — o)z = /R f(e — y)g(e)dz.

X7 and.X» independent random variables with probability dengity

r+Ax
Prob(X; € |z, + Ax|) = / p(t)dt ~ p(x)Ax.
X

00 r+Ar—17
Prob(X7 + X9) € v,z + Azx] = / / p(x1)p(xe)drodry.
r1=—00 Jx

2=T—T]
As Az — 0 we obtain the convolution gf with itself:

b
Prob(X| + X € [a.b]) = / (p % p)(2)dz.

a
Exercise to show non-negative and integrates to
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Statement of Central Limit Theorem

e For simplicity, assume has mean zero, variance one, finite third mc
ment and is of sufficiently rapid decay so that all convolution integre
that arise convergei: an infinitely differentiable function satisfying

/ " p(a)dr = 0, / T 2p(e)de = 1. / T Pz < oo

—00 —0Q0 —0Q0
e AssumeX, Xo, ... are independent identically distributed random va
ables drawn fronp.

e DefineSy = Zfil X;.
: : : 2
e Standard Gaussian (mean zero, variance on%usz—ﬂj /2
A

Central Limit Theorem Let X,, Sy be as above and assume the thir
moment of eachX; is finite. Thenj—% converges In probability to the
standard Gaussian:

lim Prob|—= € [a,b]| = — [ e * /24y,
N—o00 <\/N [ ]> V2T Ja
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Proof of the Central Limit Theorem

e The Fourier transform af is
m .
p) = [ plaje v,
— OO
e Derivative ofg is the Fourier transform ofmizg(x); differentiation
(hard) is converted to multiplication (easy).

OO .
7(y) = / oz - g(x)e T Yy
— OO
If ¢ is a probability densityy’(0) = 2miE[z] andg” (0) = —47’E[z?)].
e Natural to use the Fourier transform to analyze probability distributior
The mean and variance are simple multiples of the derivativesabf
zero:p'(0) = 0, p’(0) = —4r?.

e We Taylor expang (need technical conditions gi:

/1
. " (0
ply) = 1+ 2()y2+--- = 1—27T2y2+0(y3).

Near the origin, the above showsooks like a concave down parabola
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Proof of the Central Limit Theorem (cont)

e Prob(X| + -+ Xy € [a,b]) = [“(p*---#p)(z)dz.

e The Fourier transform converts convolution to multiplication. If H{y)
denotes the Fourier transform gfevaluated ay:

A\

FTlp*---*pl(y) = ply)--ply).

e Do not want the distribution ok’; + - - - + Xy = x, but rather
g, Xit+Xy _

VN
o If B(z) = A(cz) for some fixed: # 0, thenB(y) = 1A (¥).

e Prob (Xﬁ\'/'%XN::U) — (VNpx---xVNp)(zvVN).

o ET {(mp**mp)(x\/ﬁ)} (y) = {ﬁ(TyN”N
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Proof of the Central Limit Theorem (cont)

e Can find the Fourier transform of the distribution%y:

i&

e Take the limit asV — oo for fixed y.

#)]

e Know p(y) = 1 — 272y + O(y?). Thus study

e For anyfixed v,

lim
N—00

] 2 ]
e Fourier transform of —2™Y" atz is

1 —

1 —

2W2y
N

2W2y
N

2

2
+ O

+0<

o\
(77

y3

N3/2

1

—6_

V21
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Proof of the Central Limit Theorem (cont)
We have shown:

e the Fourier transform of the distribution 6fy converges t(a;—QWQ;

] 2. 2
e the Fourier transform of 27" js —L_ ¢—27/2,
\ 2T

Therefore the distribution o¥ 5 equallingz converges te% e 7/2
We need complex analysis to justify this conclusion. Must be careful: Ce

sider ,
o(z) = e~ l/x If o # 0
0 If x = 0.

All the Taylor coefficients about = 0 are zero, but the function is not
identically zero in a neighborhood of= 0.
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