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Generalized Ramanujan Primes
Nadine Amersi, Olivia Beckwith, Ryan Ronan
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Historical Introduction

Bertrand’s Postulate (1845)
For all integers x ≥ 2, there exists at least one prime in
(x/2, x ].
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Ramanujan Primes

Definition
The n-th Ramanujan prime is the integer Rn that is the
smallest to guarantee there are n primes in (x/2, x ] for all
x ≥ Rn.
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Ramanujan Primes

Definition
The n-th Ramanujan prime is the integer Rn that is the
smallest to guarantee there are n primes in (x/2, x ] for all
x ≥ Rn.

Theorem
Ramanujan: For each integer n, Rn exists.
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Ramanujan Primes

Definition
The n-th Ramanujan prime is the integer Rn that is the
smallest to guarantee there are n primes in (x/2, x ] for all
x ≥ Rn.

Theorem
Ramanujan: For each integer n, Rn exists.
Sondow: Rn ∼ p2n.
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Ramanujan Primes

Definition
The n-th Ramanujan prime is the integer Rn that is the
smallest to guarantee there are n primes in (x/2, x ] for all
x ≥ Rn.

Theorem
Ramanujan: For each integer n, Rn exists.
Sondow: Rn ∼ p2n.
Sondow: As n → ∞, 1

2 of primes are Ramanujan.
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c-Ramanujan Primes

Definition
The n-th c-Ramanujan prime is the integer Rc,n that is the
smallest to guarantee there are n primes in (cx , x ] for all
x ≥ Rc,n where c ∈ (0, 1).
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c-Ramanujan Primes

Definition
The n-th c-Ramanujan prime is the integer Rc,n that is the
smallest to guarantee there are n primes in (cx , x ] for all
x ≥ Rc,n where c ∈ (0, 1).

For each c and integer n, does Rc,n exist?
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c-Ramanujan Primes

Definition
The n-th c-Ramanujan prime is the integer Rc,n that is the
smallest to guarantee there are n primes in (cx , x ] for all
x ≥ Rc,n where c ∈ (0, 1).

For each c and integer n, does Rc,n exist? Yes!
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c-Ramanujan Primes

Definition
The n-th c-Ramanujan prime is the integer Rc,n that is the
smallest to guarantee there are n primes in (cx , x ] for all
x ≥ Rc,n where c ∈ (0, 1).

For each c and integer n, does Rc,n exist? Yes!
Does Rc,n exhibit asymptotic behavior?
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c-Ramanujan Primes

Definition
The n-th c-Ramanujan prime is the integer Rc,n that is the
smallest to guarantee there are n primes in (cx , x ] for all
x ≥ Rc,n where c ∈ (0, 1).

For each c and integer n, does Rc,n exist? Yes!
Does Rc,n exhibit asymptotic behavior? Rc,n ∼ p n

1−c
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c-Ramanujan Primes

Definition
The n-th c-Ramanujan prime is the integer Rc,n that is the
smallest to guarantee there are n primes in (cx , x ] for all
x ≥ Rc,n where c ∈ (0, 1).

For each c and integer n, does Rc,n exist? Yes!
Does Rc,n exhibit asymptotic behavior? Rc,n ∼ p n

1−c

As n → ∞, what proportion of primes are
c-Ramanujan?
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c-Ramanujan Primes

Definition
The n-th c-Ramanujan prime is the integer Rc,n that is the
smallest to guarantee there are n primes in (cx , x ] for all
x ≥ Rc,n where c ∈ (0, 1).

For each c and integer n, does Rc,n exist? Yes!
Does Rc,n exhibit asymptotic behavior? Rc,n ∼ p n

1−c

As n → ∞, what proportion of primes are
c-Ramanujan? 1-c
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Existence of Rc,n

Theorem
For all n ∈ Z and all c ∈ (0, 1), the n-th c-Ramanujan
prime Rc,n exists.
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Existence of Rc,n

Theorem
For all n ∈ Z and all c ∈ (0, 1), the n-th c-Ramanujan
prime Rc,n exists.

Sketch of proof:
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Existence of Rc,n

Theorem
For all n ∈ Z and all c ∈ (0, 1), the n-th c-Ramanujan
prime Rc,n exists.

Sketch of proof:
Let π(x) denote the number of primes at most x .
Then the number of primes in (cx , x ] is π(x)− π(cx).
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Existence of Rc,n

Theorem
For all n ∈ Z and all c ∈ (0, 1), the n-th c-Ramanujan
prime Rc,n exists.

Sketch of proof:
Let π(x) denote the number of primes at most x .
Then the number of primes in (cx , x ] is π(x)− π(cx).
Using the Prime Number Theorem and Mean Value

Theorem, we obtain π(x)−π(cx) = (1−c)x
log x +O

(
x

log2 x

)
.
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Existence of Rc,n

Theorem
For all n ∈ Z and all c ∈ (0, 1), the n-th c-Ramanujan
prime Rc,n exists.

Sketch of proof:
Let π(x) denote the number of primes at most x .
Then the number of primes in (cx , x ] is π(x)− π(cx).
Using the Prime Number Theorem and Mean Value

Theorem, we obtain π(x)−π(cx) = (1−c)x
log x +O

(
x

log2 x

)
.

π(x)− π(cx) ≥ n for all x sufficiently large.

19



c-Ramanujan Primes MSTD RMT Benford’s Law

Distribution of generalized Ramanujan primes

Expected longest run ≈ log1/p (n(1 − p)).

Length of the longest run below 106 of
c-Ramanujan primes Non-Ramanujan primes

c Expected Actual Expected Actual
0.05 127 97 4 2
0.10 71 58 5 3
0.15 50 42 6 6
0.20 38 36 8 7
0.25 31 27 9 12
0.30 25 25 10 12
0.35 22 18 11 18
0.40 19 21 13 16
0.45 16 19 15 23
0.50 14 20 17 36
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More Sums Than Differences Sets
Geoff Iyer, Oleg Lazarev, Liyang Zhang
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Statement

A finite set of integers, |A| its size. Form

Sumset: A + A = {ai + aj : ai , aj ∈ A}.
Difference set: A − A = {ai − aj : aj , aj ∈ A}.
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Statement

A finite set of integers, |A| its size. Form

Sumset: A + A = {ai + aj : ai , aj ∈ A}.
Difference set: A − A = {ai − aj : aj , aj ∈ A}.

Definition
We say A is difference dominated if |A − A| > |A + A|,
balanced if |A − A| = |A + A| and sum dominated (or an
MSTD set) if |A + A| > |A − A|.
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Statement

A finite set of integers, |A| its size. Form

Sumset: A + A = {ai + aj : ai , aj ∈ A}.
Difference set: A − A = {ai − aj : aj , aj ∈ A}.

Definition
We say A is difference dominated if |A − A| > |A + A|,
balanced if |A − A| = |A + A| and sum dominated (or an
MSTD set) if |A + A| > |A − A|.

Definition
kA = A + . . .+ A︸ ︷︷ ︸

k times

, [a, b] = {a, a + 1, . . . , b}.
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Questions

Can we find a set A such that |kA + kA| > |kA − kA|?

Can we find a set A such that |A + A| > |A − A| and
|2A + 2A| > |2A − 2A|?

Can we find a set A such that |kA + kA| > |kA − kA|
for all k?
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Questions

Can we find a set A such that |kA + kA| > |kA − kA|?
YES!

Can we find a set A such that |A + A| > |A − A| and
|2A + 2A| > |2A − 2A|? YES!

Can we find a set A such that |kA + kA| > |kA − kA|
for all k? NO! (No such set exists)
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|kA + kA| > |kA − kA|

Question: Can we find a set A such that
|kA + kA| > |kA − kA|? YES!
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|kA + kA| > |kA − kA|

Question: Can we find a set A such that
|kA + kA| > |kA − kA|? YES!

Example: |3A + 3A| > |3A − 3A|

A = [0, 12] ∪ [16, 18] ∪ {24} ∪ [139, 161]
∪{275} ∪ [281, 283] ∪ [287, 300]

|3A + 3A| = 1798, |3A − 3A| = 1795.

28



c-Ramanujan Primes MSTD RMT Benford’s Law

Generalizations

By further modifying A, we can construct sets where

The sumset has arbitrarily more elements than the
difference set:
|kA + kA| − |kA − kA| = m
The sumset and difference set each have arbitrarily
many missing elements:
|kA + kA| = 2nk + 1 − m and |kA − kA| = 2nk + 1 − ℓ
for any m, ℓ such that ℓ ≤ 2m
|s1A − d1A| = (s1 + d1)n + 1 − m and
|s2A − d2A| = (s2 + d2)n + 1 − ℓ
for ℓ ≤ 2m and s1 + d1 = s2 + d2
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k-Generational Sets

Question: Does a set A exist such that |A + A| > |A − A|
and |A + A + A + A| > |A + A − A − A|? If yes call it
2-generational.
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k-Generational Sets

Question: Does a set A exist such that |A + A| > |A − A|
and |A + A + A + A| > |A + A − A − A|? If yes call it
2-generational.

Yes!

A = {0, 1, 3, 4, 5, 26, 27, 29, 30, 33, 37, 38, 40, 41, 42, 43,
46, 49, 50, 52, 53, 54, 72, 75, 76, 79, 80}

In fact, we can do much better.
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k-Generational Sets

We can find an A such that |xjA − yjA| > |wjA − zjA| for
any nontrivial choices of xj , yj ,wj , zj and for all 2 ≤ j ≤ k .
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k-Generational Sets

We can find an A such that |xjA − yjA| > |wjA − zjA| for
any nontrivial choices of xj , yj ,wj , zj and for all 2 ≤ j ≤ k .

Example: We can find an A such that

|A + A| > |A − A|
|A + A − A| > |A + A + A|
|5A − 2A| > |A − 6A|

...
|1870A − 141A| > |1817A − 194A|
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Base Expansion: For sets A1, . . . ,An and m ∈ N

sufficiently large (relative to k and A1, . . . ,An) the set

A = A1 + m · A2 + · · ·+ mn−1 · An

(where the multiplication is the usual scalar multiplication)
has

|xA − yA| =
k∏

j=1

|xAj − yAj |

whenever x + y ≤ k .
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Base Expansion: For sets A1, . . . ,An and m ∈ N

sufficiently large (relative to k and A1, . . . ,An) the set

A = A1 + m · A2 + · · ·+ mn−1 · An

(where the multiplication is the usual scalar multiplication)
has

|xA − yA| =
k∏

j=1

|xAj − yAj |

whenever x + y ≤ k .

Base expansion is an approximation to the cross product.
However, it only works for finitely many sums/differences.
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k-Generational Sets

To prove the theorem, we choose sets Aj that behave well
for a specific 2 ≤ j ≤ k and are balanced for i 6= j . We
then use base expansion to create A using the Aj .
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We can construct k -generation sets for arbitrarily large k .
But for any set A, as k goes to infinity kA will become
difference-dominated or balanced.
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We can construct k -generation sets for arbitrarily large k .
But for any set A, as k goes to infinity kA will become
difference-dominated or balanced.

Theorem (Nathanson)
For any set A, as k goes to infinity the fringes of kA will
stabilize. If the largest element of A is a and there are m
elements in A, kA will stabilize before k = a2m.
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We can construct k -generation sets for arbitrarily large k .
But for any set A, as k goes to infinity kA will become
difference-dominated or balanced.

Theorem (Nathanson)
For any set A, as k goes to infinity the fringes of kA will
stabilize. If the largest element of A is a and there are m
elements in A, kA will stabilize before k = a2m.

Here we will improve this bound.
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Theorem
For any set A, as k goes to infinity the fringes of kA will
stabilize. If the largest element of A is a and there are m
elements in A, kA will stabilize before k = a.
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Theorem
For any set A, as k goes to infinity the fringes of kA will
stabilize. If the largest element of A is a and there are m
elements in A, kA will stabilize before k = a.

Theorem
For any set A, as k goes to infinity kA will eventually
become difference-dominated or balanced. And this will
happen before k reaches 2a.

Proof Idea: kA ⊂ kA − kA. And k(A − A) and 2k(A) will
both become stabilize when k = 2a.
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Random Matrix Theory
Olivia Beckwith, Karen Shen
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Random Matrices

Distribution of eigenvalues of random matrices: Ax = λx .
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Random Matrices

Distribution of eigenvalues of random matrices: Ax = λx .

Applications:
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Random Matrices

Distribution of eigenvalues of random matrices: Ax = λx .

Applications:

Nuclear Physics
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Random Matrices

Distribution of eigenvalues of random matrices: Ax = λx .

Applications:

Nuclear Physics
L-functions

46



c-Ramanujan Primes MSTD RMT Benford’s Law

Matrix Ensembles

Toeplitz:




b0 b1 b2 b3

b1 b0 b1 b2

b2 b1 b0 b1

b3 b2 b1 b0
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Matrix Ensembles

Toeplitz:




b0 b1 b2 b3

b1 b0 b1 b2

b2 b1 b0 b1

b3 b2 b1 b0




Signed Toeplitz:


b0 −b1 b2 b3

−b1 −b0 b1 −b2

b2 b1 b0 −b1

b3 −b2 −b1 b0




aii = ǫiia = ±a, p = Prob(ǫij = 1), . . .
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Previous Work

Real symmetric: -2 -1 0 1 2

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Toeplitz: -4 -2 0 2 4

200

400

600

800
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Methods: Markov’s Method of Moments

The k th moment Mk of a probability distribution f (x)
defined on an interval [a, b] is

∫ b
a xk f (x) dx .
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Methods: Markov’s Method of Moments

The k th moment Mk of a probability distribution f (x)
defined on an interval [a, b] is

∫ b
a xk f (x) dx .

Show a typical eigenvalue measure µA,N (x)
converges to a probability distribution P by controlling
convergence of average moments of the measures as
N → ∞ to the moments of P.
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Eigenvalue Trace Lemma

For any non-negative integer k , if A is an N × N matrix
with eigenvalues λi (A), then

Trace
(
Ak

)
=

N∑

i=1

λi (A)
k .
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Eigenvalue Trace Lemma

For any non-negative integer k , if A is an N × N matrix
with eigenvalues λi (A), then

Trace
(
Ak

)
=

N∑

i=1

λi (A)
k .

Using this lemma, we see that a formula for the average
k th moment, Mk (N) = E [Mk (AN)], is:

1

N
k
2+1

∑

1≤i1,...,ik≤N

E
(
ǫi1i2b|i1−i2|ǫi2i3b|i2−i3| . . . ǫik i1b|ik−i1|

)
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Evaluating the Moments

Mk (N) =
1

N
k
2+1

∑

1≤i1,...,ik≤N

E
(
ǫi1i2b|i1−i2|ǫi2i3b|i2−i3| . . . ǫik i1b|ik−i1|

)
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Evaluating the Moments

Mk (N) =
1

N
k
2+1

∑

1≤i1,...,ik≤N

E
(
ǫi1i2b|i1−i2|ǫi2i3b|i2−i3| . . . ǫik i1b|ik−i1|

)

For a term to contribute in the summand:
The b’s must be matched in at least pairs since
E (bij) = 0.
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Evaluating the Moments

Mk (N) =
1

N
k
2+1

∑

1≤i1,...,ik≤N

E
(
ǫi1i2b|i1−i2|ǫi2i3b|i2−i3| . . . ǫik i1b|ik−i1|

)

For a term to contribute in the summand:
The b’s must be matched in at least pairs since
E (bij) = 0.
The b’s must be matched in at most pairs since there
must be at least k

2 + 1 degrees of freedom.
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Thus:
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Thus:
Odd moments vanish.
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Thus:
Odd moments vanish.
For the even moments M2k we can represent each
contributing term as a pairing of 2k vertices on a
circle as follows:

Èi1-i2È

Èi2-i3ÈÈi3-i4È

Èi4-i5È

Èi5-i6È Èi6-i1È
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Results

p = 1
2 : Semi-circle distribution
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Results

p = 1
2 : Semi-circle distribution

p 6= 1
2 : unbounded support.

Each configuration weighted by (2p − 1)m, where m is the
number of points on the circle whose edge crosses
another edge.

Example: m = 4
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Results, continued

Question: Out of the (2k − 1)!! ways to pair 2k vertices,
how many of these pairings will have m vertices crossing?
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Results, continued

Question: Out of the (2k − 1)!! ways to pair 2k vertices,
how many of these pairings will have m vertices crossing?
For:

m = 0, well-known to be the Catalan numbers.
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Results, continued

Question: Out of the (2k − 1)!! ways to pair 2k vertices,
how many of these pairings will have m vertices crossing?
For:

m = 0, well-known to be the Catalan numbers.
m = 4, we proved there are

( 2k
k−2

)
such pairings.
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Results, continued

Question: Out of the (2k − 1)!! ways to pair 2k vertices,
how many of these pairings will have m vertices crossing?
For:

m = 0, well-known to be the Catalan numbers.
m = 4, we proved there are

( 2k
k−2

)
such pairings.

m = 6, we proved there are 4
( 2k

k−3

)
such pairings.
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Results, continued

Question: Out of the (2k − 1)!! ways to pair 2k vertices,
how many of these pairings will have m vertices crossing?
For:

m = 0, well-known to be the Catalan numbers.
m = 4, we proved there are

( 2k
k−2

)
such pairings.

m = 6, we proved there are 4
( 2k

k−3

)
such pairings.

As k gets very large, the expected number of vertices in a
crossing converges to 2k − 2 and the variance converges
to 4.
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Benford’s Law
Thealexa Becker, Alec Greaves-Tunnell, Ryan Ronan

67



c-Ramanujan Primes MSTD RMT Benford’s Law

Benford’s Law Review

Benford’s Law: Newcomb (1881), Benford (1938)

A set is Benford if probability first digit is d is logB

(
d+1

d

)
;

30% start with 1.

Many data sets exhibit Benford behavior:
⋄ Fibonacci Sequence
⋄ Lots of financial data (stocks, bonds, etc.)
⋄ Certain products of random independent variables
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Benford’s Law Review

Benford’s Law: Newcomb (1881), Benford (1938)

A set is Benford if probability first digit is d is logB

(
d+1

d

)
;

30% start with 1.

Many data sets exhibit Benford behavior:
⋄ Fibonacci Sequence
⋄ Lots of financial data (stocks, bonds, etc.)
⋄ Certain products of random independent variables

Interesting Question

Why do we observe Benford distribution of first digits in
“real world” data sets?
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Overview

Lemons’ Interesting Answer (American Journal of
Physics, 1986)
Often due to observing distribution of pieces of a
conserved quantity.
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Overview

Lemons’ Interesting Answer (American Journal of
Physics, 1986)
Often due to observing distribution of pieces of a
conserved quantity.

Probability model in paper vague and unclear.
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Overview

Lemons’ Interesting Answer (American Journal of
Physics, 1986)
Often due to observing distribution of pieces of a
conserved quantity.

Probability model in paper vague and unclear.

Proposed model

Partition X into N terms: X =
∑N

j=1 njxj . Issues: what
possible xj ’s? Is N fixed?
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Results

For (small) finite N, brute force calculation shows
E(nj) =

1
xj
(X

N ); Benford density is proportional to 1/x .
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Results

For (small) finite N, brute force calculation shows
E(nj) =

1
xj
(X

N ); Benford density is proportional to 1/x .

For general N, approximate: S = X −
∑

j njxj ,

δ(X ,
N∑

j=1

njxj)⋉ e−S2/2σ,

then evaluate N-dimensional integral.
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Results

For (small) finite N, brute force calculation shows
E(nj) =

1
xj
(X

N ); Benford density is proportional to 1/x .

For general N, approximate: S = X −
∑

j njxj ,

δ(X ,
N∑

j=1

njxj)⋉ e−S2/2σ,

then evaluate N-dimensional integral.
Difficulty: region of integration; can simplify with
indicator functions, but Fourier transform has slow
decay.
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Another model
Consider M sticks of lengths ℓi , each li drawn from the
random variable L. Break each ℓi by cutting at kiℓi , with
Ki ∼ Unif(0, 1). Repeat cutting N times.
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Another model
Consider M sticks of lengths ℓi , each li drawn from the
random variable L. Break each ℓi by cutting at kiℓi , with
Ki ∼ Unif(0, 1). Repeat cutting N times.

Theorem
If L is Benford on [1, 10) and N = 1, then as M → ∞ the
distribution of lengths of pieces is Benford’s Law.
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Another model
Consider M sticks of lengths ℓi , each li drawn from the
random variable L. Break each ℓi by cutting at kiℓi , with
Ki ∼ Unif(0, 1). Repeat cutting N times.

Theorem
If L is Benford on [1, 10) and N = 1, then as M → ∞ the
distribution of lengths of pieces is Benford’s Law.

⋄ Find cumulative probability distribution function of
random variable Z = KL.
⋄ Evaluate

Prob[First digit = d ] =
+∞∑

r=0

[
Fz((d + 1)10−r )− Fz(d10−r )

]
.

78



c-Ramanujan Primes MSTD RMT Benford’s Law

Another model
Consider M sticks of lengths ℓi , each li drawn from the
random variable L. Break each ℓi by cutting at kiℓi , with
Ki ∼ Unif(0, 1). Repeat cutting N times.

Theorem
If L is Benford on [1, 10) and N = 1, then as M → ∞ the
distribution of lengths of pieces is Benford’s Law.

⋄ Find cumulative probability distribution function of
random variable Z = KL.
⋄ Evaluate

Prob[First digit = d ] =
+∞∑

r=0

[
Fz((d + 1)10−r )− Fz(d10−r )

]
.

Also true if N → ∞.
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CONJECTURE
Let L be fixed and consider one stick (M = 1). As N → ∞,
the resulting first digit distribution of the lengths of the
broken pieces will conform to Benford’s Law.

⋄ Wish to show that for any digit d the resulting first digit
distribution has zero variance.
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CONJECTURE
Let L be fixed and consider one stick (M = 1). As N → ∞,
the resulting first digit distribution of the lengths of the
broken pieces will conform to Benford’s Law.

⋄ Wish to show that for any digit d the resulting first digit
distribution has zero variance.
⋄ Cross terms are most problematic: Need N → ∞ limit of

∞∑
i,j=1

∫ 1

x=0

∫ 1

y=0

∫ min( 2×10−i
xy ,1)

z=min( 10−i
xy ,1)

∫ min( 2×10−j

x(1−y)
,1)

w=min( 10−j
x(1−y) ,1)

(− log x)n−1(log z log w)m−1

Γ(n)Γ(m)2
dwdzdydx
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Definition of Copulas
Copula: A form of joint CDF between multiple variables
with given uniform marginals on the d-dimensional unit
cube.

Sklar’s Theorem
Let X and Y be random variables with joint distribution
function H and marginal distribution functions F and G
respectively. There exists a copula, C, such that

∀x , y ∈ R, H(x , y) = C(F (x),G(y)).
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Archimedean Copulas
A commonly used / studied family of copulas is of the form

C(x , y) = φ−1(φ(x) + φ(y))

where φ is the generator and φ−1 is the inverse generator
of the copula.
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Investigating the Benfordness of the product of random
variables arising from copulas.

Clayton Copula: C(x , y) = (x−θ + y−θ − 1)−1/θ.

PDF (bivariate): θ(θ−1 + 1)(xy)−θ−1(x−θ + y−θ − 1)−2−1/θ
.

PDF (general case):
θn−1 Γ(n+θ−1)

Γ(1+θ−1)
(x1 · · · xn)

−θ−1(x−θ
1 + · · ·+ x−θ

n − 1)−n−1/θ .
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Results

Early data and chi-square tests of multivariate
copulas suggest Benford behavior of the products of
copulas.
Proof strategy includes the integration of the PDF
over the region in which the product has first digit d
using Poisson summation:
∫ 1

0
· · ·

∫ 1

0

∑

k

φ̂log10(x1···xn)(k)p(x1, . . . , xn)dx1 · · ·dxn,

where

φa(u) = χ[1,2)(10u+a) =

{
1 if 10u+a ∈ [1, 2)
0 otherwise.
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