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Probability Review

Probability density:

• p(x) ≥ 0;

• ∫∞
−∞ p(x)dx = 1;

•X random variable with densityp(x): Prob (X ∈ [a, b]) =
∫ b
a p(x)dx.
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Probability Review

Probability density:

• p(x) ≥ 0;

• ∫∞
−∞ p(x)dx = 1;

•X random variable with densityp(x): Prob (X ∈ [a, b]) =
∫ b
a p(x)dx.

Mean(average value)µ =
∫∞
−∞ xp(x)dx.

Variance(how spread out)σ2 =
∫∞
−∞(x− µ)2p(x)dx.
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Probability Review

Probability density:

• p(x) ≥ 0;

• ∫∞
−∞ p(x)dx = 1;

•X random variable with densityp(x): Prob (X ∈ [a, b]) =
∫ b
a p(x)dx.

Mean(average value)µ =
∫∞
−∞ xp(x)dx.

Variance(how spread out)σ2 =
∫∞
−∞(x− µ)2p(x)dx.

Independence:two random variables are independent if knowledge of one
does not give knowledge of the other.
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Numerical Observation: Pythagorean Won-Loss Formula

Parameters:

• RSobs: average number of runs scored per game;

• RAobs: average number of runs allowed per game;

• γ: some parameter, constant for a sport.
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Numerical Observation: Pythagorean Won-Loss Formula

Parameters:

• RSobs: average number of runs scored per game;

• RAobs: average number of runs allowed per game;

• γ: some parameter, constant for a sport.

Bill James’ Won-Loss Formula (NUMERICAL Observation):

Won− Loss Percentage =
RSobs

γ

RSobs
γ + RAobs

γ

For baseball:γ originally taken as2.
Numerical studies show bestγ is about1.82.
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Modeling the Real World

Guidelines for Modeling:

•Model should capture key features of the system;

•Model should be mathematically tractable (solvable).
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Modeling the Real World

Guidelines for Modeling:

•Model should capture key features of the system;

•Model should be mathematically tractable (solvable).

In general these are conflicting goals. How should we try and model base-
ball games?
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Modeling the Real World

Guidelines for Modeling:

•Model should capture key features of the system;

•Model should be mathematically tractable (solvable).

In general these are conflicting goals. How should we try and model base-
ball games?

Possible Model:

• Runs Scored and Runs Allowed independent random variables;

• fRS(x), gRA(y): probability density functions for runs scored (allowed).

• Reduced to calculating

∫

x

[∫

y≤x
fRS(x)gRA(y)dy

]
dx or

∑

i


∑

j<i

fRS(i)gRA(j)


 .
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Problems with the Model

Reduced to calculating

∫

x

[∫

y≤x
fRS(x)gRA(y)dy

]
dx or

∑

i


∑

j<i

fRS(i)gRA(j)


 .

Problems with the model:
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Problems with the Model

Reduced to calculating

∫

x

[∫

y≤x
fRS(x)gRA(y)dy

]
dx or

∑

i


∑

j<i

fRS(i)gRA(j)


 .

Problems with the model:

• Can the integral (or sum) be completed in closed form?

• Are the runs scored and allowed independent random variables?

•What arefRS andgRA?
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Three Parameter Weibull

Weibull distribution:

f (x; α, β, γ) =





γ
α

(
x−β
α

)γ−1
e−((x−β)/α)γ if x ≥ β

0 otherwise.
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Three Parameter Weibull

Weibull distribution:

f (x; α, β, γ) =





γ
α

(
x−β
α

)γ−1
e−((x−β)/α)γ if x ≥ β

0 otherwise.

• α: scale (meters versus centimeters);

• β: origin (translation, zero point);

• γ: shape (behavior nearβ and at infinity).

Various values give different shapes, but can we findα, β, γ such that it fits
observed data? Is the Weibull theoretically tractable?
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Weibull Integrations

Let f (x; α, β, γ) be the probability density of a Weibull(α, β, γ):

f (x; α, β, γ) =





γ
α

(
x−β
α

)γ−1
e−((x−β)/α)γ if x ≥ β

0 otherwise.

For s ∈ C with the real part ofs greater than0, recall theΓ-function:

Γ(s) =

∫ ∞

0
e−uus−1du =

∫ ∞

0
e−uusdu

u
.

Let µα,β,γ denote the mean off (x; α, β, γ).
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Weibull Integrations (Continued)

µα,β,γ =

∫ ∞

β
x · γ

α

(
x− β

α

)γ−1

e−((x−β)/α)γdx

=

∫ ∞

β
α

x− β

α
· γ
α

(
x− β

α

)γ−1

e−((x−β)/α)γdx + β.
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Weibull Integrations (Continued)

µα,β,γ =

∫ ∞

β
x · γ

α

(
x− β

α

)γ−1

e−((x−β)/α)γdx

=

∫ ∞

β
α

x− β

α
· γ
α

(
x− β

α

)γ−1

e−((x−β)/α)γdx + β.

Change variables:u =
(

x−β
α

)γ
. Thendu = γ

α

(
x−β
α

)γ−1
dx
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Weibull Integrations (Continued)

µα,β,γ =

∫ ∞

β
x · γ

α

(
x− β

α

)γ−1

e−((x−β)/α)γdx

=

∫ ∞

β
α

x− β

α
· γ
α

(
x− β

α

)γ−1

e−((x−β)/α)γdx + β.

Change variables:u =
(

x−β
α

)γ
. Thendu = γ

α

(
x−β
α

)γ−1
dx and

µα,β,γ =

∫ ∞

0
αuγ−1 · e−udu + β

= α

∫ ∞

0
e−uu1+γ−1du

u
+ β

= αΓ(1 + γ−1) + β.

A similar calculation determines the variance.
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Derivation of the Pythagorean Won-Loss Formula

Theorem: Pythagorean Won-Loss Formula:Let the runs scored and al-
lowed per game be two independent random variables drawn from Weibull
distributions(αRS, β, γ) and(αRA, β, γ); αRS andαRA are chosen so that
the means areRS andRA. If γ > 0 then

Won-Loss Percentage(RS, RA, β, γ) =
(RS− β)γ

(RS− β)γ + (RA− β)γ
.
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Derivation of the Pythagorean Won-Loss Formula

Theorem: Pythagorean Won-Loss Formula:Let the runs scored and al-
lowed per game be two independent random variables drawn from Weibull
distributions(αRS, β, γ) and(αRA, β, γ); αRS andαRA are chosen so that
the means areRS andRA. If γ > 0 then

Won-Loss Percentage(RS, RA, β, γ) =
(RS− β)γ

(RS− β)γ + (RA− β)γ
.

Proof: Let X andY be independent random variables with Weibull distri-
butions(αRS, β, γ) and(αRA, β, γ) respectively.

αRS =
RS− β

Γ(1 + γ−1)
, αRA =

RA− β

Γ(1 + γ−1)
.
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Derivation of the Pythagorean Won-Loss Formula

Theorem: Pythagorean Won-Loss Formula:Let the runs scored and al-
lowed per game be two independent random variables drawn from Weibull
distributions(αRS, β, γ) and(αRA, β, γ); αRS andαRA are chosen so that
the means areRS andRA. If γ > 0 then

Won-Loss Percentage(RS, RA, β, γ) =
(RS− β)γ

(RS− β)γ + (RA− β)γ
.

Proof.Let X andY be independent random variables with Weibull distri-
butions(αRS, β, γ) and(αRA, β, γ) respectively.

αRS =
RS− β

Γ(1 + γ−1)
, αRA =

RA− β

Γ(1 + γ−1)
.

We need only calculate the probability thatX exceedsY . We use the
integral of a probability density is1.
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Prob(X > Y ) =

∫ ∞

x=β

∫ x

y=β
f (x; αRS, β, γ)f (y; αRA, β, γ)dy dx

=

∫ ∞

x=β

∫ x

y=β

γ

αRS

(
x− β

αRS

)γ−1

e
−

(
x−β
αRS

)γ
γ

αRA

(
y − β

αRA

)γ−1

e
−

(
y−β
αRA

)γ

dy dx
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Prob(X > Y ) =

∫ ∞

x=β

∫ x

y=β
f (x; αRS, β, γ)f (y; αRA, β, γ)dy dx

=

∫ ∞

x=β

∫ x

y=β

γ

αRS

(
x− β

αRS

)γ−1

e
−

(
x−β
αRS

)γ
γ

αRA

(
y − β

αRA

)γ−1

e
−

(
y−β
αRA

)γ

dy dx

=

∫ ∞

x=0

γ

αRS

(
x

αRS

)γ−1

e
−

(
x

αRS

)γ
[∫ x

y=0

γ

αRA

(
y

αRA

)γ−1

e
−

(
y

αRA

)γ

dy

]
dx
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Prob(X > Y ) =

∫ ∞

x=β

∫ x

y=β
f (x; αRS, β, γ)f (y; αRA, β, γ)dy dx

=

∫ ∞

x=β

∫ x

y=β

γ

αRS

(
x− β

αRS

)γ−1

e
−

(
x−β
αRS

)γ
γ

αRA

(
y − β

αRA

)γ−1

e
−

(
y−β
αRA

)γ

dy dx

=

∫ ∞

x=0

γ

αRS

(
x

αRS

)γ−1

e
−

(
x

αRS

)γ
[∫ x

y=0

γ

αRA

(
y

αRA

)γ−1

e
−

(
y

αRA

)γ

dy

]
dx

=

∫ ∞

x=0

γ

αRS

(
x

αRS

)γ−1

e−(x/αRS)γ
[
1− e−(x/αRA)γ

]
dx
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Prob(X > Y ) =

∫ ∞

x=β

∫ x

y=β
f (x; αRS, β, γ)f (y; αRA, β, γ)dy dx

=

∫ ∞

x=β

∫ x

y=β

γ

αRS

(
x− β

αRS

)γ−1

e
−

(
x−β
αRS

)γ
γ

αRA

(
y − β

αRA

)γ−1

e
−

(
y−β
αRA

)γ

dy dx

=

∫ ∞

x=0

γ

αRS

(
x

αRS

)γ−1

e
−

(
x

αRS

)γ
[∫ x

y=0

γ

αRA

(
y

αRA

)γ−1

e
−

(
y

αRA

)γ

dy

]
dx

=

∫ ∞

x=0

γ

αRS

(
x

αRS

)γ−1

e−(x/αRS)γ
[
1− e−(x/αRA)γ

]
dx

= 1−
∫ ∞

x=0

γ

αRS

(
x

αRS

)γ−1

e−(x/α)γdx,

where we have set

1

αγ =
1

α
γ
RS

+
1

α
γ
RA

=
α

γ
RS + α

γ
RA

α
γ
RSα

γ
RA

.

23



Prob(X > Y ) = 1− αγ

α
γ
RS

∫ ∞

0

γ

α

(x

α

)γ−1
e(x/α)γdx
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Prob(X > Y ) = 1− αγ

α
γ
RS

∫ ∞

0

γ

α

(x

α

)γ−1
e(x/α)γdx

= 1− αγ

α
γ
RS
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Prob(X > Y ) = 1− αγ

α
γ
RS

∫ ∞

0

γ

α

(x

α

)γ−1
e(x/α)γdx

= 1− αγ

α
γ
RS

= 1− 1

α
γ
RS

α
γ
RSα

γ
RA

α
γ
RS + α

γ
RA
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Prob(X > Y ) = 1− αγ

α
γ
RS

∫ ∞

0

γ

α

(x

α

)γ−1
e(x/α)γdx

= 1− αγ

α
γ
RS

= 1− 1

α
γ
RS

α
γ
RSα

γ
RA

α
γ
RS + α

γ
RA

=
α

γ
RS

α
γ
RS + α

γ
RA

.
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Prob(X > Y ) = 1− αγ

α
γ
RS

∫ ∞

0

γ

α

(x

α

)γ−1
e(x/α)γdx

= 1− αγ

α
γ
RS

= 1− 1

α
γ
RS

α
γ
RSα

γ
RA

α
γ
RS + α

γ
RA

=
α

γ
RS

α
γ
RS + α

γ
RA

.

We substitute the relations forαRS andαRA and find that

Prob(X > Y ) =
(RS− β)γ

(RS− β)γ + (RA− β)γ
.

NoteRS− β estimatesRSobs, RA− β estimatesRAobs.
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Best Fit Weibulls to Data: Method of Least Squares

Minimized the sum of squares of the error from the runs scored data plus
the sum of squares of the error from the runs allowed data.
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Best Fit Weibulls to Data: Method of Least Squares

Minimized the sum of squares of the error from the runs scored data plus
the sum of squares of the error from the runs allowed data.

• Bin(k) is thekth bin;

• RSobs(k) (resp.RAobs(k)) the observed number of games with the num-
ber of runs scored (allowed) inBin(k);

• A(α, β, γ, k) the area under the Weibull with parameters(α, β, γ) in
Bin(k).
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Best Fit Weibulls to Data: Method of Least Squares

Minimized the sum of squares of the error from the runs scored data plus
the sum of squares of the error from the runs allowed data.

• Bin(k) is thekth bin;

• RSobs(k) (resp.RAobs(k)) the observed number of games with the num-
ber of runs scored (allowed) inBin(k);

• A(α, β, γ, k) the area under the Weibull with parameters(α, β, γ) in
Bin(k).

Find the values of(αRS, αRA, γ) that minimize

#Bins∑

k=1

(RSobs(k)−#Games · A(αRS,−.5, γ, k))2

+

#Bins∑

k=1

(RAobs(k)−#Games · A(αRA,−.5, γ, k))2 .
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Best Fit Weibulls to Data: Method of Maximum Likelihood

The likelihood function depends on:αRS, αRA, β = −.5, γ.

Let A(α,−.5, γ, k) denote the area inBin(k) of the Weibull with parame-
tersα,−.5, γ. The sample likelihood functionL(αRS, αRA,−.5, γ) is

(
#Games

RSobs(1), . . . , RSobs(#Bins)

) #Bins∏

k=1

A(αRS,−.5, γ, k)RSobs(k)

·
(

#Games

RAobs(1), . . . , RAobs(#Bins)

) #Bins∏

k=1

A(αRA,−.5, γ, k)RAobs(k).

For each team we find the values of the parametersαRS, αRA andγ that
maximize the likelihood. Computationally, it is equivalent to maximize
the logarithm of the likelihood, and we may ignore the multinomial coeffi-
cients are they are independent of the parameters.
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Best Fit Weibulls to Data (Method of Maximum Likelihood)

Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Boston Red Sox
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Using as bins

[−.5, .5] ∪ [.5, 1.5] ∪ · · · ∪ [7.5, 8.5] ∪ [8.5, 9.5] ∪ [9.5, 11.5] ∪ [11.5,∞).
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Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the New York Yankees
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Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Baltimore Orioles
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Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Tampa Bay Devil Rays
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Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Toronto Blue Jays
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Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Minnesota Twins
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Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Chicago White Sox
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Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Cleveland Indians
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Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Detroit Tigers
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Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Kansas City Royals
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Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Los Angeles Angels
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Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Oakland Athletics
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Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Texas Rangers
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Plots of RS Hpredicted vs observedL and RA Hpredicted vs observedL for the Seattle Mariners
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Best Fit Weibulls to Data (Continued)

The fitslook good, but are they? Doχ2-tests:
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Best Fit Weibulls to Data (Continued)

The fitslook good, but are they? Doχ2-tests:

• Let Bin(k) denote thekth bin.
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Best Fit Weibulls to Data (Continued)

The fitslook good, but are they? Doχ2-tests:

• Let Bin(k) denote thekth bin.

• Or,c: the observed number of games where the team’s runs scored is in
Bin(r) and the runs allowed are inBin(c).
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Best Fit Weibulls to Data (Continued)

The fitslook good, but are they? Doχ2-tests:

• Let Bin(k) denote thekth bin.

• Or,c: the observed number of games where the team’s runs scored is in
Bin(r) and the runs allowed are inBin(c).

• Er,c =

∑
c′Or,c′·

∑
r′Or′,c

#Games is the expected frequency of cell(r, c).
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Best Fit Weibulls to Data (Continued)

The fitslook good, but are they? Doχ2-tests:

• Let Bin(k) denote thekth bin.

• Or,c: the observed number of games where the team’s runs scored is in
Bin(r) and the runs allowed are inBin(c).

• Er,c =

∑
c′Or,c′·

∑
r′Or′,c

#Games is the expected frequency of cell(r, c).

• Then
#Rows∑

r=1

#Columns∑

c=1

(Or,c − Er,c)
2

Er,c

is aχ2 distribution with(#Rows − 1)(#Columns − 1) degrees of free-
dom.
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Best Fit Weibulls to Data (Continued)

For independence of runs scored and allowed, use bins

[0, 1) ∪ [1, 2) ∪ [2, 3) ∪ · · · ∪ [8, 9) ∪ [9, 10) ∪ [10, 11) ∪ [11,∞).

Have anr × c contingency table (withr = c = 12); however, there are
structural zeros(runs scored and allowed per game can never be equal).
(Essentially)Or,r = 0 for all r. We use the iterative fitting procedure to ob-
tain maximum likelihood estimators for theEr,c, the expected frequency of
cell (r, c) under the assumption that, given that the runs scored and allowed
are distinct, the runs scored and allowed are independent.

For 1 ≤ r, c ≤ 12, let E(0)
r,c = 1 if r 6= c and0 if r = c. Set

Xr,+ =

12∑

c=1

Or,c, X+,c =

12∑

r=1

Or,c.
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Then

E
(`)
r,c =





E
(`−1)
r,c Xr,+ /

∑12
c=1 E

(`−1)
r,c if ` is odd

E
(`−1)
r,c X+,c /

∑12
r=1 E

(`−1)
r,c if ` is even,

and
Er,c = lim

`→∞
E

(`)
r,c ;

the iterations converge very quickly. (If we had a complete two-dimensional
contingency table, then the iteration reduces to the standard values, namely
Er,c =

∑
c′ Or,c′ ·

∑
r′ Or′,c / #Games.). Note

12∑

r=1

12∑
c=1
c6=r

(Or,c − Er,c)
2

Er,c

is approximately aχ2 distribution with(12 − 1)2 − 12 = 109 degrees of
freedom. The corresponding critical thresholds are 134.4 (at the95% level)
and 146.3 (at the99% level).
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Team RS+RA Χ2: 20 d.f. Indep Χ2: 109 d.f
Boston Red Sox 15.63 83.19
New York Yankees 12.60 129.13

Baltimore Orioles 29.11 116.88
Tampa Bay Devil Rays 13.67 111.08
Toronto Blue Jays 41.18 100.11

Minnesota Twins 17.46 97.93
Chicago White Sox 22.51 153.07
Cleveland Indians 17.88 107.14
Detroit Tigers 12.50 131.27
Kansas City Royals 28.18 111.45
Los Angeles Angels 23.19 125.13

Oakland Athletics 30.22 133.72
Texas Rangers 16.57 111.96

Seattle Mariners 21.57 141.00

20 d.f.: 31.41 (at the95% level) and 37.57 (at the99% level).
109 d.f.: 134.4 (at the95% level) and 146.3 (at the99% level).
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Team RS+RA Χ2: 20 d.f. Indep Χ2: 109 d.f
Boston Red Sox 15.63 83.19
New York Yankees 12.60 129.13

Baltimore Orioles 29.11 116.88
Tampa Bay Devil Rays 13.67 111.08
Toronto Blue Jays 41.18 100.11

Minnesota Twins 17.46 97.93
Chicago White Sox 22.51 153.07
Cleveland Indians 17.88 107.14
Detroit Tigers 12.50 131.27
Kansas City Royals 28.18 111.45
Los Angeles Angels 23.19 125.13

Oakland Athletics 30.22 133.72
Texas Rangers 16.57 111.96

Seattle Mariners 21.57 141.00

20 d.f.: 31.41 (at the95% level) and 37.57 (at the99% level).
109 d.f.: 134.4 (at the95% level) and 146.3 (at the99% level).

Bonferroni Adjustment:
20 d.f.: 41.14 (at the95% level) and 46.38 (at the99% level).

109 d.f.: 152.9 (at the95% level) and 162.2 (at the99% level).
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Testing the Model: Data from Method of Maximum Likelihood

Team Obs Wins Pred Wins ObsPerc PredPerc GamesDiff Γ

Boston Red Sox 98 93.0 0.605 0.574 5.03 1.82
New York Yankees 101 87.5 0.623 0.540 13.49 1.78

Baltimore Orioles 78 83.1 0.481 0.513 -5.08 1.66
Tampa Bay Devil Rays 70 69.6 0.435 0.432 0.38 1.83
Toronto Blue Jays 67 74.6 0.416 0.464 -7.65 1.97

Minnesota Twins 92 84.7 0.568 0.523 7.31 1.79
Chicago White Sox 83 85.3 0.512 0.527 -2.33 1.73
Cleveland Indians 80 80.0 0.494 0.494 0. 1.79
Detroit Tigers 72 80.0 0.444 0.494 -8.02 1.78
Kansas City Royals 58 68.7 0.358 0.424 -10.65 1.76
Los Angeles Angels 92 87.5 0.568 0.540 4.53 1.71

Oakland Athletics 91 84.0 0.562 0.519 6.99 1.76
Texas Rangers 89 87.3 0.549 0.539 1.71 1.90

Seattle Mariners 63 70.7 0.389 0.436 -7.66 1.78

γ: mean= 1.74, standard deviation= .06, median= 1.76;
close to numerically observed value of1.82.
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Team Obs Wins Pred Wins ObsPerc PredPerc GamesDiff Γ

Boston Red Sox 98 93.0 0.605 0.574 5.03 1.82
New York Yankees 101 87.5 0.623 0.540 13.49 1.78

Baltimore Orioles 78 83.1 0.481 0.513 -5.08 1.66
Tampa Bay Devil Rays 70 69.6 0.435 0.432 0.38 1.83
Toronto Blue Jays 67 74.6 0.416 0.464 -7.65 1.97

Minnesota Twins 92 84.7 0.568 0.523 7.31 1.79
Chicago White Sox 83 85.3 0.512 0.527 -2.33 1.73
Cleveland Indians 80 80.0 0.494 0.494 0. 1.79
Detroit Tigers 72 80.0 0.444 0.494 -8.02 1.78
Kansas City Royals 58 68.7 0.358 0.424 -10.65 1.76
Los Angeles Angels 92 87.5 0.568 0.540 4.53 1.71

Oakland Athletics 91 84.0 0.562 0.519 6.99 1.76
Texas Rangers 89 87.3 0.549 0.539 1.71 1.90

Seattle Mariners 63 70.7 0.389 0.436 -7.66 1.78

γ: mean= 1.74, standard deviation= .06, median= 1.76;
close to numerically observed value of1.82.

The mean number of the difference between observed and predicted wins
was−.13 with a standard deviation of7.11 (and a median of0.19).
If we consider just the absolute value of the difference then we have a mean
of 5.77 with a standard deviation of3.85 (and a median of6.04).
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Conclusions

• Can find parameters such that the Weibulls are good fits to the data;
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Conclusions

• Can find parameters such that the Weibulls are good fits to the data;

• The runs scored and allowed per game are statistically independent;

• The Pythagorean Won-Loss Formula is a consequence of our model;

• Our best value ofγ of about 1.74 is close to the observed best 1.82.
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Future Work

•Micro-analysis: runs scored and allowed are not entirely independent
(big lead, close game), run production smaller for inter-league games in
NL parks, et cetera.
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Future Work

•Micro-analysis: runs scored and allowed are not entirely independent
(big lead, close game), run production smaller for inter-league games in
NL parks, et cetera.

•What about other sports? Does the same model work? How doesγ de-
pend on the sport?

• Are there other probability distributions that give integrals which can be
determined in closed form?
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Appendix: Proof of Central Limit Theorem: Notation

Convolution off andg:

h(y) =

∫

R
f (x)g(y − x)dx =

∫

R
f (x− y)g(x)dx.

X1 andX2 independent random variables with probability densityp.

Prob(Xi ∈ [x, x + ∆x]) =

∫ x+∆x

x
p(t)dt ≈ p(x)∆x.

Prob(X1 + X2) ∈ [x, x + ∆x] =

∫ ∞

x1=−∞

∫ x+∆x−x1

x2=x−x1

p(x1)p(x2)dx2dx1.

As ∆x → 0 we obtain the convolution ofp with itself:

Prob(X1 + X2 ∈ [a, b]) =

∫ b

a
(p ∗ p)(z)dz.

Exercise to show non-negative and integrates to1.
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Statement of Central Limit Theorem

• For simplicity, assumep has mean zero, variance one, finite third mo-
ment and is of sufficiently rapid decay so that all convolution integrals
that arise converge:p an infinitely differentiable function satisfying∫ ∞

−∞
xp(x)dx = 0,

∫ ∞

−∞
x2p(x)dx = 1,

∫ ∞

−∞
|x|3p(x)dx < ∞.

• AssumeX1, X2, . . . are independent identically distributed random vari-
ables drawn fromp.

• DefineSN =
∑N

i=1 Xi.

• Standard Gaussian (mean zero, variance one) is1√
2π

e−x2/2.
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• For simplicity, assumep has mean zero, variance one, finite third mo-
ment and is of sufficiently rapid decay so that all convolution integrals
that arise converge:p an infinitely differentiable function satisfying∫ ∞

−∞
xp(x)dx = 0,

∫ ∞

−∞
x2p(x)dx = 1,

∫ ∞

−∞
|x|3p(x)dx < ∞.

• AssumeX1, X2, . . . are independent identically distributed random vari-
ables drawn fromp.

• DefineSN =
∑N

i=1 Xi.

• Standard Gaussian (mean zero, variance one) is1√
2π

e−x2/2.

Central Limit Theorem Let Xi, SN be as above and assume the third
moment of eachXi is finite. Then SN√

N
converges in probability to the

standard Gaussian:

lim
N→∞

Prob

(
SN√
N

∈ [a, b]

)
=

1√
2π

∫ b

a
e−x2/2dx.
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Proof of the Central Limit Theorem

• The Fourier transform ofp is

p̂(y) =

∫ ∞

−∞
p(x)e−2πixydx.

• Derivative of ĝ is the Fourier transform of2πixg(x); differentiation
(hard) is converted to multiplication (easy).

ĝ′(y) =

∫ ∞

−∞
2πix · g(x)e−2πixydx.

If g is a probability density,̂g′(0) = 2πiE[x] andĝ′′(0) = −4π2E[x2].
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Proof of the Central Limit Theorem
• The Fourier transform ofp is

p̂(y) =

∫ ∞

−∞
p(x)e−2πixydx.

• Derivative of ĝ is the Fourier transform of2πixg(x); differentiation
(hard) is converted to multiplication (easy).

ĝ′(y) =

∫ ∞

−∞
2πix · g(x)e−2πixydx.

If g is a probability density,̂g′(0) = 2πiE[x] andĝ′′(0) = −4π2E[x2].

• Natural to use the Fourier transform to analyze probability distributions.
The mean and variance are simple multiples of the derivatives ofp̂ at
zero: p̂′(0) = 0, p̂′′(0) = −4π2.

•We Taylor expand̂p (need technical conditions onp):

p̂(y) = 1 +
p′′(0)

2
y2 + · · · = 1− 2π2y2 + O(y3).

Near the origin, the above showsp̂ looks like a concave down parabola.
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Proof of the Central Limit Theorem (cont)

• Prob(X1 + · · · + XN ∈ [a, b]) =
∫ b
a (p ∗ · · · ∗ p)(z)dz.

• The Fourier transform converts convolution to multiplication. If FT[f ](y)
denotes the Fourier transform off evaluated aty:

FT[p ∗ · · · ∗ p](y) = p̂(y) · · · p̂(y).
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Proof of the Central Limit Theorem (cont)

• Prob(X1 + · · · + XN ∈ [a, b]) =
∫ b
a (p ∗ · · · ∗ p)(z)dz.

• The Fourier transform converts convolution to multiplication. If FT[f ](y)
denotes the Fourier transform off evaluated aty:

FT[p ∗ · · · ∗ p](y) = p̂(y) · · · p̂(y).

• Do not want the distribution ofX1 + · · · + XN = x, but rather
SN = X1+···+XN√

N
= x.

71



Proof of the Central Limit Theorem (cont)

• Prob(X1 + · · · + XN ∈ [a, b]) =
∫ b
a (p ∗ · · · ∗ p)(z)dz.

• The Fourier transform converts convolution to multiplication. If FT[f ](y)
denotes the Fourier transform off evaluated aty:

FT[p ∗ · · · ∗ p](y) = p̂(y) · · · p̂(y).

• Do not want the distribution ofX1 + · · · + XN = x, but rather
SN = X1+···+XN√

N
= x.

• If B(x) = A(cx) for some fixedc 6= 0, thenB̂(y) = 1
cÂ

(y
c

)
.

• Prob
(

X1+···+XN√
N

= x
)

= (
√

Np ∗ · · · ∗ √Np)(x
√

N).

• FT
[
(
√

Np ∗ · · · ∗ √Np)(x
√

N)
]

(y) =
[
p̂
(

y√
N

)]N
.
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Proof of the Central Limit Theorem (cont)

• Can find the Fourier transform of the distribution ofSN :
[
p̂

(
y√
N

)]N

.

• Take the limit asN →∞ for fixed y.

• Know p̂(y) = 1− 2π2y2 + O(y3). Thus study
[
1− 2π2y2

N
+ O

(
y3

N3/2

)]N

.

• For anyfixed y,

lim
N→∞

[
1− 2π2y2

N
+ O

(
y3

N3/2

)]N

= e−2πy2
.

• Fourier transform ofe−2πy2
atx is 1√

2π
e−x2/2.
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Proof of the Central Limit Theorem (cont)

We have shown:

• the Fourier transform of the distribution ofSN converges toe−2πy2
;

• the Fourier transform ofe−2πy2
is 1√

2π
e−x2/2.

Therefore the distribution ofSN equallingx converges to 1√
2π

e−x2/2.

We need complex analysis to justify this conclusion. Must be careful: Con-
sider

g(x) =

{
e−1/x2

if x 6= 0

0 if x = 0.

All the Taylor coefficients aboutx = 0 are zero, but the function is not
identically zero in a neighborhood ofx = 0.

74


