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Introduction
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Goals of the Talk
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Predator-Prey Equations: Discrete Version

hn: Number of humans at time n.

zn: Number of zombies at time n.
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Predator-Prey Equations: Discrete Version

hn: Number of humans at time n.

zn: Number of zombies at time n.

Lotka-Volterra Equation:

hn+1 = αhn − βhnzn

zn+1 = −γzn + δhnzn.
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Predator-Prey Equations: Discrete Version

hn: Number of humans at time n.

zn: Number of zombies at time n.

Lotka-Volterra Equation:

hn+1 = αhn − βhnzn

zn+1 = −γzn + δhnzn.

Now that zn = 0 can return to pure math decomposition
problems....
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Bower, Louis Gaudet, Rachel Insoft, Shiyu Li, Philip Tosteson.
Kentucky Sequence, Fibonacci Quilt: Joint with Minerva
Catral, Pari Ford, Pamela Harris & Dawn Nelson.
Benfordness: Andrew Best, Patrick Dynes, Xixi Edelsbunner,
Brian McDonald, Kimsy Tor, Caroline Turnage-Butterbaugh &
Madeleine Weinstein.
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DMS0850577, AIM and Williams College.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =?
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 17 = F8 + 17.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 4 = F8 + F6 + 4.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 3 + 1 = F8 + F6 + F3 + 1.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 3 + 1 = F8 + F6 + F3 + F1.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
First few: 1,2,3,5,8,13,21,34,55,89, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 13 + 3 + 1 = F8 + F6 + F3 + F1.
Example: 83 = 55 + 21 + 5 + 2 = F9 + F7 + F4 + F2.
Observe: 51 miles ≈ 82.1 kilometers.
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Old Results

Central Limit Type Theorem

As n → ∞, the distribution of number of summands in
Zeckendorf decomposition for m ∈ [Fn,Fn+1) is Gaussian.

500 520 540 560 580 600

0.005

0.010

0.015

0.020

0.025

0.030

Figure: Number of summands in [F2010,F2011); F2010 ≈ 10420.
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Benford’s law

Definition of Benford’s Law
A dataset is said to follow Benford’s Law (base B) if the
probability of observing a first digit of d is

logB

(

1 +
1
d

)

.

More generally probability a significant at most s is logB(s),
where x = SB(x)10k with SB(x) ∈ [1,B) and k an integer.

Find base 10 about 30.1% of the time start with a 1, only
4.5% start with a 9.
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Gaps
Joint with Olivia Beckwith, Amanda Bower, Louis Gaudet,

Rachel Insoft, Shiyu Li, Philip Tosteson
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(g) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length g.
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(g) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length g.

Bulk: What is P(g) = limn→∞ Pn(g)?
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(g) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length g.

Bulk: What is P(g) = limn→∞ Pn(g)?

Individual: Similar questions about gaps for a fixed
m ∈ [Fn,Fn+1): distribution of gaps, longest gap.
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New Results: Bulk Gaps: m ∈ [Fn,Fn+1) and φ = 1+
√

5
2

m =

k(m)=n
∑

j=1

Fij , νm;n(x) =
1

k(m)− 1

k(m)
∑

j=2

δ
(

x − (ij − ij−1)
)

.

Theorem (Zeckendorf Gap Distribution)

Gap measures νm;n converge to average gap measure where
P(k) = 1/φk for k ≥ 2.
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Figure: Distribution of gaps in [F2010,F2011); F2010 ≈ 10420.
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New Results: Longest Gap

Fair coin: largest gap tightly concentrated around log n/ log 2.

Theorem (Longest Gap)

As n → ∞, the probability that m ∈ [Fn,Fn+1) has longest gap
less than or equal to f (n) converges to

Prob (Ln(m) ≤ f (n)) ≈ e−elog n−f (n)·logφ

• µn =
log

(

φ2

φ2+1)
n
)

logφ
+ γ

logφ
− 1

2 + Small Error.

• If f (n) grows slower (resp. faster) than log n/ logφ, then
Prob(Ln(m) ≤ f (n)) goes to 0 (resp. 1).
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Previous Work
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer can
be written uniquely as a sum of non-adjacent terms.

1,
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer can
be written uniquely as a sum of non-adjacent terms.

1, 2,
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer can
be written uniquely as a sum of non-adjacent terms.

1, 2, 3,
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer can
be written uniquely as a sum of non-adjacent terms.

1, 2, 3, 5,
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer can
be written uniquely as a sum of non-adjacent terms.

1, 2, 3, 5, 8,
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer can
be written uniquely as a sum of non-adjacent terms.

1, 2, 3, 5, 8, 13 . . . .
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Equivalent Definition of the Fibonaccis

Fibonaccis are the only sequence such that each integer can
be written uniquely as a sum of non-adjacent terms.

1, 2, 3, 5, 8, 13 . . . .

Key to entire analysis: Fn+1 = Fn + Fn−1.

View as bins of size 1, cannot use two adjacent bins:

[1] [2] [3] [5] [8] [13] · · · .

Goal: How does the notion of legal decomposition affect
the sequence and results?
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Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hn+1 = c1Hn + c2Hn−1 + · · · + cLHn−L+1, n ≥ L

with H1 = 1, Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1, n < L,
coefficients ci ≥ 0; c1, cL > 0 if L ≥ 2; c1 > 1 if L = 1.

Zeckendorf: Every positive integer can be written uniquely
as

∑

aiHi with natural constraints on the ai ’s (e.g. cannot
use the recurrence relation to remove any summand).

Central Limit Type Theorem
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Example: the Special Case of L = 1, c1 = 10

Hn+1 = 10Hn, H1 = 1, Hn = 10n−1.

Legal decomposition is decimal expansion:
∑m

i=1 aiHi :
ai ∈ {0,1, . . . ,9} (1 ≤ i < m), am ∈ {1, . . . ,9}.
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Example: the Special Case of L = 1, c1 = 10

Hn+1 = 10Hn, H1 = 1, Hn = 10n−1.

Legal decomposition is decimal expansion:
∑m

i=1 aiHi :
ai ∈ {0,1, . . . ,9} (1 ≤ i < m), am ∈ {1, . . . ,9}.

For N ∈ [Hn,Hn+1), first term is anHn = an10n−1.
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Example: the Special Case of L = 1, c1 = 10

Hn+1 = 10Hn, H1 = 1, Hn = 10n−1.

Legal decomposition is decimal expansion:
∑m

i=1 aiHi :
ai ∈ {0,1, . . . ,9} (1 ≤ i < m), am ∈ {1, . . . ,9}.

For N ∈ [Hn,Hn+1), first term is anHn = an10n−1.

Ai : the corresponding random variable of ai . The Ai ’s are
independent.
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Example: the Special Case of L = 1, c1 = 10

Hn+1 = 10Hn, H1 = 1, Hn = 10n−1.

Legal decomposition is decimal expansion:
∑m

i=1 aiHi :
ai ∈ {0,1, . . . ,9} (1 ≤ i < m), am ∈ {1, . . . ,9}.

For N ∈ [Hn,Hn+1), first term is anHn = an10n−1.

Ai : the corresponding random variable of ai . The Ai ’s are
independent.

For large n, the contribution of An is immaterial.
Ai (1 ≤ i < n) are identically distributed random variables
with mean 4.5 and variance 8.25.
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Example: the Special Case of L = 1, c1 = 10

Hn+1 = 10Hn, H1 = 1, Hn = 10n−1.

Legal decomposition is decimal expansion:
∑m

i=1 aiHi :
ai ∈ {0,1, . . . ,9} (1 ≤ i < m), am ∈ {1, . . . ,9}.

For N ∈ [Hn,Hn+1), first term is anHn = an10n−1.

Ai : the corresponding random variable of ai . The Ai ’s are
independent.

For large n, the contribution of An is immaterial.
Ai (1 ≤ i < n) are identically distributed random variables
with mean 4.5 and variance 8.25.

Central Limit Theorem: A2 + A3 + · · · + An → Gaussian
with mean 4.5n + O(1) and variance 8.25n + O(1).
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Kentucky Sequence and Quilts
with Minerva Catral, Pari Ford, Pamela Harris & Dawn Nelson
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Kentucky Sequence

Rule: (s,b)-Sequence: Bins of length b, and:

cannot take two elements from the same bin, and

if have an element from a bin, cannot take anything from
the first s bins to the left or the first s to the right.
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Kentucky Sequence

Rule: (s,b)-Sequence: Bins of length b, and:

cannot take two elements from the same bin, and

if have an element from a bin, cannot take anything from
the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).

Kentucky: These are (s,b) = (1,2).

[1, 2], [3, 4], [5,
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Kentucky Sequence

Rule: (s,b)-Sequence: Bins of length b, and:

cannot take two elements from the same bin, and

if have an element from a bin, cannot take anything from
the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).

Kentucky: These are (s,b) = (1,2).

[1, 2], [3, 4], [5, 8],

42



Intro Gaps Previous Work Kentucky and Quilts Other Rules References Computations

Kentucky Sequence

Rule: (s,b)-Sequence: Bins of length b, and:

cannot take two elements from the same bin, and

if have an element from a bin, cannot take anything from
the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).

Kentucky: These are (s,b) = (1,2).

[1, 2], [3, 4], [5, 8], [11,
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Kentucky Sequence

Rule: (s,b)-Sequence: Bins of length b, and:

cannot take two elements from the same bin, and

if have an element from a bin, cannot take anything from
the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).

Kentucky: These are (s,b) = (1,2).

[1, 2], [3, 4], [5, 8], [11, 16],
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Kentucky Sequence

Rule: (s,b)-Sequence: Bins of length b, and:

cannot take two elements from the same bin, and

if have an element from a bin, cannot take anything from
the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).

Kentucky: These are (s,b) = (1,2).

[1, 2], [3, 4], [5, 8], [11, 16], [21,
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Kentucky Sequence

Rule: (s,b)-Sequence: Bins of length b, and:

cannot take two elements from the same bin, and

if have an element from a bin, cannot take anything from
the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).

Kentucky: These are (s,b) = (1,2).

[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128].
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Kentucky Sequence

Rule: (s,b)-Sequence: Bins of length b, and:

cannot take two elements from the same bin, and

if have an element from a bin, cannot take anything from
the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).

Kentucky: These are (s,b) = (1,2).

[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128].

a2n = 2n and a2n+1 = 1
3(2

2+n − (−1)n):
an+1 = an−1 + 2an−3,a1 = 1,a2 = 2,a3 = 3,a4 = 4.
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Kentucky Sequence

Rule: (s,b)-Sequence: Bins of length b, and:

cannot take two elements from the same bin, and

if have an element from a bin, cannot take anything from
the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1,1).

Kentucky: These are (s,b) = (1,2).

[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128].

a2n = 2n and a2n+1 = 1
3(2

2+n − (−1)n):
an+1 = an−1 + 2an−3,a1 = 1,a2 = 2,a3 = 3,a4 = 4.

an+1 = an−1 + 2an−3: New as leading term 0.
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What’s in a name?
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Gaussian Behavior

620 640 660 680 700 720

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Figure: Plot of the distribution of the number of summands for
100,000 randomly chosen m ∈ [1, a4000) = [1, 22000) (so m has on the
order of 602 digits).

Proved Gaussian behavior.
50



Intro Gaps Previous Work Kentucky and Quilts Other Rules References Computations

Gaps

Figure: Plot of the distribution of gaps for 10,000 randomly chosen
m ∈ [1, a400) = [1, 2200) (so m has on the order of 60 digits).
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Gaps

Figure: Plot of the distribution of gaps for 10,000 randomly chosen
m ∈ [1, a400) = [1, 2200) (so m has on the order of 60 digits). Left
(resp. right): ratio of adjacent even (resp odd) gap probabilities.

Again find geometric decay, but parity issues so break into even
and odd gaps.
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The Fibonacci (or Log Cabin) Quilt: Work in Progress

an+1 = an−1 + an−2, non-uniqueness (average number of
decompositions grows exponentially).

In process of investigating Gaussianity, Gaps,
Kmin,Kave,Kmax,Kgreedy.
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Average Number of Representations

dn: the number of FQ-legal decompositions using only elements of
{a1, a2, . . . , an}.
cn requires an to be used, bn requires an and an−2 to be used.

n dn cn bn an

1 2 1 0 1
2 3 1 0 2
3 4 1 0 3
4 6 2 1 4
5 8 2 1 5
6 11 3 1 7
7 15 4 1 9
8 21 6 2 12
9 30 9 3 16

Table: First few terms. Find dn = dn−1 + dn−2 − dn−3 + dn−5 − dn−9,
implying dFQ;ave(n) ≈ C · 1.05459n.
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Greedy Algorithm

hn: number of integers from 1 to an+1 − 1 where the greedy
algorithm successfully terminates in a legal decomposition.

n an hn ρn

1 1 1 100.0000
2 2 2 100.0000
3 3 3 100.0000
4 4 4 100.0000
5 5 5 83.3333
6 7 7 87.5000

10 21 25 92.5926
11 28 33 91.6667
17 151 184 92.4623

Table: First few terms, yields hn = hn−1 + hn−5 + 1 and percentage
converges to about 0.92627.
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Benford Results

The distribution of leading digits of summands used in
Zeckendorf decompositions is Benford.

The distribution of the average number of representations
from the Fibonacci Quilt is Benford.
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Other Rules

57



Intro Gaps Previous Work Kentucky and Quilts Other Rules References Computations

Tilings, Expanding Shapes

1

2

4 6

8

16

24

32

64 96

1, 2, 4, 6, 8, 16, 24, 32, 64, 96, ...

Figure: (left) Hexagonal tiling; (right) expanding triangle covering.

Theorem:
A sequence uniquely exists, and similar to previous work can
deduce results about the number of summands and the
distribution of gaps.
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Fractal Sets

Figure: Sierpinski tiling.
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Upper Half Plane / Unit Disk

Figure: Plot of tesselation of the upper half plane (or unit disk) by
the fundamental domain of SL2(Z), where T sends z to z + 1 and S
sends z to −1/z.

60



Intro Gaps Previous Work Kentucky and Quilts Other Rules References Computations

References
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Computations

63



Intro Gaps Previous Work Kentucky and Quilts Other Rules References Computations

Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)

ways to do.
Divides the cookies into P sets.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)

ways to do.
Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):

66



Intro Gaps Previous Work Kentucky and Quilts Other Rules References Computations

Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)

ways to do.
Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):

67



Intro Gaps Previous Work Kentucky and Quilts Other Rules References Computations
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · · + Fik−1
+ Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.

Cookie counting ⇒ pn,k =
(n−2k+1 + k−1

k−1

)

=
(n−k

k−1

)

.
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Generalizing Lekkerkerker: Erdos-Kac type result

Theorem (KKMW 2010)

As n → ∞, the distribution of the number of summands in
Zeckendorf’s Theorem is a Gaussian.

Sketch of proof: Use Stirling’s formula,

n! ≈ nne−n
√

2πn

to approximates binomial coefficients, after a few pages of
algebra find the probabilities are approximately Gaussian.
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(Sketch of the) Proof of Gaussianity

The probability density for the number of Fibonacci numbers that add up to an integer in [Fn , Fn+1) is

fn(k) =
(

n−1−k
k

)

/Fn−1. Consider the density for the n + 1 case. Then we have, by Stirling

fn+1(k) =

(

n − k

k

)

1

Fn

=
(n − k)!

(n − 2k)!k !

1

Fn
=

1
√

2π

(n − k)n−k+ 1
2

k(k+ 1
2 )

(n − 2k)n−2k+ 1
2

1

Fn

plus a lower order correction term.

Also we can write Fn = 1
√

5
φn+1 = φ

√

5
φn for large n, where φ is the golden ratio (we are using relabeled

Fibonacci numbers where 1 = F1 occurs once to help dealing with uniqueness and F2 = 2). We can now split the
terms that exponentially depend on n.

fn+1(k) =

(

1
√

2π

√

(n − k)

k(n − 2k)

√
5

φ

)(

φ
−n (n − k)n−k

kk (n − 2k)n−2k

)

.

Define

Nn =
1

√
2π

√

(n − k)

k(n − 2k)

√
5

φ
, Sn = φ

−n (n − k)n−k

kk (n − 2k)n−2k
.

Thus, write the density function as
fn+1(k) = NnSn

where Nn is the first term that is of order n−1/2 and Sn is the second term with exponential dependence on n.
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(Sketch of the) Proof of Gaussianity

Model the distribution as centered around the mean by the change of variable k = µ + xσ where µ and σ are the
mean and the standard deviation, and depend on n. The discrete weights of fn(k) will become continuous. This
requires us to use the change of variable formula to compensate for the change of scales:

fn(k)dk = fn(µ + σx)σdx.

Using the change of variable, we can write Nn as

Nn =
1

√
2π

√

n − k

k(n − 2k)

φ
√

5

=
1

√
2πn

√

1 − k/n

(k/n)(1 − 2k/n)

√
5

φ

=
1

√
2πn

√

1 − (µ + σx)/n

((µ + σx)/n)(1 − 2(µ + σx)/n)

√
5

φ

=
1

√
2πn

√

1 − C − y

(C + y)(1 − 2C − 2y)

√
5

φ

where C = µ/n ≈ 1/(φ + 2) (note that φ2 = φ + 1) and y = σx/n. But for large n, the y term vanishes since

σ ∼
√

n and thus y ∼ n−1/2. Thus

Nn ≈
1

√
2πn

√

1 − C

C(1 − 2C)

√
5

φ
=

1
√

2πn

√

(φ + 1)(φ + 2)

φ

√
5

φ
=

1
√

2πn

√

5(φ + 2)

φ
=

1
√

2πσ2

since σ2 = n φ
5(φ+2) .
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(Sketch of the) Proof of Gaussianity

For the second term Sn , take the logarithm and once again change variables by k = µ + xσ,

log(Sn) = log

(

φ
−n (n − k)(n−k)

kk (n − 2k)(n−2k)

)

= −n log(φ) + (n − k) log(n − k) − (k) log(k)

− (n − 2k) log(n − 2k)

= −n log(φ) + (n − (µ + xσ)) log(n − (µ + xσ))

− (µ + xσ) log(µ + xσ)

− (n − 2(µ + xσ)) log(n − 2(µ + xσ))

= −n log(φ)

+ (n − (µ + xσ))

(

log(n − µ) + log
(

1 −
xσ

n − µ

))

− (µ + xσ)

(

log(µ) + log
(

1 +
xσ

µ

))

− (n − 2(µ + xσ))

(

log(n − 2µ) + log
(

1 −
xσ

n − 2µ

))

= −n log(φ)

+ (n − (µ + xσ))

(

log
(

n

µ
− 1
)

+ log
(

1 −
xσ

n − µ

))

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ))

(

log
(

n

µ
− 2
)

+ log
(

1 −
xσ

n − 2µ

))

.
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(Sketch of the) Proof of Gaussianity

Note that, since n/µ = φ + 2 for large n, the constant terms vanish. We have log(Sn)

= −n log(φ) + (n − k) log
(

n

µ
− 1

)

− (n − 2k) log
(

n

µ
− 2
)

+ (n − (µ + xσ)) log
(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 −
xσ

n − 2µ

)

= −n log(φ) + (n − k) log (φ + 1) − (n − 2k) log (φ) + (n − (µ + xσ)) log
(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 −
xσ

n − 2µ

)

= n(− log(φ) + log
(

φ
2
)

− log (φ)) + k(log(φ2
) + 2 log(φ)) + (n − (µ + xσ)) log

(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 − 2
xσ

n − 2µ

)

= (n − (µ + xσ)) log
(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 − 2
xσ

n − 2µ

)

.
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(Sketch of the) Proof of Gaussianity

Finally, we expand the logarithms and collect powers of xσ/n.

log(Sn) = (n − (µ + xσ))

(

−
xσ

n − µ
−

1

2

(

xσ

n − µ

)2
+ . . .

)

− (µ + xσ)

(

xσ

µ
−

1

2

(

xσ

µ

)2
+ . . .

)

− (n − 2(µ + xσ))

(

−2
xσ

n − 2µ
−

1

2

(

2
xσ

n − 2µ

)2
+ . . .

)

= (n − (µ + xσ))



−
xσ

n (φ+1)
(φ+2)

−
1

2





xσ

n (φ+1)
(φ+2)





2

+ . . .





− (µ + xσ)





xσ
n

φ+2

−
1

2





xσ
n

φ+2





2

+ . . .





− (n − 2(µ + xσ))



−
2xσ

n φ
φ+2

−
1

2





2xσ

n φ
φ+2





2

+ . . .





=
xσ

n
n

(

−

(

1 −
1

φ + 2

)

(φ + 2)

(φ + 1)
− 1 + 2

(

1 −
2

φ + 2

)

φ + 2

φ

)

−
1

2

(

xσ

n

)2
n
(

−2
φ + 2

φ + 1
+

φ + 2

φ + 1
+ 2(φ + 2) − (φ + 2) + 4

φ + 2

φ

)

+O
(

n (xσ/n)3
)
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(Sketch of the) Proof of Gaussianity

log(Sn) =
xσ

n
n
(

−
φ + 1

φ + 2

φ + 2

φ + 1
− 1 + 2

φ

φ + 2

φ + 2

φ

)

−
1

2

(

xσ

n

)2
n(φ + 2)

(

−
1

φ + 1
+ 1 +

4

φ

)

+O

(

n
(

xσ

n

)3
)

= −
1

2

(xσ)2

n
(φ + 2)

(

3φ + 4

φ(φ + 1)
+ 1

)

+ O

(

n
(

xσ

n

)3
)

= −
1

2

(xσ)2

n
(φ + 2)

(

3φ + 4 + 2φ + 1

φ(φ + 1)

)

+ O

(

n
(

xσ

n

)3
)

= −
1

2
x2

σ
2
(

5(φ + 2)

φn

)

+ O
(

n (xσ/n)3
)

.
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(Sketch of the) Proof of Gaussianity

But recall that

σ
2
=

φn

5(φ + 2)
.

Also, since σ ∼ n−1/2, n
(

xσ
n

)3
∼ n−1/2. So for large n, the O

(

n
(

xσ
n

)3
)

term vanishes. Thus we are left

with

log Sn = −
1

2
x2

Sn = e−
1
2 x2

.

Hence, as n gets large, the density converges to the normal distribution:

fn(k)dk = NnSndk

=
1

√
2πσ2

e−
1
2 x2

σdx

=
1

√
2π

e−
1
2 x2

dx.

�
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