On the probability that random graphs are
SEIMERTED

Steven J Miller, Anthony Sabelli (Brown University)
Tim Novikoff (Cornell University)

Slides and paper available at
http://www.math.brown.edu/~sjmiller

Expanders and Ramanujan Graphs:
Construction and Applications
AMS National Meeting, San Diego, January 9, 2008.

A




Conjectures J




Conjectures
[ le]

Expanders and Eigenvalues

@ Expanding Constant
h(G) = inf { ity : U € V. 1UI > 0}

min(|U|,| V\U|)

o {Gp} family of expanders if Je with h(G,) > € and

|G| — 0.

@ Cheeger-Buser Inequalities
28 < h(G) < 2,/2d(d — 22(G))

@ Applications: sparse (| E| grows at most linearly with
|V|), highly connected.
© communication network theory:
superconcentrators, nonblocking networks
o coding theory, cryptography.
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Known and conjectured results for A\,

@ (Alon-Boppana, Burger, Serre) {G,} family of finite
connected d-regular graphs, limy_... |Gn| = oo:

liminf \2(Gm) > 2vd — 1

m—oo

@ As |G| — oo, for d > 3 and any € > 0, “most"
d-regular graphs G have

Mo(G) <2vVd -1 +¢

(conjectured by Alon, proved for many families by
Friedman).
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Questions

For a family of d-regular graphs:

@ What is the distribution of \»?

o What percent of the graphs are Ramanujan?

A(G) = max (A;(G), A-(G)), where A\, (G) are largest
non-trivial positive (negative) eigenvalues. If bipartite
A_(G) = =\ (G). If connected \2(G) = A\ (G).
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Families Investigated (/N even)

@ CIy,q: d-regular connected graphs generated
by choosing d perfect matchings.

® SCIy,q: subset of CZy 4 that are simple.

@ CBn 4: d-regular connected bipartite graphs
generated by choosing d permutations.

@ SCBy 4: subset of CBy, 4 that are simple.
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Tracy-Widom Distribution

Limiting distribution of the normalized largest eigenvalues
for ensembles of matrices: GOE (3 = 1), GUE (5 = 2),
GSE (6 = 4)

Applications
@ Length of largest increasing subsequence of random
permutations.
@ Largest principle component of covariances matrices.

@ Young tableaux, random tilings, queuing theory,
superconductors....

TS HSHHSEE
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Tracy-Widom Plots

Plots of the three Tracy-Widom distributions: f;(s) is red,
f>(s) is blue and fy(s) is green.
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Tracy-Widom Distributions

Parameters for the Tracy-Widom distributions. Fj is the
cumulative distribution function for f3, and Fs(13) is the
mass of f5 to the left of its mean.

Mean Std Dev o Fs(ugs)

WG = 1) .21 1.268 0.5197
W(3 = 2) 1.77 0.902 0.5150
TW(ﬁ 4) -2.31 0.720 0.5111

Std Normal 0.00 1.000 0.5000
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Normalized Tracy-Widom Plots

Plots normalized to have mean 0 and variance 1: f°™(s)
is red, f3o™(s) is blue, f;°™(s) is green, standard normal is
black.
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Conjectures

Conjectures

@ The distribution of \.(G) converges to the 5 =1
Tracy-Widom distribution as N — oo in all studied
families.

@ For non-bipartite families, A\, (G) are independent.

@ The percent of the graphs that are Ramanujan
approaches 52% as N — oo (resp., 27%) in bipartite
(resp., non-bipartite) families.

Evidence weaker for CBy 4 (d-regular connected bipartite
graphs, not necessarily simple).
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Distribution of A\ (G)

Distribution of A, (G) for 1000 graphs randomly chosen
from CZy 5 for various N (vertical line is 21/2).
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Statistical evidence for conjectures

@ Well-modeled by Tracy-Widom with 5 = 1.

@ Means approach 2v/d — 1 according to power law.

@ Variance approach 0 according to power law.

@ Comparing the exponents of the power laws, see the
number of standard deviations that 2\/d — 1 falls to
the right of the mean goes to 0 as N — ~c.

@ \.(G) appear independent in non-bipartite families.

@ As N — oo the probability that a graph is Ramanujan
is the mass of the Tracy-Widom distribution to the left
of its mean (52%) if bipartite (27% otherwise).
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Power law exponents of means and standard deviations

@ Means: pr, , ~ 2Vd — 1 — ¢, ngN™Fn0)
e Standard Deviations: o, , ~ C,n,gNSFN.e)
%] ThUS 2\/ d — 1 ~ ’u]:N,d + MNm(}—N,d)fs(FN,d)o'}-Nyd

Co,N,d

Ramanujan Threshold

As N — oo, it m(Fnq) < S(Fn,g) then 2v/d — 1 falls zero
standard deviations to the right of the mean.
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Experiments: Comparisons with Tracy-Widom Distribution

@ Each setis 1000 random 3-regular graphs from CZy 3
normalized to have mean 0 and variance 1.

@ 19 degrees of freedom, critical values 30.1435
(a = .05) and 36.1908 (o = .01).

@ Only showing subset of data.
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x2-Tets of A\ (G) for CZy 3 versus Tracy-Widom Distributions

Critical values: 30.1 (« = .05), 36.2 (o« = .01).

N | TW5o™  Twzo™  TWR™  N(0,1)

26 52.4 43.7 36.8 30.3

100 721 41.3 28.9 13.2

796 3.7 4.9 7.0 19.3

3168 17.4 19.6 24.0 61.3

6324 20.8 19.8 21.4 28.6

12618 9.9 9.3 10.6 17.2

20000 37.4 411 41.4 71.2

mean (all) 32.5 27.2 24.9 491
median (all) 20.0 19.1 18.0 25.2
mean (last 10) 22.3 24.9 29.1 66.7
median (last 10) 21.2 21.8 22.2 64.5

A7
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x?-Tests of )\, (G) against 3 = 1 Tracy-Widom

Critical values: 30.1 (a« = .05), 36.2 (o = .01).

N |CIns SCIns CBnz SCBngz

26| 524 111.6 1427 14.3

100 | 721 19.8 234 18.5

796 3.7 149 209 19.6

3168 | 17.4 222 706 25.4

12618 9.9 13.1  36.9 13.7

20000 | 37.4 149 274 12.1

mean (all) 32 21 78 19

standard deviation (all 42 18 180 7

)
mean (last 10) 22 17 44 17
standard deviation (last 10) 8 5 37 8
)
)

mean (last 5 22 17 32 14
standard deviation (last 5 10 4 23 1
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Experiment: Mass to the left of the mean for A\, (G)

@ Each set of 1000 3-regular graphs.

@ mass to the left of the mean of the Tracy-Widom
distributions:
©0.519652 (6 =1)
© 0.515016 (6 = 2)
©0.511072 (6 = 4)
© 0.500000 (standard normal).

o two-sided z-test: critical thresholds: 1.96 (for o = .05)
and 2.575 (for a = .01).
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Experiment: Mass to the left of the mean for CZ 3

Critical values: 1.96 (« = .05), 2.575 (a = .01).

N | Obs mass ZTW A ZTw,2 ZTw,4  ZStdNorm

26 0.483 -2.320 -2.026 -1.776 -1.075
100 0.489 -1.940 -1.646 -1.396 -0.696
796 0.521 0.085 0.379 0.628 1.328
6324 0.523 0.212 0.505 0.755 1.455
20000 0.526 0.402 0.695 0.944 1.644

i (last10) | 0518 0473 0531 0655 1.202
fi (last10) | 0.523 0.411 0537 0.755 1.455
i (last5) | 0.517 0591 0532 0.630 1.050
fi (last5) | 0.515 0.421 0.695 0.700 0.949
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Experiment: Mass left of mean: 3-Regular, sets of 100,000

Discarded: Matlab’s algorithm didn’t converge.
Critical values: 1.96 (o« = .05), 2.575 (a = .01).

CIng Zrwi  Ztw2  Zrwa4  ZsuNom Discarded
1002 0.239 3.173 5.667 12.668 0
2000 -0.128 2.806 5.300 12.301 0
5022 1.265 4.198 6.692 13.693 0
10022 0.391 3.324 5.819 12.820 0
40000 2.334 5.267 7.761 14.762 0
SCIng || Ztwi  Ztw2  Zrwa4  ZsuNom Discarded
1002 -1.451 1.483 3.978 10.979 0
2000 -0.457 2.477 4971 11.972 0
5022 -0.042 2.891 5.386 12.387 1
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Experiment: Mass left of mean: 3-Regular, sets of 100,000

Critical values: 1.96 (a = .05), 2.575 (o = .01).

CBn,3 Zrwi  Ztw2  Ztw.4  ZsuNom Discarded
1002 3.151 6.083 8577 15.577 0
2000 | 3.787 6.719 9.213 16.213 1
5022 || 3.563 6.495 8.989 15.989 4
10022 || 2.049 4.982 7.476 14.477 0
12618 || 3.701 6.634 9.127 16.128 0
15886 2.999 5.931 8.425 15.426 0
20000 || 2.106 5.039 7.533 14.534 0
40000 || 1.853 4.786 7.280 14.281 0
SCBns || Zrwi1  Zrwe  Zrwa  Zsunerm  Discarded
1002 -1.963 0.971 3.465 10.467 0
2000 | -0.767 2.167 4.661 11.663 2
5022 -0.064 2.869 5.364 12.365 4
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3-regular graphs: Sample means of )\ (G)

Sets of 1000 random 3-regular graphs. CZy 3 is red,
SCZIygs is blue, CBy s is green, SCBy s is black; the solid
yellow line is 2v/2 ~ 2.8284.

2.828




3-Regular Graphs

(o] o}

3-regular graphs: Sample means of )\ (G)

Sets of 1000 random 3-regular graphs. CZy 3 is red,
SCIngs is blue, CBy s is green, SCBy s is black.

3.5
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3-regular graphs: best fit means of )\ (G)

Logarithm of the mean on log (¢, n3N™C%n3)) on N. Blue:
data; red: best fit (all); black: best fit (last 10).

c
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3-regular graphs: percent Ramanujan

Each set is 1000 random 3-regular graphs with N
vertices. CZy 3 are stars, SCZy 3 are diamonds, CBy s are
triangles, SCBy 3 are boxes.
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3-regular graphs: percent Ramanujan

Each set is 1000 random 3-regular graphs with N

vertices. CZy 3 are stars, SCZy 3 are diamonds, CBy s are
triangles, SCBy 3 are boxes.
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Best-fit exponents (d = 3) for )\, (G)

o0

First table means m(F), second std devs s(F).
Bold entries: m(F) > s(F).

N CIng SCIng CBy3 SCBp 3
26, ..., 20000} 0.795 0.828 0.723 -0.833
{80, ..., 20000} -0.761 -0.790 -0.671 -0.789
{252,...,20000} -0.735 -0.762 -0.638 -0.761

{26,...,64} -1.058 -1.105 -1.065 -1.151
{80,...,200} -0.854 -0.949 -0.982 -0.968
{232,...,632} -0.773 -0.840 -0.737 -0.842
{796, ...,2000} -0.762 -0.805 -0.649 -0.785

{2516, ...,6324} -0.791 -0.741 -0.579 -0.718

{7962, ... ,20000} -0.728 -0.701 -0.584 -0.757

N CIns SCIns CBns SCBy.3

26, ..., 20000} 0713 0.725 0.709 0.729
{80, . ..,20000} -0.693 -0.703 -0.697 -0.706
{252,...,20000} -0.679 -0.691 -0.688 -0.696
{26,...,64} -0.863 -0.918 -0.794 -0.957

{80, .. .,200} -0.694 -0.752 -0.719 -0.750

{232,...,632} -0.718 -0.716 0.714 0.734

{796, ..., 2000} -0.602 -0.648 -0.705 -0.763
{2516, . .., 6324} -0.614 -0.668 -0.770 -0.688
{7962, ... ,20000} -0.543 -0.716 -0.671 -0.648
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Best-fit exponents (d = 3) for )\, (G)

2Vd —1 =~ pz,, + MNm(fN,d)*S(fN,d)U}.N .

Co,N,d

m(Fn.q) — S(Fn.q), Bold entries m(F) > s(F).

N CIns SCIna CBvs  SCBna
{26,...,20000} 0.082  -0.103  -0.014 -0.104
{80, ...,20000} -0.068  -0.087 0.026 -0.083
{252, ...,20000} -0.056  -0.071 0.050 -0.065
{26,...,64} 0195  -0.187  -0.271 -0.194
{80,...,200} -0.160 0197  -0.263 -0.218
(232,...,632} -0.055  -0.124  -0.023 -0.108
{796, ...,2000} -0.160 -0.157 0.056  -0.022
(2516, ...,6324} 0177 -0.073 0.191 -0.030
{7962, ...,20000} -0.185 0.015 0.087 -0.109
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