Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Ref
						-

Finite conductor models for zeros near the central point of elliptic curve L-functions

Steven J Miller Williams College

Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller

> Number Theory Seminar University of Rochester, October 13, 2009

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles	Refs o
Acknowle	dgement	S				

- Much of this is joint and current work with Eduardo Dueñez, Duc Khiem Huynh, Jon Keating and Nina Snaith; Birch and Swinnerton-Dyer 'on average' is joint with John Goes.
- Computer programs written with Adam O'Brien, Jon Hsu, Leo Goldmahker, Stephen Lu and Mike Rubinstein, Adam O'Brien.

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles	Refs o
Outline						

- Review elliptic curves.
- Introduce relevant RMT ensembles.
- Results for large conductors.
- Results towards Birch and Swinnerton-Dyer.
- Data for small conductors.
- Reconciling theory and data.

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs

Elliptic Curves

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
0000						

Mordell-Weil Group

Elliptic curve $y^2 = x^3 + ax + b$ with rational solutions $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ and connecting line y = mx + b.

Addition of distinct points P and Q

Adding a point P to itself

 $E(\mathbb{Q}) \approx E(\mathbb{Q})_{\text{tors}} \oplus \mathbb{Z}^r$

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
0000						

Riemann Zeta Function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}, \quad \text{Re}(s) > 1.$$

Functional Equation:

$$\xi(\mathbf{s}) = \Gamma\left(\frac{\mathbf{s}}{2}\right)\pi^{-\frac{\mathbf{s}}{2}}\zeta(\mathbf{s}) = \xi(1-\mathbf{s}).$$

Riemann Hypothesis (RH):

All non-trivial zeros have
$$\operatorname{Re}(s) = \frac{1}{2}$$
; can write zeros as $\frac{1}{2} + i\gamma$.

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
0000						

General *L*-functions

$$L(s, f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s} = \prod_{p \text{ prime}} L_p(s, f)^{-1}, \quad \text{Re}(s) > 1.$$

Functional Equation:

$$\Lambda(s,f) = \Lambda_{\infty}(s,f)L(s,f) = \Lambda(1-s,f).$$

Generalized Riemann Hypothesis (GRH):

All non-trivial zeros have
$$\operatorname{Re}(s) = \frac{1}{2}$$
; can write zeros as $\frac{1}{2} + i\gamma$.

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
0000						

Elliptic curve *L*-function

 $E: y^2 = x^3 + ax + b$, associate *L*-function

$$L(s,E) = \sum_{n=1}^{\infty} \frac{a_E(n)}{n^s} = \prod_{p \text{ prime}} L_E(p^{-s}),$$

where

$$a_E(p) = p - \#\{(x,y) \in (\mathbb{Z}/p\mathbb{Z})^2 : y^2 \equiv x^3 + ax + b \bmod p\}.$$

Birch and Swinnerton-Dyer Conjecture

Rank of group of rational solutions equals order of vanishing of L(s, E) at s = 1/2.

Elliptic Curves ○○○●	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles	Refs o
One para	neter fan					

$$\mathcal{E}: y^2 = x^3 + A(T)x + B(T), A(T), B(T) \in \mathbb{Z}[T]$$

Silverman's Specialization Theorem

Assume (geometric) rank of $\mathcal{E}/\mathbb{Q}(T)$ is r. Then for all $t \in \mathbb{Z}$ sufficiently large, each $E_t : y^2 = x^3 + A(t)x + B(t)$ has (geometric) rank at least r.

Average rank conjecture

For a generic one-parameter family of rank *r* over $\mathbb{Q}(T)$, expect in the limit half the specialized curves have rank *r* and half have rank *r* + 1.

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs

Random Matrix Ensembles

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
	000					

1-Level Density

L-function L(s, f): by RH non-trivial zeros $\frac{1}{2} + i\gamma_{f,j}$. *C_f*: analytic conductor.

 $\varphi(\mathbf{x})$: compactly supported even Schwartz function.

$$D_{1,f}(\varphi) = \sum_{j} \varphi \left(\frac{\log C_f}{2\pi} \gamma_{f,j} \right)$$

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
	000					

1-Level Density

L-function L(s, f): by RH non-trivial zeros $\frac{1}{2} + i\gamma_{f,j}$. *C_f*: analytic conductor.

 $\varphi(\mathbf{x})$: compactly supported even Schwartz function.

$$D_{1,f}(\varphi) = \sum_{j} \varphi \left(\frac{\log C_f}{2\pi} \gamma_{f,j} \right)$$

- individual zeros contribute in limit
- most of contribution is from low zeros

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
	000					

1-Level Density

L-function L(s, f): by RH non-trivial zeros $\frac{1}{2} + i\gamma_{f,j}$. *C_f*: analytic conductor.

 $\varphi(\mathbf{x})$: compactly supported even Schwartz function.

$$D_{1,f}(\varphi) = \sum_{j} \varphi \left(\frac{\log C_f}{2\pi} \gamma_{f,j} \right)$$

- individual zeros contribute in limit
- most of contribution is from low zeros

Katz-Sarnak Conjecture:

$$\begin{aligned} D_{1,\mathcal{F}}(\varphi) &= \lim_{N \to \infty} \frac{1}{|\mathcal{F}_N|} \sum_{f \in \mathcal{F}_N} D_{1,f}(\varphi) &= \int \varphi(x) \rho_{G(\mathcal{F})}(x) dx \\ &= \int \widehat{\varphi}(u) \widehat{\rho}_{G(\mathcal{F})}(u) du. \end{aligned}$$

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
	000					

Orthogonal Random Matrix Models

RMT: *SO*(2*N*): 2*N* eigenvalues in pairs $e^{\pm i\theta_j}$, probability measure on $[0, \pi]^N$:

$$d\epsilon_0(heta) \propto \prod_{j < k} (\cos heta_k - \cos heta_j)^2 \prod_j d heta_j.$$

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
	000					

Orthogonal Random Matrix Models

RMT: *SO*(2*N*): 2*N* eigenvalues in pairs $e^{\pm i\theta_j}$, probability measure on $[0, \pi]^N$:

$$d\epsilon_0(heta) \propto \prod_{j < k} (\cos heta_k - \cos heta_j)^2 \prod_j d heta_j.$$

Independent Model:

$$\mathcal{A}_{2N,2r} = \left\{ \begin{pmatrix} I_{2r\times 2r} & \\ & g \end{pmatrix} : g \in SO(2N-2r) \right\}.$$

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
	000					

Orthogonal Random Matrix Models

RMT: SO(2N): 2N eigenvalues in pairs $e^{\pm i\theta_j}$, probability measure on $[0, \pi]^N$:

$$d\epsilon_0(heta) \propto \prod_{j < k} (\cos heta_k - \cos heta_j)^2 \prod_j d heta_j.$$

Independent Model:

Interaction Model: Sub-ensemble of SO(2N) with the last 2r of the 2N eigenvalues equal +1: $1 \le j, k \le N - r$:

$$d\varepsilon_{2r}(\theta) \propto \prod_{j < k} (\cos \theta_k - \cos \theta_j)^2 \prod_j (1 - \cos \theta_j)^{2r} \prod_j d\theta_j,$$

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
	000					

Random Matrix Models and One-Level Densities

Fourier transform of 1-level density:

$$\hat{\rho}_0(u) = \delta(u) + \frac{1}{2}\eta(u).$$

Fourier transform of 1-level density (Rank 2, Indep):

$$\hat{
ho}_{2,\mathsf{Independent}}(u) = \left[\delta(u) + rac{1}{2}\eta(u) + 2
ight].$$

Fourier transform of 1-level density (Rank 2, Interaction):

$$\hat{\rho}_{2,\text{Interaction}}(u) = \left[\delta(u) + \frac{1}{2}\eta(u) + 2\right] + 2(|u| - 1)\eta(u).$$

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ooooooooooooo	Refs o

Limiting Behavior (joint with John Goes)

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
		000000000				

Comparing the RMT Models

Theorem: M- '04

For small support, one-param family of rank *r* over $\mathbb{Q}(T)$:

$$\lim_{N \to \infty} \frac{1}{|\mathcal{F}_N|} \sum_{E_t \in \mathcal{F}_N} \sum_j \varphi\left(\frac{\log C_{E_t}}{2\pi} \gamma_{E_t,j}\right) = \int \varphi(x) \rho_{\mathcal{G}}(x) dx + r\varphi(0)$$

where

Confirm Katz-Sarnak, B-SD predictions for small support.

Supports Independent and not Interaction model in the limit.

Elliptic Curves	Ensembles 000	1-Level Results ○●○○○○○○○	Questions 0000	Results and Data	Jacobi Ensembles	Refs o
Previous	Results c	on low-lying	zeros			

Expect zeros near central point of size $\frac{1}{\log N_F}$.

Mestre: zero with imaginary part at most $\frac{B}{\log \log N_E}$.

Goal: bound (from above and below) number of zeros in a neighborhood of size $\frac{1}{\log N_E}$ near the central point in a family.

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
		000000000				

$$\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \sum_{\tilde{\gamma}_{j,f}} \phi(\tilde{\gamma}_{j,f}) = \left(r + \frac{1}{2}\right) \phi(0) + \hat{\phi}(0) + O\left(\frac{\log \log R}{\log R}\right)$$

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
		000000000				

$$\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \sum_{\tilde{\gamma}_{j,f}} \phi(\tilde{\gamma}_{j,f}) = \left(r + \frac{1}{2}\right) \phi(0) + \hat{\phi}(0) + O\left(\frac{\log \log R}{\log R}\right)$$

$$\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \sum_{|\tilde{\gamma}_{j,f}| \leq \tau} \phi(\tilde{\gamma}_{j,f}) \geq \left(r + \frac{1}{2}\right) \phi(0) + \hat{\phi}(0) + O\left(\frac{\log \log R}{\log R}\right)$$

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
		000000000				

$$\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \sum_{\tilde{\gamma}_{j,f}} \phi(\tilde{\gamma}_{j,f}) = \left(r + \frac{1}{2}\right) \phi(0) + \hat{\phi}(0) + O\left(\frac{\log \log R}{\log R}\right)$$

$$\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \sum_{|\tilde{\gamma}_{j,f}| \leq \tau} \phi(\tilde{\gamma}_{j,f}) \geq \left(r + \frac{1}{2}\right) \phi(0) + \hat{\phi}(0) + O\left(\frac{\log \log R}{\log R}\right)$$

$$N_{\text{ave}}(\tau, R)\phi(0) \ge \left(r + \frac{1}{2}
ight)\phi(0) + \hat{\phi}(0) + O\left(rac{\log\log R}{\log R}
ight)$$

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
		000000000				

$$\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \sum_{\tilde{\gamma}_{j,f}} \phi(\tilde{\gamma}_{j,f}) = \left(r + \frac{1}{2}\right) \phi(0) + \hat{\phi}(0) + O\left(\frac{\log \log R}{\log R}\right)$$

$$\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \sum_{|\tilde{\gamma}_{j,f}| \leq \tau} \phi(\tilde{\gamma}_{j,f}) \geq \left(r + \frac{1}{2}\right) \phi(0) + \hat{\phi}(0) + O\left(\frac{\log \log R}{\log R}\right)$$

$$N_{\text{ave}}(\tau, R)\phi(0) \ge \left(r + \frac{1}{2}
ight)\phi(0) + \hat{\phi}(0) + O\left(rac{\log\log R}{\log R}
ight)$$

$$N_{ave}(\tau, R) \ge \left(r + rac{1}{2}
ight) + rac{\phi(0)}{\phi(0)} + O\left(rac{\log\log R}{\log R}
ight)$$

24

Elliptic Curves

Ensembles 1

1-Level Results

Results and Data

Jacobi Ensembles

Refs

Towards an average version of Birch and Swinnerton-Dyer

Theorem (Goes, M–)

Let $\tau = C(\phi)/\sigma$, where σ is the support of $\hat{\phi}$, $C(\phi)$ is constant depending on the choice of test function, and $N_{\text{ave}}(\tau, R)$ the average number of normalized zeros in $(-\tau, \tau)$ for $t \in [R, 2R]$. Then assuming GRH

Questions

$$N_{\text{ave}}(\tau, R) \geq \left(r + \frac{1}{2}\right) + \frac{\widehat{\phi}(0)}{\phi(0)} + O\left(\frac{\log \log R}{\log R}\right)$$

Technical requirements for ϕ :

- ϕ even, positive in $(-\tau, \tau)$, negative elsewhere;
- ϕ monotonically decreasing on $(0, \tau)$;
- ϕ differentiable;
- $\widehat{\phi}$ compactly supported in $(-\sigma, \sigma)$.

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
		0000000000				

Construction Preliminaries

• Convolution:

$$(A * B)(x) = \int_{-\infty}^{\infty} A(t)B(x-t)dt.$$

• Fourier Transform:

$$\widehat{A}(y) = \int_{-\infty}^{\infty} A(x) e^{-2\pi i x y} dx$$
$$\widehat{A''}(y) = -(2\pi y)^2 \widehat{A}(y).$$

• Lemma:
$$(\widehat{A * B})(y) = \widehat{A}(y) \cdot \widehat{B}(y);$$

in particular, $(\widehat{A * A})(y) = \widehat{A}(y)^2 \ge 0$ if A is even.

Constructing good ϕ 's

- Let *h* be supported in (-1, 1).
- Let $f(x) = h(2x/\sigma)$, so f supported in $(-\sigma/2, \sigma/2)$.

• Let
$$g(x) = (f * f)(x)$$
, so g supported in $(-\sigma, \sigma)$.
 $\widehat{g}(y) = \widehat{f}(y)^2$.

• Let $\phi(y) := (\widehat{g + \beta^2 g''})(y) = \widehat{f}(y)^2 (1 - (2\pi\beta y)^2)$. For β sufficiently small above is non-negative.

Elliptic Curves	Ensembles	1-Level Results ○○○○○●○○○	Questions 0000	Results and Data	Jacobi Ensembles	Refs o

Constructing good ϕ 's (cont)

 $N_{\text{ave}}(\tau, R)$ is average number of zeros in $(-\tau, \tau)$, and

$$N_{\text{ave}}(\tau, R) \geq \left(r + \frac{1}{2}\right) + \frac{\widehat{\phi}(0)}{\phi(0)} + O\left(\frac{\log \log R}{\log R}\right)$$

Want to maximize $\widehat{\phi}(\mathbf{0})/\phi(\mathbf{0})$, which is

$$\mathcal{P}_{\beta} := \frac{(\int_{0}^{1} h(u)^{2} du) + (\frac{2\beta}{\sigma})^{2} (\int_{0}^{1} h(u) h''(u) du)}{\sigma (\int_{0}^{1} h(u) du)^{2}}$$

.

Elliptic Curves	Ensembles 000	1-Level Results ○○○○○○●○○	Questions 0000	Results and Data	Jacobi Ensembles	Refs o
Birch and	Swinner	ton-Dyer or	າ "averaູ	ge"		

Setting $\mathcal{P}_{\beta} = 0$ gives $\beta = C(h)\sigma$ gives

Theorem (Goes, M–)

Assume GRH and let $\beta = C(h)\sigma$ so that $\mathcal{P}_{\beta} = 0$. Then there are on average at least $r + \frac{1}{2}$ normalized zeros within the band $\left(-\frac{1}{2\pi C(h)\sigma}, \frac{1}{2\pi C(h)\sigma}\right)$ for $t \in [R, 2R]$.

Using $h(x) = (1 - x^2)^2$ gives at least $r + \frac{1}{2}$ normalized zeros on average within the band $\approx (-\frac{0.551329}{\sigma}, \frac{0.551329}{\sigma})$

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
		00000000000				

Results for certain test functions

h(x) = 0 for |x| > 1, and

- Class: $h(x) = (1 x^{2k})^{2j}, (j, k \in \mathbb{Z})$ Optimum: $h(x) = (1 - x^2)^2$ gives interval approximately $(-\frac{0.551329}{\sigma}, \frac{0.551329}{\sigma})$.
- Class: $h(x) = \exp(-1/(1-x^{2k})), (k \in \mathbb{Z})$ Optimum: $h(x) = \exp(-1/(1-x^{2}))$ gives approximately $(-\frac{0.558415}{\sigma}, \frac{0.558415}{\sigma})$.
- Class: $h(x) = \exp(-k/(1-x^2))$ Optimum: $h(x) = \exp(-.754212/(1-x^2))$ gives approximately $(-\frac{0.552978}{\sigma}, \frac{0.552978}{\sigma})$.

Elliptic Curves	Ensembles 000	1-Level Results ○○○○○○○●	Questions 0000	Results and Data	Jacobi Ensembles	Refs o
Upper bo	unds					

Theorem (Goes, M–)

For an elliptic curve with explicit formulas as above, the number of normalized zeros within $(-\tau, \tau)$ is bounded above by $(r + \frac{1}{2}) + \frac{(r + \frac{1}{2})(\psi(0) - \psi(\tau)) + \hat{\psi}(0)}{\psi(\tau)}$, for all strictly positive, even test functions monotonically decreasing over $(0, \infty)$.

Elliptic Curves	Ensembles 000	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs o

Questions

Let $\mathcal{E} : y^2 = x^3 + A(T)x + B(T)$ be a one-parameter family of elliptic curves of rank *r* over $\mathbb{Q}(T)$. Natural sub-families:

- Curves of rank r.
- Curves of rank r + 2.

Let $\mathcal{E} : y^2 = x^3 + A(T)x + B(T)$ be a one-parameter family of elliptic curves of rank *r* over $\mathbb{Q}(T)$. Natural sub-families:

- Curves of rank r.
- Curves of rank r + 2.

Question: Does the sub-family of rank r + 2 curves in a rank r family behave like the sub-family of rank r + 2 curves in a rank r + 2 family?

Equivalently, does it matter how one conditions on a curve being rank r + 2?

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
			0000			

Testing Random Matrix Theory Predictions

Know the right model for large conductors, searching for the correct model for finite conductors.

In the limit must recover the independent model, and want to explain data on:

- **Excess Rank:** Rank *r* one-parameter family over $\mathbb{Q}(T)$: observed percentages with rank $\geq r + 2$.
- First (Normalized) Zero above Central Point: Influence of zeros at the central point on the distribution of zeros near the central point.

Elliptic Curves	Ensembles 000	1-Level Results	Questions ooeo	Results and Data	Jacobi Ensembles	Refs o
Excess R	ank					

One-parameter family, rank *r* over $\mathbb{Q}(T)$. Density Conjecture (Generic Family) \implies 50% rank r, r+1.

For many families, observe Percent with rank r $\approx 32\%$ Percent with rank r+1 $\approx 48\%$ Percent with rank r+2 $\approx 18\%$ Percent with rank r+3 $\approx 2\%$

Problem: small data sets, sub-families, convergence rate log(conductor).
Elliptic Curves	Ensembles 000	1-Level Results	Questions ○○○●	Results and Data	Jacobi Ensembles	Refs o
Data on E	vooss Da	nk				

$$y^2 + y = x^3 + Tx$$

Each data set 2000 curves from start. Last has conductors of size 10¹⁷, but on logarithmic scale still small.

<u>t-Start</u>	<u>Rk 0</u>	<u>Rk 1</u>	<u>Rk 2</u>	<u>Rk 3</u>	Time (hrs)
-1000	39.4	47.8	12.3	0.6	<1
1000	38.4	47.3	13.6	0.6	<1
4000	37.4	47.8	13.7	1.1	1
8000	37.3	48.8	12.9	1.0	2.5
24000	35.1	50.1	13.9	0.8	6.8
50000	36.7	48.3	13.8	1.2	51.8

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles	Refs o

Results and Data

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
				000000000000		

RMT: Theoretical Results ($N \rightarrow \infty$, Mean $\rightarrow 0.321$)

Figure 1a: 1st norm. evalue above 1: 23,040 SO(4) matrices Mean = .709, Std Dev of the Mean = .601, Median = .709

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
				00000000000		

RMT: Theoretical Results ($N \rightarrow \infty$, Mean $\rightarrow 0.321$)

Figure 1b: 1st norm. evalue above 1: 23,040 SO(6) matrices Mean = .635, Std Dev of the Mean = .574, Median = .635

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data ○●○○○○○○○○○	Jacobi Ensembles	Refs o
RMT: The	oretical F	Results (<i>N</i> –	$ ightarrow \infty$)			

Figure 1c: 1st norm. evalue above 1: SO(even)

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
	000	0000000000	0000	○●○○○○○○○○○○	oooooooooooo	o
RMT: The	oretical l	Results (<i>N</i> -	$\rightarrow \infty$)			

Figure 1d: 1st norm. evalue above 1: SO(odd)

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	R
				00000000000		

Rank 0 Curves: 1st Normalized Zero above Central Point

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	
				00000000000		

Rank 0 Curves: 1st Normalized Zero above Central Point

Figure 2b: 750 rank 0 curves from $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6.$ $\log(\text{cond}) \in [12.6, 14.9], \text{ median} = .85, \text{ mean} = .88, \sigma_{\mu} = .27$

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
				000000000000		

Rank 2 Curves: 1st Norm. Zero above the Central Point

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
				000000000000		

Rank 2 Curves: 1st Norm. Zero above the Central Point

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Ref
				000000000000		

Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0

Figure 4a: 209 rank 0 curves from 14 rank 0 families, $log(cond) \in [3.26, 9.98]$, median = 1.35, mean = 1.36

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Re
				000000000000000000000000000000000000000		

efs

Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0

Figure 4b: 996 rank 0 curves from 14 rank 0 families, $log(cond) \in [15.00, 16.00]$, median = .81, mean = .86.

Elliptic Curves	Ensembles	1-Level Results
0000		

Results and Data

Refs

Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0 over $\mathbb{Q}(T)$

Questions

Family	Median $\widetilde{\mu}$	Mean μ	StDev σ_{μ}	log(cond)	Number
1: [0,1,1,1,T]	1.28	1.33	0.26	[3.93, 9.66]	7
2: [1,0,0,1,T]	1.39	1.40	0.29	[4.66, 9.94]	11
3: [1,0,0,2,T]	1.40	1.41	0.33	[5.37, 9.97]	11
4: [1,0,0,-1,T]	1.50	1.42	0.37	[4.70, 9.98]	20
5: [1,0,0,-2,T]	1.40	1.48	0.32	[4.95, 9.85]	11
6: [1,0,0,T,0]	1.35	1.37	0.30	[4.74, 9.97]	44
7: [1,0,1,-2,T]	1.25	1.34	0.42	[4.04, 9.46]	10
8: [1,0,2,1,T]	1.40	1.41	0.33	[5.37, 9.97]	11
9: [1,0,-1,1,T]	1.39	1.32	0.25	[7.45, 9.96]	9
10: [1,0,-2,1,T]	1.34	1.34	0.42	[3.26, 9.56]	9
11: [1,1,-2,1,T]	1.21	1.19	0.41	[5.73, 9.92]	6
12: [1,1,-3,1,T]	1.32	1.32	0.32	[5.04, 9.98]	11
13: [1,-2,0,T,0]	1.31	1.29	0.37	[4.73, 9.91]	39
14: [-1,1,-3,1,T]	1.45	1.45	0.31	[5.76, 9.92]	10
All Curves	1.35	1.36	0.33	[3.26, 9.98]	209
Distinct Curves	1.35	1.36	0.33	[3.26, 9.98]	196

ptic Curves	Ensembles	

Elli oo -Level Results

Questions

Results and Data

Jacobi Ensembles

Refs

Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0 over $\mathbb{Q}(T)$

Family	Median $\widetilde{\mu}$	Mean μ	StDev σ_{μ}	log(cond)	Number
1: [0,1,1,1,T]	0.80	0.86	0.23	[15.02, 15.97]	49
2: [1,0,0,1,T]	0.91	0.93	0.29	[15.00, 15.99]	58
3: [1,0,0,2,T]	0.90	0.94	0.30	[15.00, 16.00]	55
4: [1,0,0,-1,T]	0.80	0.90	0.29	[15.02, 16.00]	59
5: [1,0,0,-2,T]	0.75	0.77	0.25	[15.04, 15.98]	53
6: [1,0,0,T,0]	0.75	0.82	0.27	[15.00, 16.00]	130
7: [1,0,1,-2,T]	0.84	0.84	0.25	[15.04, 15.99]	63
8: [1,0,2,1,T]	0.90	0.94	0.30	[15.00, 16.00]	55
9: [1,0,-1,1,T]	0.86	0.89	0.27	[15.02, 15.98]	57
10: [1,0,-2,1,T]	0.86	0.91	0.30	[15.03, 15.97]	59
11: [1,1,-2,1,T]	0.73	0.79	0.27	[15.00, 16.00]	124
12: [1,1,-3,1,T]	0.98	0.99	0.36	[15.01, 16.00]	66
13: [1,-2,0,T,0]	0.72	0.76	0.27	[15.00, 16.00]	120
14: [-1,1,-3,1,T]	0.90	0.91	0.24	[15.00, 15.99]	48
All Curves	0.81	0.86	0.29	[15.00,16.00]	996
Distinct Curves	0.81	0.86	0.28	[15.00,16.00]	863

Elliptic	Curves	Ense

mbles 1-Level Results

ults Questions

Results and Data

Jacobi Ensembles

Refs o

Rank 2 Curves: 1st Norm Zero: one-param of rank 0 over $\mathbb{Q}(T)$

first set log(cond) \in [15, 15.5); second set log(cond) \in [15.5, 16]. Median $\tilde{\mu}$, Mean μ , Std Dev (of Mean) σ_{μ} .

Family	$\widetilde{\mu}$	μ	σ_{μ}	Number	$\widetilde{\mu}$	μ	σ_{μ}	Number
1: [0,1,3,1,T]	1.59	1.83	0.49	8	1.71	1.81	0.40	19
2: [1,0,0,1,T]	1.84	1.99	0.44	11	1.81	1.83	0.43	14
3: [1,0,0,2,T]	2.05	2.03	0.26	16	2.08	1.94	0.48	19
4: [1,0,0,-1,T]	2.02	1.98	0.47	13	1.87	1.94	0.32	10
5: [1,0,0,T,0]	2.05	2.02	0.31	23	1.85	1.99	0.46	23
6: [1,0,1,1,T]	1.74	1.85	0.37	15	1.69	1.77	0.38	23
7: [1,0,1,2,T]	1.92	1.95	0.37	16	1.82	1.81	0.33	14
8: [1,0,1,-1,T]	1.86	1.88	0.34	15	1.79	1.87	0.39	22
9: [1,0,1,-2,T]	1.74	1.74	0.43	14	1.82	1.90	0.40	14
10: [1,0,-1,1,T]	2.00	2.00	0.32	22	1.81	1.94	0.42	18
11: [1,0,-2,1,T]	1.97	1.99	0.39	14	2.17	2.14	0.40	18
12: [1,0,-3,1,T]	1.86	1.88	0.34	15	1.79	1.87	0.39	22
13: [1,1,0,T,0]	1.89	1.88	0.31	20	1.82	1.88	0.39	26
14: [1,1,1,1,T]	2.31	2.21	0.41	16	1.75	1.86	0.44	15
15: [1,1,-1,1,T]	2.02	2.01	0.30	11	1.87	1.91	0.32	19
16: [1,1,-2,1,T]	1.95	1.91	0.33	26	1.98	1.97	0.26	18
17: [1,1,-3,1,T]	1.79	1.78	0.25	13	2.00	2.06	0.44	16
18: [1,-2,0,T,0]	1.97	2.05	0.33	24	1.91	1.92	0.44	24
19: [-1,1,0,1,T]	2.11	2.12	0.40	21	1.71	1.88	0.43	17
20: [-1,1,-2,1,T]	1.86	1.92	0.28	23	1.95	1.90	0.36	18
21: [-1,1,-3,1,T]	2.07	2.12	0.57	14	1.81	1.81	0.41	19
All Curves	1.95	1.97	0.37	350	1.85	1.90	0.40	388
Distinct Curves	1.95	1.97	0.37	335	1.85	1.91	0.40	366

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
				00000000000000		

Rank 2 Curves: 1st Norm Zero: 21 One-Param of Rank 0 over $\mathbb{Q}(T)$

- Observe the medians and means of the small conductor set to be larger than those from the large conductor set.
- For all curves the Pooled and Unpooled Two-Sample *t*-Procedure give *t*-statistics of 2.5 with over 600 degrees of freedom.
- For distinct curves the *t*-statistics is 2.16 (respectively 2.17) with over 600 degrees of freedom (about a 3% chance).
- Provides evidence against the null hypothesis (that the means are equal) at the .05 confidence level (though not at the .01 confidence level).

Refs

Rank 2 Curves from $y^2 = x^3 - T^2x + T^2$ (Rank 2 over $\mathbb{Q}(T)$) 1st Normalized Zero above Central Point

Elliptic Curves Ensembles 1-Level Results Questions Results and Data Jacobi Ensembles

Refs

Rank 2 Curves from $y^2 = x^3 - T^2x + T^2$ (Rank 2 over $\mathbb{Q}(T)$) 1st Normalized Zero above Central Point

Elliptic	Curves

1-Level Results Questions

Results and Data

Jacobi Ensembles

Refs o

Rank 2 Curves: 1st Norm Zero: rank 2 one-param over $\mathbb{Q}(T)$

 $log(cond) \in [15, 16], t \in [0, 120]$, median is 1.64.

Family	Mean	Standard Deviation	log(conductor)	Number
1: [1,T,0,-3-2T,1]	1.91	0.25	[15.74,16.00]	2
2: [1,T,-19,-T-1,0]	1.57	0.36	[15.17,15.63]	4
3: [1,T,2,-T-1,0]	1.29		[15.47, 15.47]	1
4: [1,T,-16,-T-1,0]	1.75	0.19	[15.07,15.86]	4
5: [1,T,13,-T-1,0]	1.53	0.25	[15.08,15.91]	3
6: [1,T,-14,-T-1,0]	1.69	0.32	[15.06,15.22]	3
7: [1,T,10,-T-1,0]	1.62	0.28	[15.70,15.89]	3
8: [0,T,11,-T-1,0]	1.98		[15.87,15.87]	1
9: [1,T,-11,-T-1,0]				
10: [0,T,7,-T-1,0]	1.54	0.17	[15.08,15.90]	7
11: [1,T,-8,-T-1,0]	1.58	0.18	[15.23,25.95]	6
12: [1,T,19,-T-1,0]				
13: [0,T,3,-T-1,0]	1.96	0.25	[15.23, 15.66]	3
14: [0,T,19,-T-1,0]				
15: [1,T,17,-T-1,0]	1.64	0.23	[15.09, 15.98]	4
16: [0,T,9,-T-1,0]	1.59	0.29	[15.01, 15.85]	5
17: [0,T,1,-T-1,0]	1.51		[15.99, 15.99]	1
18: [1,T,-7,-T-1,0]	1.45	0.23	[15.14, 15.43]	4
19: [1,T,8,-T-1,0]	1.53	0.24	[15.02, 15.89]	10
20: [1,T,-2,-T-1,0]	1.60		[15.98, 15.98]	1
21: [0,T,13,-T-1,0]	1.67	0.01	[15.01, 15.92]	2
All Curves	1.61	0.25	[15.01, 16.00]	64

Elliptic Curves

Ensembles 1-l

1-Level Results

Results and Data

Jacobi Ensembles

Refs

Function Field Example (with Sal Butt, Chris Hall) $y^2 = x^3 + (t^5 + a_1t^4 + a_0)x + (t^3 + b_2t^2 + b_1t + b_0)$, $a_i, b_i \in \mathbb{F}_5$

Questions

Figure 6a: Normalized first eigenangle: 719 rank 0 curves.

Elliptic Curves

Ensembles 1-l

1-Level Results

Results and Data

Jacobi Ensembles

Refs

Function Field Example (with Sal Butt, Chris Hall) $y^2 = x^3 + (t^5 + a_1t^4 + a_0)x + (t^3 + b_2t^2 + b_1t + b_0)$, $a_i, b_i \in \mathbb{F}_5$

Questions

Figure 6*b*: Normalized first eigenangle: 978 curves (719 rank 0 curve, 254 rank 2 curves, 5 rank 4 curves).

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs

Jacobi Ensembles

Elliptic Curves	Ensembles	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ●○○○○○○○○○	Refs o	
Populsion or Attraction?							

Conductors in [15, 16]; first set is rank 0 curves from 14 one-parameter families of rank 0 over \mathbb{Q} ; second set rank 2 curves from 21 one-parameter families of rank 0 over \mathbb{Q} . The *t*-statistics exceed 6.

Family	2nd vs 1st Zero	3rd vs 2nd Zero	Number
Rank 0 Curves	2.16	3.41	863
Rank 2 Curves	1.93	3.27	701

The repulsion from extra zeros at the central point cannot be entirely explained by *only* collapsing the first zero to the central point while leaving the other zeros alone.

Can also interpret as attraction.

Elliptic Curves Ensembles 1-Level Results Questions Results and Data Jacobi Er

Jacobi Ensembles

Refs

Comparison b/w One-Param Families of Different Rank, first normalized zero above the central point.

- First is the 701 rank 2 curves from the 21 one-parameter families of rank 0 over Q(T) with log(cond) ∈ [15, 16];
- second is the 64 rank 2 curves from the 21 one-parameter families of rank 2 over Q(T) with log(cond) ∈ [15, 16].

Family	Median	Mean	Std Dev	#
Rank 2 Curves (Rank 0 Families)	1.926	1.936	0.388	701
Rank 2 Curves (Rank 2 Families)	1.642	1.610	0.247	64

- *t*-statistic is 6.60, indicating the means differ.
- The mean of the first normalized zero of rank 2 curves in a family above the central point (for conductors in this range) depends on *how* we choose the curves.

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
					0000000000	

Spacings b/w Norm Zeros: Rank 0 One-Param Families over $\mathbb{Q}(T)$

- All curves have log(cond) ∈ [15, 16];
- $z_i =$ imaginary part of j^{th} normalized zero above the central point;
- 863 rank 0 curves from the 14 one-param families of rank 0 over $\mathbb{Q}(T)$;
- 701 rank 2 curves from the 21 one-param families of rank 0 over $\mathbb{Q}(T)$.

	863 Rank 0 Curves	701 Rank 2 Curves	t-Statistic
Median $z_2 - z_1$	1.28	1.30	
Mean $z_2 - z_1$	1.30	1.34	-1.60
StDev $z_2 - z_1$	0.49	0.51	
Median $z_3 - z_2$	1.22	1.19	
Mean $z_3 - z_2$	1.24	1.22	0.80
StDev $z_3 - z_2$	0.52	0.47	
Median $z_3 - z_1$	2.54	2.56	
Mean $z_3 - z_1$	2.55	2.56	-0.38
StDev $z_3 - z_1$	0.52	0.52	

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
					0000000000	

Spacings b/w Norm Zeros: Rank 2 one-param families over $\mathbb{Q}(T)$

- All curves have log(cond) ∈ [15, 16];
- $z_j = \text{imaginary part of the } j^{\text{th}}$ norm zero above the central point;
- 64 rank 2 curves from the 21 one-param families of rank 2 over $\mathbb{Q}(T)$;
- 23 rank 4 curves from the 21 one-param families of rank 2 over $\mathbb{Q}(T)$.

	64 Rank 2 Curves	23 Rank 4 Curves	t-Statistic
Median $z_2 - z_1$	1.26	1.27	
Mean $z_2 - z_1$	1.36	1.29	0.59
StDev $z_2 - z_1$	0.50	0.42	
Median $z_3 - z_2$	1.22	1.08	
Mean $z_3 - z_2$	1.29	1.14	1.35
StDev $z_3 - z_2$	0.49	0.35	
Median $z_3 - z_1$	2.66	2.46	
Mean $z_3 - z_1$	2.65	2.43	2.05
StDev $z_3 - z_1$	0.44	0.42	

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
					0000000000	

Rank 2 Curves from Rank 0 & Rank 2 Families over $\mathbb{Q}(T)$

- All curves have log(cond) ∈ [15, 16];
- $z_i = \text{imaginary part of the } j^{\text{th}}$ norm zero above the central point;
- 701 rank 2 curves from the 21 one-param families of rank 0 over $\mathbb{Q}(T)$;
- 64 rank 2 curves from the 21 one-param families of rank 2 over $\mathbb{Q}(T)$.

	701 Rank 2 Curves	64 Rank 2 Curves	t-Statistic
Median $z_2 - z_1$	1.30	1.26	
Mean $z_2 - z_1$	1.34	1.36	0.69
StDev $z_2 - z_1$	0.51	0.50	
Median $z_3 - z_2$	1.19	1.22	
Mean $z_3 - z_2$	1.22	1.29	1.39
StDev $z_3 - z_2$	0.47	0.49	
Median $z_3 - z_1$	2.56	2.66	
Mean $z_3 - z_1$	2.56	2.65	1.93
StDev $z_3 - z_1$	0.52	0.44	

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○○	Refs o
New mod	el					

The joint PDF of *N* pairs of eigenvalues $\{e^{i\theta_j}\}_{1 \le j \le N}$, taken from random orthogonal matrices having other *r* fixed eigenvalues at +1 is

$$d\varepsilon_r(\theta_1,\ldots,\theta_N)=C_{N,r}\prod_{j< k}(\cos\theta_k-\cos\theta_j)^2\prod_j(1-\cos\theta_j)^r\,d\theta_j.$$

• This probability measure is well defined for $r \in (-1/2, \infty)$.

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o
Example	of Decrea	asing repul	sion: 2 ≥	$r \ge 0$		

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o
Example	of Decrea	asing repul	sion: 2 ≥	$r \ge 0$		

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o
Example	of Decrea	asing repul	sion: 2 ≥	$r \ge 0$		

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o			
Example	Example of Decreasing repulsion: $2 \ge r \ge 0$								

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o			
Example	Example of Decreasing repulsion: $2 \ge r \ge 0$								

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o			
Example	Example of Decreasing repulsion: $2 \ge r \ge 0$								

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o			
Example	Example of Decreasing repulsion: $2 \ge r \ge 0$								

Elliptic Curves	Ensembles	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o			
Example	Example of Decreasing repulsion: $2 > r > 0$								

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o
Example	of Decrea	asing repul	sion: 2 ≥	$r \ge 0$		

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o
Example	of Decrea	asing repul	sion: 2 ≥	$r \ge 0$		

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o
Example	of Decrea	asing repul	sion: 2 ≥	$r \ge 0$		

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o
Example	of Decrea	asing repul	sion: 2 ≥	$r \ge 0$		

Elliptic Curves	Ensembles 000	1-Level Result	ts O	Questio	ons	Results and Data	Jacobi Ensembles ○○○○○○●○○○○	R o	efs
_									

Example of Decreasing repulsion: $2 \ge r \ge 0$

r°= °1.0000

х

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o
Example	of Decrea	asing repul	sion: 2 ≥	$r \ge 0$		

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o
Example	of Decrea	asing repul	sion: 2 ≥	$r \ge 0$		

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o
Example	of Decrea	asing repul	sion: 2 ≥	$r \ge 0$		

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o
Example	of Decre	asing repul	sion: 2 >	r > 0		

r°= °.66667

Elliptic Curves	Ensembles 000	1-Level Results	Questions	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o
Example	of Decre	asing reput	sion: 2 >	r > 0		

r°= °.58333

Elliptic Curves	Ensembles	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o
Example	of Decre	asing repul	sion: 2 >	r > 0		

r°= °.50000

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o
Example	of Decrea	asing repuls	sion: 2 >	r > 0		

r°= °.41667

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o
Example	of Decrea	asing repul	sion: 2 ≥	$r \ge 0$		

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o
Example	of Decrea	asing repul	sion: 2 ≥	$r \ge 0$		

r°= °.25000

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o
Example	of Decrea	asing repul	sion: 2 ≥	$r \ge 0$		

r°= °.16667

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o
Example	of Decrea	asing repul	sion: 2 ≥	$r \ge 0$		

r°= °.83333e-1

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○●○○○○	Refs o
Example	of Decrea	asing repuls	sion: 2 \geq	$r \ge 0$		

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles	Refs o
The Cond	densation	Parameter				

For simplicity, assume that \mathcal{E} is an even orthogonal family depending on a parameter $T \to \infty$.

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○○●○○○	Refs o
The Conc	lensation	Parameter				

For simplicity, assume that \mathcal{E} is an even orthogonal family depending on a parameter $T \to \infty$.

• The condensation parameter *r* will progressively decrease from an initial maximum value r_0 to a minimum value $r_{\infty} = 0$ (resp., $r_{\infty} = 1$ if \mathcal{E} is an odd orthogonal family.)

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
					000000000000	

The Condensation Parameter r

For simplicity, assume that \mathcal{E} is an even orthogonal family depending on a parameter $T \to \infty$.

- The condensation parameter *r* will progressively decrease from an initial maximum value r_0 to a minimum value $r_{\infty} = 0$ (resp., $r_{\infty} = 1$ if \mathcal{E} is an odd orthogonal family.)
- By suitably decreasing r as T increases, the statistics of eigenvalues in this model match many of the theoretical and experimental features observed in the critical zeros of *E*:
 - "Repulsion" of eigenvalues away from central point when r > 0. (The larger *r*, the more repulsion.)
 - "Independent" model statistics when r = 0.

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○○○●○○	Refs o
The Effec	t of the P	aramotor r				

- As *r* varies from r_0 to 0 the "central repulsion" decreases and, at r = 0, it disappears completely.
- Increasing r merely tends to shift all the eigenvalues to the right: they are pushed away, but the relative spacings between them are basically unchanged.

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles ○○○○○○○○●○	Refs o
Additiona	l inputs					

- Discretization (values at central point).
- *N*_{effective} (from lower order terms).

Goal is to model one-parameter families with finite conductor.

Will study simpler family of quadratic twists of a fixed *E*.

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
					0000000000	

Modeling lowest zero (data & calculations from Duc Khiem Huynh)

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
					00000000000	

Modeling lowest zero (data & calculations from Duc Khiem Huynh)

Lowest zero for $L_{E_{11}}(s, \chi_d)$ with 0 < d < 400,000 (bar chart), lowest eigenvalue of SO(2N) with $N_0 = 12$ (solid) with discretisation and with standard $N_0 = 12.26$ (dashed) without discretisation

Elliptic Curves	Ensembles	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs
					0000000000	

Modeling lowest zero (data & calculations from Duc Khiem Huynh)

Lowest zero for $L_{E_{11}}(s, \chi_d)$ with 0 < d < 400,000 (bar chart), lowest eigenvalue of SO(2N) effective *N* of N_{eff} = 2 (solid) with discretisation and with effective *N* of N_{eff} = 2.32 (dashed) without discretisation

Caveat: this bibliography hasn't been updated much from a previous talk, and could be a little out of date. It is meant to serve as a first reference.

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles	Refs ●
E	8. Bektemiro Elliptic Curv	ov, B. Mazur a es, preprint.	and M. Wa	tkins, <i>Average</i>	Ranks of	
E re	8. Birch and eine angew	H. Swinnerto Math. 212 , 1	on-Dyer, <i>N</i> 1963, 7 – 2	lotes on elliptic 25.	curves. I, J.	

B. Birch and H. Swinnerton-Dyer, *Notes on elliptic curves. II*, J. reine angew. Math. **218**, 1965, 79 – 108.

C. Breuil, B. Conrad, F. Diamond and R. Taylor, *On the modularity of elliptic curves over* **Q***: wild* 3*-adic exercises*, J. Amer. Math. Soc. **14**, no. 4, 2001, 843 – 939.

A. Brumer, *The average rank of elliptic curves I*, Invent. Math. **109**, 1992, 445 - 472.

0000	000	000000000000000000000000000000000000000	0000		000000000000000000000000000000000000000	•
A C	. Brumer a urves III, pi	nd R. Heath-E	Brown, <i>Th</i>	e average rank	of elliptic	

A. Brumer and R. Heath-Brown, *The average rank of elliptic curves V*, preprint.

A. Brumer and O. McGuinness, *The behaviour of the Mordell-Weil group of elliptic curves*, Bull. AMS **23**, 1991, 375 – 382.

J. Coates and A. Wiles, On the conjecture of Birch and Swinnterton-Dyer, Invent. Math. **39**, 1977, 43 - 67.

Cremona, *Algorithms for Modular Elliptic Curves*, Cambridge University Press, 1992.

0000	000	000000000000000000000000000000000000000	oooo			eis
F 1	. Diamond, 44 . 1996. 1	On deformati 37 – 166.	ion rings a	nd Hecke rings	s, Ann. Math.	

S. Fermigier, *Zéros des fonctions L de courbes elliptiques*, Exper. Math. **1**, 1992, 167 – 173.

S. Fermigier, Étude expérimentale du rang de familles de courbes elliptiques sur \mathbb{Q} , Exper. Math. **5**, 1996, 119 – 130.

E. Fouvrey and J. Pomykala, *Rang des courbes elliptiques et sommes d'exponentelles*, Monat. Math. **116**, 1993, 111 – 125.

F. Gouvéa and B. Mazur, *The square-free sieve and the rank of elliptic curves*, J. Amer. Math. Soc. **4**, 1991, 45 – 65.

0000	000	0000000000	0000	000000000000	00000000000	•
	D. Goldfeld,	Conjectures of	on elliptic	curves over qua	adratic fields,	

1-Level Results

D. Goldfeld, *Conjectures on elliptic curves over quadratic fields*, Number Theory (Proc. Conf. in Carbondale, 1979), Lecture Notes in Math. **751**, Springer-Verlag, 1979, 108 – 118.

Results and Data

lacohi Ensembles

Refs

H. Iwaniec, W. Luo and P. Sarnak, *Low lying zeros of families of L-functions*, Inst. Hautes Études Sci. Publ. Math. **91**, 2000, 55 – 131.

A. Knapp, *Elliptic Curves*, Princeton University Press, Princeton, 1992.

N. Katz and P. Sarnak, *Random Matrices, Frobenius Eigenvalues and Monodromy*, AMS Colloquium Publications **45**, AMS, Providence, 1999.

N. Katz and P. Sarnak, Zeros of zeta functions and symmetries, Bull. AMS **36**, 1999, 1 – 26.

Elliptic Curves	Ensembles 000	1-Level Results	Questions	Results and Data	Jacobi Ensembles	Refs •

V. Kolyvagin, On the Mordell-Weil group and the Shafarevich-Tate group of modular elliptic curves, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), Math. Soc. Japan, Tokyo, 1991, 429 – 436.

L. Mai, *The analytic rank of a family of elliptic curves*, Canadian Journal of Mathematics **45**, 1993, 847 – 862.

J. Mestre, *Formules explicites et minorations de conducteurs de variétés algébriques*, Compositio Mathematica **58**, 1986, 209 – 232.

J. Mestre, *Courbes elliptiques de rang* \geq 11 sur **Q**(*t*), C. R. Acad. Sci. Paris, ser. 1, **313**, 1991, 139 – 142.

J. Mestre, Courbes elliptiques de rang ≥ 12 sur Q(t), C. R. Acad. Sci. Paris ser 1 313 1991 171 – 174

103

P. Michel, Rang moven de familles de courbes elliptiques et lois								

de Sato-Tate, Monat. Math. 120, 1995, 127 – 136.

S. J. Miller, 1- and 2-Level Densities for Families of Elliptic Curves: Evidence for the Underlying Group Symmetries, P.H.D. Thesis, Princeton University, 2002, http://www.math.princeton.edu/~sjmiller/thesis/thesis.pdf.

S. J. Miller, 1- and 2-level densities for families of elliptic curves: evidence for the underlying group symmetries, Compositio Mathematica **140** (2004), 952-992.

S. J. Miller, Variation in the number of points on elliptic curves and applications to excess rank, C. R. Math. Rep. Acad. Sci. Canada **27** (2005), no. 4, 111–120.

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles	Refs ●

S. J. Miller, *Investigations of zeros near the central point of elliptic curve L-functions* (with an appendix by E. Dueñez), Experimental Mathematics **15** (2006), no. 3, 257–279.

K. Nagao, *Construction of high-rank elliptic curves*, Kobe J. Math. **11**, 1994, 211 – 219.

K. Nagao, $\mathbb{Q}(t)$ -rank of elliptic curves and certain limit coming from the local points, Manuscr. Math. **92**, 1997, 13 – 32.

Rizzo, Average root numbers for a non-constant family of elliptic curves, preprint.

Elliptic Curves	Ensembles 000	1-Level Results	Questions 0000	Results and Data	Jacobi Ensembles	Refs ●

D. Rohrlich, *Variation of the root number in families of elliptic curves*, Compos. Math. **87**, 1993, 119 – 151.

M. Rosen and J. Silverman, On the rank of an elliptic surface, Invent. Math. **133**, 1998, 43 - 67.

M. Rubinstein, *Evidence for a spectral interpretation of the zeros of L-functions*, P.H.D. Thesis, Princeton University, 1998, http://www.ma.utexas.edu/users/miker/thesis/thesis.html.

Z. Rudnick and P. Sarnak, Zeros of principal L-functions and random matrix theory, Duke Journal of Math. **81**, 1996, 269 – 322.

T. Shioda, *Construction of elliptic curves with high-rank via the invariants of the Weyl groups*, J. Math. Soc. Japan **43**, 1991, 673 – 719

Elliptic Curves	Ensembles 000	1-Level Results 0000000000	Questions 0000	Results and Data	Jacobi Ensembles	Refs ●

J. Silverman, *The Arithmetic of Elliptic Curves*, Graduate Texts in Mathematics **106**, Springer-Verlag, Berlin - New York, 1986.

J. Silverman, *Advanced Topics in the Arithmetic of Elliptic Curves*, Graduate Texts in Mathematics **151**, Springer-Verlag, Berlin - New York, 1994.

J. Silverman, *The average rank of an algebraic family of elliptic curves*, J. reine angew. Math. **504**, 1998, 227 – 236.

N. Snaith, Derivatives of random matrix characteristic polynomials with applications to elliptic curves, preprint.

C. Stewart and J. Top, *On ranks of twists of elliptic curves and power-free values of binary forms*, Journal of the American Mathematical Society **40**, number 4, 1995.

0000	000	000000000000000000000000000000000000000	oooo			•
	R. Taylor and algebras, An	d A. Wiles, <i>Ri</i> nn. Math. 141 ,	ng-theore 1995, 55	tic properties o 3 – 572.	f certain Hecke	9

A. Wiles, *Modular elliptic curves and Fermat's last theorem*, Ann. Math **141**, 1995, 443 – 551.

M. Young, *Lower order terms of the* 1-*level density of families of elliptic curves*, IMRN **10** (2005), 587–633.

M. Young, *Low-Lying Zeros of Families of Elliptic Curves*, JAMS, to appear.

D. Zagier and G. Kramarz, *Numerical investigations related to the L*-series of certain elliptic curves, J. Indian Math. Soc. **52** (1987), 51–69.