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Goals of the Talk

Derive James’ Pythagorean Won-Loss formula from a reasonable model.

Introduce some of the techniques of modeling.

Discuss the mathematics behind the models and model testing.

Discuss the 2004 World Champion Boston Red Sox!
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Numerical Observation: Pythagorean Won-Loss Formula

Parameters:

• RSobs: average number of runs scored per game;

• RAobs: average number of runs allowed per game;

• γ: some parameter, constant for a sport.

Bill James’ Won-Loss Formula (NUMERICAL Observation):

Won− Loss Percentage =
RSobs

γ

RSobs
γ + RAobs

γ

γ originally taken as2, numerical studies show bestγ is about1.82.
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Applications of the Pythagorean Won-Loss Formula

Extrapolation: use half-way through season to predict a team’s perfor-
mance.

Evaluation: see if consistently over-perform or under-perform.

There are other statistics / formulas (example: run-differential per game);
advantage is very easy to apply, depends only on two simple numbers for
a team.
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Probability Review

Probability density:

• p(x) ≥ 0;

• ∫∞
−∞ p(x)dx = 1;

•X random variable with densityp(x): Prob (X ∈ [a, b]) =
∫ b
a p(x)dx.

Mean(average value)µ =
∫∞
−∞ xp(x)dx.

Variance(how spread out)σ2 =
∫∞
−∞(x− µ)2p(x)dx.

Independence:two random variables are independent if knowledge of one
does not give knowledge of the other.
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Modeling the Real World

Guidelines for Modeling:

•Model should capture key features of the system;

•Model should be mathematically tractable (solvable).

In general these are conflicting goals. How should we try and model base-
ball games?

Possible Model:

• Runs Scored and Runs Allowed independent random variables;

• fRS(x), gRA(y): probability density functions for runs scored (allowed).

• Reduced to calculating

∫

x

[∫

y≤x
fRS(x)gRA(y)dy

]
dx or

∑

i


∑

j<i

fRS(i)gRA(j)


 .
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Problems with the Model

Reduced to calculating

∫

x

[∫

y≤x
fRS(x)gRA(y)dy

]
dx or

∑

i


∑

j<i

fRS(i)gRA(j)


 .

Problems with the model:

• Can the integral (or sum) be completed in closed form?

• Are the runs scored and allowed independent random variables?

•What arefRS andgRA?
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Three Parameter Weibull

Weibull distribution:

f (x; α, β, γ) =





γ
α

(
x−β
α

)γ−1
e−((x−β)/α)γ if x ≥ β

0 otherwise.

• α: scale (variance: meters versus centimeters);

• β: origin (mean: translation, zero point);

• γ: shape (behavior nearβ and at infinity).

Various values give different shapes, but can we findα, β, γ such that it fits
observed data? Is the Weibull theoretically tractable?
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Weibull Plots: Parameters(α, β, γ)
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Weibull Integrations

Let f (x; α, β, γ) be the probability density of a Weibull(α, β, γ):

f (x; α, β, γ) =





γ
α

(
x−β
α

)γ−1
e−((x−β)/α)γ if x ≥ β

0 otherwise.

For s ∈ C with the real part ofs greater than0, recall theΓ-function:

Γ(s) =

∫ ∞

0
e−uus−1du =

∫ ∞

0
e−uusdu

u
.

Γ(n) = (n− 1)! (i.e., Γ(4) = 3 · 2 · 1).

Let µα,β,γ denote the mean off (x; α, β, γ).
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Weibull Integrations (Continued)

µα,β,γ =

∫ ∞

β
x · γ

α

(
x− β

α

)γ−1

e−((x−β)/α)γdx

=

∫ ∞

β
α

x− β

α
· γ
α

(
x− β

α

)γ−1

e−((x−β)/α)γdx + β.

Change variables:u =
(

x−β
α

)γ
. Thendu = γ

α

(
x−β
α

)γ−1
dx and

µα,β,γ =

∫ ∞

0
αuγ−1 · e−udu + β

= α

∫ ∞

0
e−u u1+γ−1 du

u
+ β

= αΓ(1 + γ−1) + β.

A similar calculation determines the variance.
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Pythagorean Won-Loss Formula

Theorem: Pythagorean Won-Loss Formula:Let the runs scored and al-
lowed per game be two independent random variables drawn from Weibull
distributions(αRS, β, γ) and(αRA, β, γ); αRS andαRA are chosen so that
the means areRS andRA. If γ > 0 then

Won-Loss Percentage(RS, RA, β, γ) =
(RS− β)γ

(RS− β)γ + (RA− β)γ
.

In baseball takeβ = −.5 (from runs must be integers).

RS − β estimates average runs scored,RA − β estimates average runs
allowed.
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Best Fit Weibulls to Data: Method of Least Squares

Minimized the sum of squares of the error from the runs scored data plus
the sum of squares of the error from the runs allowed data.

• Bin(k) is thekth bin;

• RSobs(k) (resp.RAobs(k)) the observed number of games with the num-
ber of runs scored (allowed) inBin(k);

• A(α, β, γ, k) the area under the Weibull with parameters(α, β, γ) in
Bin(k).

Find the values of(αRS, αRA, γ) that minimize

#Bins∑

k=1

(RSobs(k)−#Games · A(αRS,−.5, γ, k))2

+

#Bins∑

k=1

(RAobs(k)−#Games · A(αRA,−.5, γ, k))2 .

13



Best Fit Weibulls to Data (Method of Maximum Likelihood)

Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Boston Red Sox
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Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the New York Yankees
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Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Baltimore Orioles
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Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Tampa Bay Devil Rays
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Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Toronto Blue Jays
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Bonferroni Adjustments

Imagine a fair coin. If flip 1,000,000 times expect 500,000 heads.

Approximately 95% of the time499, 000 ≤ #Heads ≤ 501, 000.

ConsiderN independent experiments of fliping a fair coin 1,000,000 times.
What is the probability that at least one of set doesn’t have499, 000 ≤
#Heads ≤ 501, 000? See unlikely events happen asN increases!

N Prob
5 22.62

10 40.13
14 51.23
20 64.15
50 92.31
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Team RS+RA Χ2: 20 d.f. Indep Χ2: 109 d.f
Boston Red Sox 15.63 83.19
New York Yankees 12.60 129.13

Baltimore Orioles 29.11 116.88
Tampa Bay Devil Rays 13.67 111.08
Toronto Blue Jays 41.18 100.11

Minnesota Twins 17.46 97.93
Chicago White Sox 22.51 153.07
Cleveland Indians 17.88 107.14
Detroit Tigers 12.50 131.27
Kansas City Royals 28.18 111.45
Los Angeles Angels 23.19 125.13

Oakland Athletics 30.22 133.72
Texas Rangers 16.57 111.96

Seattle Mariners 21.57 141.00

20 d.f.: 31.41 (at the95% level) and 37.57 (at the99% level).
109 d.f.: 134.4 (at the95% level) and 146.3 (at the99% level).

Bonferroni Adjustment:
20 d.f.: 41.14 (at the95% level) and 46.38 (at the99% level).

109 d.f.: 152.9 (at the95% level) and 162.2 (at the99% level).
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Testing the Model: Data from Method of Maximum Likelihood

Team Obs Wins Pred Wins ObsPerc PredPerc GamesDiff Γ

Boston Red Sox 98 93.0 0.605 0.574 5.03 1.82
New York Yankees 101 87.5 0.623 0.540 13.49 1.78

Baltimore Orioles 78 83.1 0.481 0.513 -5.08 1.66
Tampa Bay Devil Rays 70 69.6 0.435 0.432 0.38 1.83
Toronto Blue Jays 67 74.6 0.416 0.464 -7.65 1.97

Minnesota Twins 92 84.7 0.568 0.523 7.31 1.79
Chicago White Sox 83 85.3 0.512 0.527 -2.33 1.73
Cleveland Indians 80 80.0 0.494 0.494 0. 1.79
Detroit Tigers 72 80.0 0.444 0.494 -8.02 1.78
Kansas City Royals 58 68.7 0.358 0.424 -10.65 1.76
Los Angeles Angels 92 87.5 0.568 0.540 4.53 1.71

Oakland Athletics 91 84.0 0.562 0.519 6.99 1.76
Texas Rangers 89 87.3 0.549 0.539 1.71 1.90

Seattle Mariners 63 70.7 0.389 0.436 -7.66 1.78

γ: mean= 1.74, standard deviation= .06, median= 1.76;
close to numerically observed value of1.82.

The mean number of the difference between observed and predicted wins
was−.13 with a standard deviation of7.11 (and a median of0.19).
If we consider just the absolute value of the difference then we have a mean
of 5.77 with a standard deviation of3.85 (and a median of6.04).
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Conclusions

• Can find parameters such that the Weibulls are good fits to the data;

• The runs scored and allowed per game are statistically independent;

• The Pythagorean Won-Loss Formula is a consequence of our model;

•Method of Least Squares: best value ofγ of about 1.79;
Method of Maximum Likelihood: best value ofγ of about 1.74;
both are close to the observed best 1.82.
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Future Work

•Micro-analysis: runs scored and allowed are not entirely independent
(big lead, close game), run production smaller for inter-league games in
NL parks, et cetera.

•What about other sports? Does the same model work? How doesγ de-
pend on the sport?

• Are there other probability distributions that give integrals which can be
determined in closed form?
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Appendix: Proof of the Pythagorean Won-Loss Formula

Proof.Let X andY be independent random variables with Weibull distri-
butions(αRS, β, γ) and(αRA, β, γ) respectively.

αRS =
RS− β

Γ(1 + γ−1)
, αRA =

RA− β

Γ(1 + γ−1)
.

We need only calculate the probability thatX exceedsY . We use the
integral of a probability density is1.

25



Prob(X > Y ) =

∫ ∞

x=β

∫ x

y=β
f (x; αRS, β, γ)f (y; αRA, β, γ)dy dx

=

∫ ∞

x=β

∫ x

y=β

γ

αRS

(
x− β

αRS

)γ−1

e
−

(
x−β
αRS

)γ
γ

αRA

(
y − β

αRA

)γ−1

e
−

(
y−β
αRA

)γ

dy dx

=

∫ ∞

x=0

γ

αRS

(
x

αRS

)γ−1

e
−

(
x

αRS

)γ
[∫ x

y=0

γ

αRA

(
y

αRA

)γ−1

e
−

(
y

αRA

)γ

dy

]
dx

=

∫ ∞

x=0

γ

αRS

(
x

αRS

)γ−1

e−(x/αRS)γ
[
1− e−(x/αRA)γ

]
dx

= 1−
∫ ∞

x=0

γ

αRS

(
x

αRS

)γ−1

e−(x/α)γdx,

where we have set

1

αγ =
1

α
γ
RS

+
1

α
γ
RA

=
α

γ
RS + α

γ
RA

α
γ
RSα

γ
RA

.
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Prob(X > Y ) = 1− αγ

α
γ
RS

∫ ∞

0

γ

α

(x

α

)γ−1
e(x/α)γdx

= 1− αγ

α
γ
RS

= 1− 1

α
γ
RS

α
γ
RSα

γ
RA

α
γ
RS + α

γ
RA

=
α

γ
RS

α
γ
RS + α

γ
RA

.

We substitute the relations forαRS andαRA and find that

Prob(X > Y ) =
(RS− β)γ

(RS− β)γ + (RA− β)γ
.

NoteRS− β estimatesRSobs, RA− β estimatesRAobs.
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