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Review

e Similar behavior in different systems.

e Find correct scale.

e Average over similar elements.

e Need an Explicit Formula.

e Different statistics tell different stories.



n-Level Density and Families

Let f(z) =[], fi(z:), f; even Schwartz func-
tions whose Fourier Transforms are compactly
supported.

Dup(f) = Y f1<ng1))... fn(Lm<-n>>

.]]_ 7777 jn
distinct

1. individual zeros contribute in limit
2. most of contribution is from low zeros

3. average over similar curves (family)

To any geometric family, Katz-Sarnak pre-
dict then-level density depends only on a sym-
metry group attached to the family.



Elliptic Curves

ConsiderE : y? + ajxy + asy = x° + asx® +
asx + ag, a; € Q.

Often can write ag® = 2> + Ax + B.

Let V,, be the number of solns mqd

N =Y [1+ <x3+Ax+B>] Y (x3+Aaz+B)

) b () b

Local data:a, = p — N,. Use to build the
L-function.

One-parameter families:

> = 28+ A(t)x + B(t), A(t),B(t) € Z(t).



Elliptic Curves (cont)

Modularity Theorem [Wiles]L(s, F) = L(s, f)
for a weight2 cuspidal newform of leveN.

(s, ) = (2m)*N*/2T(s + %)L@, E) = epA(1 — s, E)

By GRH: All zeros on the critical line. Makes
sense to talk about spacings between zeros.

Rational solutions agrou(Q) =Z" P T.

Birch and Swinnerton-Dyer Conjecture:
Geometric rank equals the analytic rank.



Normalization of Zeros
Local (hard) vs Global (easy).

Hope: for f a good even test function with
compact support, d§| — oo,

1 1 log Ni_(;
T 2 D) = 2. 2 Hfi<og2ﬂ Evfé”)

EeF EecF ji5Jn 1
JiFLIg

— /---/f(ﬂf)Wn,gm(fIf)dx
_ / / F) W g (u)du.



1-Level Densities

The Fourier Transforms for thielevel densi-
ties are

Wiow(u) = dy(u) + n(u)
Wiou) = dw) +3
Wio-(u) = do(u) - 3u(u) + 1
Wasplu) = dofu) — (o)

wheredy(u) is the Dirac Delta functional and
n(u) is 1, £, and0 for |u| less thant, 1, and

greater than.



2-Level Densities

Letc(G) =0, 1 or1for G = SO(even, O, andSO(odd). ForGg
one of these three groups we have

[ [ R Bt Wastadnde = [70)+540)] [0+ 540

o / jul F u0) o)t — 27, 15(0)

—f1(0) f2(0)
+ ¢(G) f1(0) f2(0).

ForGg = U we have
/ / T o (u) o (w)dumdus = F(0)Fo(0) + / ul Fo 1) Fa(us)du — Fofal0),

and forG = Sp, we have
[ [ R Wostwdudie = [F0) +3£0)] [20)+ 550

o / jul Fu1) )t — 27 Jo(0)

- f1(0)fz(0) ~
—f1(0) f2(0) — £1(0) f2(0) + 2£1(0) f2(0).

These densities are all distinguishable for functions with arbitrar-
ily small support.

For the orthogonal groups, the densities (in this range) depend
solely on the distribution of sign.



2-Level Density: Orthogonal Groups

For small support, the difference due to dis-
tribution of signs.

Subtract offj; = +4, terms.

Letp =1+ wg) be a zero.

Even functional equation, label the zeros by
~1) (k)

LT <A <0<l < < A = D)

Odd functional equation, label the zeros by

<o S0 S o 0o < af = )



Explicit Formula

Relates sums of test functions over zeros to
sums over primes.

Za(lOgNE J‘) = G(0) + G(0)

_22 log p 1@( log p )aE(p)

log Npp \log Ng
logp 1 ~/2logpy
9 G2
;logNEp log Ng @5 (P)
loglog N
+O(Og 0g Np
log Ng

Proof: Complex Analysis (Contour Integra-
tion)



Comments on Previous Results

Families from Rubinstein, lwaniec-Luo-Sarnak,
Miller and Hughes-Rudnick

e good averaging formulas for the family;

e conductors easy to control (constant or mono-
tone)

Elliptic curves, letA(¢) be the discriminant.
ConductorC'(t) is

Ct) = H phr®)
PIA(2)

Two ¢ close could yieldA(t)'s with wildly
differing factorization, hence the conductors can
fluctuate greatly.
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1-Level Expansion

EeF g

Dix(f) = 7 Z Zf(lOgNE j)

= Z )+ (0

JI’T

_?\ZZ — 1 ( 08D )aE(P)
Eer p

1OgNEp 10gNE

ZZ CED 1A< 98P )a%(p)

log N p? log Ng
loglogNE
ol —=—=—=
i ( log Ng >
Want to mov% S her

Leads us to study

Arrp) = Zaj{(p), r=1o0r?2.
t(p)
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2-Level Expansion

Need to evaluate terms like

logp; \ .
ZH 7“@ <1O;g]€E>aé<p2>

EGJ’:Z 1

Analogue of Petersson / Orthogonalityplf . . ., p,

are distinct primes

Z &3511 (p1) - - a?ﬁ(pn) = Am,}"(pl) e Arn,f@n)-

t(pl”‘pn>
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Needed Input

For many families
(1) : A1 r(p) = —rp + O(1)

(2): Ay £(p) = p* + O(p*?)

Rational Elliptic Surfaces (Silverman and Rosen):

Surfaces withj(¢) non-constant (Michel):

Ay 7(p) =p°+ 0 (pg/ 2) -
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New Results

Rational Surfaces Density Theorem:Consider al-
parameter family of elliptic curves of rankover Q(t)
that is a rational surface. Assume GRHt) non-constant,
and the ABC (or Sqg-Free Sieve) conjecturé\it) has
an irreducible polynomial factor of degree 4. Let
m = degC(t) and f; be an even Schwartz function of
small supports; (o < min(s, 3%) for the 1-level den-
sity, 01 + 05 < 5 for the 2-level density). Possibly after
passing to a subsequence, we observe two pieces. The
first equals the expected contribution freraeros at the
critical point (agreeing with what B-SD suggests). The

second is

DET;"(fl) = fi(0) + %ﬁ(o)

F0) + 340

>
=
=

I
Ew

| w2 [ iR
~2f1f2(0) — £1(0) f2(0) + (f1 f2)(O)N(F, —1)

whereN (F, —1) is the percent of curves with odd sign.

1 and2-level densities confirm Katz-Sarnak
predictions for small support.
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Sieving

2N NFk/2
DS =Y uld D> S
D) R
sqfree

logl NF/2

= D uld ZS )+ D md) Y SO
d=1 d>log! N
te[N 2N] tE[N,2N]

Handle first piece by progressions (need progressions
to evaluate sums af;(p)).

Handle second piece by Cauchy-Schwartz: The num-

ber of ¢ in the second sum (by ABC or SgFree Sieve
Conj) iso(N). Can showd_>"\ S%(t) = O(N). Then

» St < <252(t)>%- <Z1>%

teT teT teT
1

< (Z0) ()
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Partial Summation

Notation: aq; ,(t') = aya,m(p), Gaip(u) is related to
the test functions] and: from progressions.

Applying Partial Summation

[N/ d?]

S(d7 LT p) — Z ag,i,p(t/)Gd,’i,p(t/)

t'=0

= <[N]/9d2} A, 7(p) + O (pR>> Ga,ip([N/d?)

[N/d?]—1
- (L o))

u=0

: (Gdﬂ"p@é) — Gdﬂ-?p(u + 1))

O(p*) is the error from using Hasse to bound the par-
tial sums:p” = p!*3.
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Difficult Piece

Taylor Expansion not enough.

Use Bounded Variation: conductors must be
monotone.

Gaip(w) = Gaip(u+1)

B log p B log p
T = g(logC(ti(d)Jrud?)) g(logC(ti(d)qL(qul)d?))
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Handling the Conductors

C(t) _ H pfp(t)
PlIA()
D+(t) = primitive irred. poly. factors\(¢) andc,(t) share

)
) = remaining primitive irred. poly. factors af()
) = Di(t)Dsof2)

D(t) square-free(’(t) like D3 (t)D-(t) except for a fi-
nite set of bad primes.

Let P be the product of the bad primes.

By Tate’s Algorithm, can determing,(¢), which de-
pends on the coefficients(t) mod powers op.

Apply Tate’s Algorithm toE}, to determinef,(t,) for
the bad primesm large, f,(7) = f,(P"t +t1) = f,(t1)
for p|P.

m enormous, for bad primes, the orderpoflividing
D(P™t + t1) is independent of. So can find integers st

C(1) = ¢y 210 Dolr). D(r) square-free.

1 €2
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Application:
Bounding Excess Rank

Dy#(f1) = 2(0) + S 7(0) + 7£(0).

To estimate the percent with rank at least
R, Pr, we get

RAO)Ps < Fi0) + 37(0), B> 1.

Note the family rankr has been cancelled
from both sides.

The2-level density givesquaresof the rank
on the left, get a cross terntz.

The disadvantage is our support is smaller.

Once R is large, the2-level density yields
better results.
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lwaniec-Luo-Sarnak

e Orthogonal. Iwaniec-Luo-Sarnak:1-level
density for holomorphic even weightcus-
pidal newforms of square-free leui®l (SO(even)
and SO(odd) if split by sign).

e Symplectic:lwaniec-Luo-Sarnakt-level den-
sity for synt(f), f holomorphic cuspidal
newform.

Will review Orthogonal case and talk about
extensions.
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Modular Form Preliminaries

o= {(03) 20 )

f is aweightt holomorphic cuspform of level
N if

vy € To(N), f(72) = (cz +d)Ff(2).
Fourier Expansionf(z) = > 7 a¢(n)e*™=.

Petersson Norm(f, g) = [ yyu f(2)g g(2)y*2dxdy.

Normalized coefficients:

_ fre-p1 o
v = \/ TR
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Petersson Formula

Let B;(N) be an ONB for weight: level N.

Define

Apn(m,n) = Z wf

feBR(N

Then

Ak,N(m,n) = 27T2k Z S(m7n7C)Jk_1 (477'
C

c=0(N)
+ d(m,n).

22
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Fourier Coefficient Review

k-1

Ar(n) = ay(n)n >
A(m)Ag(n) = ) )‘f( )
d|(m,n)
(d.M)=1

For a newform of levelV, \((N) is trivially
related to the sign of the form:

€f — zku(N)Af(N)\/N

The above will allow us to split into even and
odd families:

1:|:€f

23



Limited Support

Estimate Kloosterman Sums trivially.

Use Fourier Coefficients to split by
sign: N fixed, consider

£ AN ()
f

Works for support up ta.
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Increasing Support

Using Dirichlet Characters, handle Kloost-
erman terms.

Works for support up ta.
Have terms like

[ (1) )

c log R) \/y
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2-Level Density

/ / log 21 log x5 J 47T\/m2:1:1x2]\7 dxdxs
e1=2 J log R log R il c /X179

Change of variables:

_ _ ug
Ug = T1X2 Xy = u1

Uy = I T — Uy

The Jacobean is

ox 1 0
- 1

du

Left with

~ (log(usg/uy) 1 Vm2us N\ duidus
Jk—l 41 .

/ / log Uy
1og R log R N c Uy
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2-Level Density (cont)

Changing variables;;-integral is

o ~ ~ (log uy
/ gy, O(W1) 0 (logR — UJ1> dwy.

wl_logR o

Support conditions imply

log us A ~ (log us
) = — :
? (log R> /wl:oo ¢ (wi)¢ (log R ’w1> dwy

Substituting gives
>0 2u9 N | d
/ I (4 v/ m2us ¥, ( 0g u2) U9
Uy =0 C log R ) \/uo
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3-Level Density

/ / / log x4 ng log 9 gg log 3
1122 J 29=2 J g log R log R log R
. 7 \/m2:1:1$2x3N dzrdxodxs

il C A/ L1L2T3

Change variables:

uz = I1T2T3 L3 = 0

_ U9
Ug =  T1T9 Lo = w
uy = X1 1 = Uy

The Jacobean is

1 0O O
Or| |_wm 1 of_ 1
ou R 1 U U
O _uz 1 1W?2

u% U9



Support for n-Level Density

Careful book-keeping gives

2
n—1

on <

n-Level trivial for o), < L.
s non-trivial.

ExpectedZ. Obstruction from partial
summation on primes.
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Summary

e More support for RMT Conjectures.
e Control of Conductors.

e Averaging Formulas.
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