Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further researc

Schreier multisets and the s-step Fibonacci sequences

Steven J. Miller, Williams College: sjm1@williams.edu Joint with Hung Viet Chu, Nurettin Irmak, László Szalay, and Sindy Xin Zhang 2022 Polymath Jr REU:

https://geometrynyc.wixsite.com/polymathreu

https://web.williams.edu/Mathematics/sjmiller/public_ html/math/talks/talks.html

https://arxiv.org/pdf/2304.05409.pdf

Integers Conference, University of Georgia, May 18th, 2023

Schreier condition	Schreier multisets and s-step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research

Schreier sets and the Fibonacci sequence

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research

 $A \subset \mathbb{N}$ is said to be Schreier if min $A \ge |A|$ (number of elements).

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research

 $A \subset \mathbb{N}$ is said to be Schreier if min $A \ge |A|$ (number of elements).

 $\{2,3\},\,\{2,4\},\,\{2,5\},\,\ldots\,$ and $\{4,5,20\}$ are Schreier; $\{2,5,6\}$ isn't.

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research

 $A \subset \mathbb{N}$ is said to be Schreier if min $A \ge |A|$ (number of elements).

 $\{2,3\}, \{2,4\}, \{2,5\}, \dots$ and $\{4,5,20\}$ are Schreier; $\{2,5,6\}$ isn't.

Define

$$\mathcal{A}_n := \{ A \subset \{1, \ldots, n\} : n \in A \text{ and } \min A \ge |A| \}.$$

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research

 $A \subset \mathbb{N}$ is said to be Schreier if min $A \ge |A|$ (number of elements).

 $\{2,3\}, \{2,4\}, \{2,5\}, \dots$ and $\{4,5,20\}$ are Schreier; $\{2,5,6\}$ isn't.

Define

$$\mathcal{A}_n := \{ A \subset \{1, \ldots, n\} : n \in A \text{ and } \min A \ge |A| \}.$$

We count sets in A_n .

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research

•
$$\mathcal{A}_1 = \{\{1\}\} \Rightarrow |\mathcal{A}_1| = 1$$

• $\mathcal{A}_2 = \{\{2\}\} \Rightarrow |\mathcal{A}_2| = 1$
• $\mathcal{A}_3 = \{\{2,3\}, \{3\}\} \Rightarrow |\mathcal{A}_3| = 2$

•
$$\mathcal{A}_4 = \{\{2,4\},\{3,4\},\{4\}\} \Rightarrow |\mathcal{A}_4| = 3$$

• $\mathcal{A}_5 = \{\{5\},\{2,5\},\{3,5\},\{4,5\},\{3,4,5\}\} \Rightarrow |\mathcal{A}_5| = 5$

• ...

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research

•
$$A_1 = \{\{1\}\} \Rightarrow |A_1| = 1$$

• $A_2 = \{\{2\}\} \Rightarrow |A_2| = 1$
• $A_3 = \{\{2,3\}, \{3\}\} \Rightarrow |A_3| = 2$
• $A_4 = \{\{2,4\}, \{3,4\}, \{4\}\} \Rightarrow |A_4| = 3$
• $A_5 = \{\{5\}, \{2,5\}, \{3,5\}, \{4,5\}, \{3,4,5\}\} \Rightarrow |A_5| = 5$
• ...

 $(|\mathcal{A}_n|)_{n=1}^{\infty}$: 1, 1, 2, 3, 5, 8, ... is Fibonacci!

Theorem

Define
$$F_1 = 1$$
, $F_2 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$. Then $|A_n| = F_n$ for all $n \ge 1$.

Will give proof from A. Bird's post:

https://outofthenormmaths.wordpress.com/2012/05/13/ jozef-schreier-schreier-sets-and-the-fibonacci-sequence/

Schreier condition	Schreier multisets and s-step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research

$$\mathcal{A}_n := \{ A \subset \{1, \ldots, n\} : n \in A \text{ and } \min A \ge |A| \}.$$

Proof that $|A_n| = F_n$ (Bird (2012)).

Verify that $|\mathcal{A}_1| = |\mathcal{A}_2| = 1$. For $n \ge 1$, we want $|\mathcal{A}_{n+2}| = |\mathcal{A}_{n+1}| + |\mathcal{A}_n|$.

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research

10

$$\mathcal{A}_n := \{ A \subset \{1, \ldots, n\} : n \in A \text{ and } \min A \ge |A| \}.$$

Proof that $|A_n| = F_n$ (Bird (2012)).

Verify that $|A_1| = |A_2| = 1$. For $n \ge 1$, we want $|A_{n+2}| = |A_{n+1}| + |A_n|$.

 $R_{n+2}: A_{n+1} \rightarrow A_{n+2}$ replaces the largest element by n+2.

Schreier condition	Schreier multisets and s-step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research

$$\mathcal{A}_n := \{ A \subset \{1, \dots, n\} : n \in A \text{ and } \min A \ge |A| \}.$$

Proof that $|A_n| = F_n$ (Bird (2012)).

Verify that $|A_1| = |A_2| = 1$. For $n \ge 1$, we want $|A_{n+2}| = |A_{n+1}| + |A_n|$.

 $R_{n+2}: A_{n+1} \rightarrow A_{n+2}$ replaces the largest element by n+2.

 $S_{n+2}: A_n \rightarrow A_{n+2}$ adds 1 to each element and appends n+2.

Schreier condition	Schreier multisets and s-step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research

$$\mathcal{A}_n := \{ A \subset \{1, \dots, n\} : n \in A \text{ and } \min A \ge |A| \}.$$

Proof that $|A_n| = F_n$ (Bird (2012)).

Verify that $|A_1| = |A_2| = 1$. For $n \ge 1$, we want $|A_{n+2}| = |A_{n+1}| + |A_n|$.

 $R_{n+2}: A_{n+1} \rightarrow A_{n+2}$ replaces the largest element by n+2.

 $S_{n+2}: A_n \rightarrow A_{n+2}$ adds 1 to each element and appends n+2.

Both R_{n+2} and S_{n+2} are one-to-one.

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research

$$\mathcal{A}_n := \{ A \subset \{1, \dots, n\} : n \in A \text{ and } \min A \ge |A| \}.$$

Proof that $|A_n| = F_n$ (Bird (2012)).

Verify that $|A_1| = |A_2| = 1$. For $n \ge 1$, we want $|A_{n+2}| = |A_{n+1}| + |A_n|$.

 $R_{n+2}: \mathcal{A}_{n+1} \rightarrow \mathcal{A}_{n+2}$ replaces the largest element by n+2.

 $S_{n+2}: \mathcal{A}_n \rightarrow \mathcal{A}_{n+2}$ adds 1 to each element and appends n+2.

Both R_{n+2} and S_{n+2} are one-to-one. Furthermore,

$$\begin{aligned} & R_{n+2}(\mathcal{A}_{n+1}) = \{ A \in \mathcal{A}_{n+2} : n+1 \notin A \} \\ & S_{n+2}(\mathcal{A}_n) = \{ A \in \mathcal{A}_{n+2} : n+1 \in A \} . \\ & \Longrightarrow |\mathcal{A}_n| + |\mathcal{A}_{n+1}| = |S_{n+2}(\mathcal{A}_n)| + |R_{n+2}(\mathcal{A}_{n+1})| = |\mathcal{A}_{n+2}|. \end{aligned}$$

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research

s-step Fibonacci sequence

For $s \ge 2$, the *s*-step Fibonacci sequence: $F_{2-s}^{(s)} = \cdots = F_0^{(s)} = 0$, $F_1^{(s)} = 1$, and

$$F_n^{(s)} = F_{n-1}^{(s)} + \dots + F_{n-s}^{(s)}$$
, for $n \ge 2$.

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research

s-step Fibonacci sequence

For $s \ge 2$, the *s*-step Fibonacci sequence: $F_{2-s}^{(s)} = \cdots = F_0^{(s)} = 0$, $F_1^{(s)} = 1$, and

$$F_n^{(s)} = F_{n-1}^{(s)} + \dots + F_{n-s}^{(s)}$$
, for $n \ge 2$.

s = 2 gives the Fibonacci sequence.

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research

s-step Fibonacci sequence

For $s \ge 2$, the *s*-step Fibonacci sequence: $F_{2-s}^{(s)} = \cdots = F_0^{(s)} = 0$, $F_1^{(s)} = 1$, and

$$F_n^{(s)} = F_{n-1}^{(s)} + \dots + F_{n-s}^{(s)}$$
, for $n \ge 2$.

- s = 2 gives the Fibonacci sequence.
- s = 3 gives the Tribonacci sequence

 $0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, \ldots$

Schreier condition ○○○○○●	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research

Problem

Generate the *s*-step Fibonacci sequence using the Schreier condition.

Schreier condition ○○○○○●	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research

Problem

Generate the *s*-step Fibonacci sequence using the Schreier condition.

Use multisets!

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research

Schreier multisets and the *s*-step Fibonacci sequences

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci ○●○○○	Another way to generate Fib seq	Nonlinear Schreier condition	Further research

Schreier multisets

Multiset: a collection that may contain multiple copies of the same element.

Schreier condition	Schreier multisets and s-step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research

Schreier multisets

Multiset: a collection that may contain multiple copies of the same element.

A multiset *A* is Schreier if min $A \ge |A|$.

Schreier condition	Schreier multisets and s-step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research

Schreier multisets

Multiset: a collection that may contain multiple copies of the same element.

A multiset A is Schreier if min $A \ge |A|$.

 $\{4, 5, 5\}$ and $\{5, 6, 6, 10, 12\}$ are Schreier, but $\{2, 3, 3\}$ is not.

Schreier	condition
00000	

Another way to generate Fib seq

Nonlinear Schreier condition

Further research

Schreier multisets and the s-step Fibonacci sequences

Define $\mathcal{A}_n^{(s-1)} :=$

$$\{A \subset \{\underbrace{1,\ldots,1}_{s-1},\ldots,\underbrace{n-1,\ldots,n-1}_{s-1},n\} : n \in A \text{ and } A \text{ is Schreier}\}.$$

Schreier	condition
00000	

Another way to generate Fib seq

Nonlinear Schreier condition

Further research

Schreier multisets and the s-step Fibonacci sequences

Define $\mathcal{A}_n^{(s-1)} :=$

$$\{A \subset \{\underbrace{1,\ldots,1}_{s-1},\ldots,\underbrace{n-1,\ldots,n-1}_{s-1},n\} : n \in A \text{ and } A \text{ is Schreier}\}.$$

For $s \ge 2$, the <u>s-step Fibonacci sequence</u>: $F_{2-s}^{(s)} = \cdots = F_0^{(s)} = 0$, $F_1^{(s)} = 1$, and

$$F_n^{(s)} = F_{n-1}^{(s)} + \dots + F_{n-s}^{(s)}$$
, for $n \ge 2$.

Schreier	condition
00000	

Another way to generate Fib seq

Nonlinear Schreier condition

Further research

Schreier multisets and the s-step Fibonacci sequences

Define $\mathcal{A}_n^{(s-1)} :=$

$$\{A \subset \{\underbrace{1,\ldots,1}_{s-1},\ldots,\underbrace{n-1,\ldots,n-1}_{s-1},n\} : n \in A \text{ and } A \text{ is Schreier}\}.$$

For $s \ge 2$, the s-step Fibonacci sequence: $F_{2-s}^{(s)} = \cdots = F_0^{(s)} = 0$, $F_1^{(s)} = 1$, and

$$F_n^{(s)} = F_{n-1}^{(s)} + \dots + F_{n-s}^{(s)}$$
, for $n \ge 2$.

Theorem (Chu, Irmak, Miller, Szalay, and Zhang, 2023)

For $n \in \mathbb{N}$ and $s \ge 2$, have $|\mathcal{A}_n^{(s-1)}| = \mathcal{F}_n^{(s)}$.

Schreier multisets and s-step Fibonacci

Another way to generate Fib seq

Nonlinear Schreier conditior

Further research

Proof ingredient - generalized binomials vs s-step Fibonacci numbers

For $s \ge 1$, $\binom{n}{k}_s$ counts ways to distribute *k* identical objects among *n* labelled boxes, each has capacity *s*.

Schreier multisets and s-step Fibonacci

Another way to generate Fib seq

Nonlinear Schreier condition

Further research

Proof ingredient - generalized binomials vs s-step Fibonacci numbers

For $s \ge 1$, $\binom{n}{k}_s$ counts ways to distribute *k* identical objects among *n* labelled boxes, each has capacity *s*.

s = 1 gives the classical binomial $\binom{n}{k}$.

Schreier multisets and s-step Fibonacci

Another way to generate Fib seq

Nonlinear Schreier condition

Further research

Proof ingredient - generalized binomials vs s-step Fibonacci numbers

For $s \ge 1$, $\binom{n}{k}_s$ counts ways to distribute *k* identical objects among *n* labelled boxes, each has capacity *s*.

s = 1 gives the classical binomial $\binom{n}{k}$.

Recall the well-known identity

$$\sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \binom{n-1-k}{k} = F_n.$$
 (1)

Schreier multisets and s-step Fibonacci

Another way to generate Fib seq

Nonlinear Schreier condition

Further research

Proof ingredient - generalized binomials vs s-step Fibonacci numbers

For $s \ge 1$, $\binom{n}{k}_s$ counts ways to distribute *k* identical objects among *n* labelled boxes, each has capacity *s*.

s = 1 gives the classical binomial $\binom{n}{k}$.

Recall the well-known identity

$$\sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \binom{n-1-k}{k} = F_n.$$
 (1)

Belbachir, Bouroubi, and Khelladi (2008) generalized (1):

$$\forall n \ge 0, \forall s \ge 1: \quad \sum_{k=0}^{\lfloor sn/(s+1) \rfloor} \binom{n-k}{k}_s = F_{n+1}^{(s+1)}.$$

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research
Proof				

Proof.

Trivially, $\{n\} \in \mathcal{A}_n^{(s-1)}$. An extension of $\{n\}$ by *k* elements is a choice of *k* elements from

$$\{\underbrace{k+1,\ldots,k+1}_{s-1},\ldots,\underbrace{n-1,\ldots,n-1}_{s-1}\}$$

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research
Proof				

Proof.

Trivially, $\{n\} \in \mathcal{A}_n^{(s-1)}$. An extension of $\{n\}$ by *k* elements is a choice of *k* elements from

$$\{\underbrace{k+1,\ldots,k+1}_{s-1},\ldots,\underbrace{n-1,\ldots,n-1}_{s-1}\}$$

Equivalently, we put *k* elements into the boxes labelled by k + 1, k + 2, ..., n - 1, each having capacity s - 1. By definition, there are $\binom{n-1-k}{k}_{s-1}$ choices.

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci ○○○○●	Another way to generate Fib seq	Nonlinear Schreier condition	Further research
Proof				

Proof.

Trivially, $\{n\} \in \mathcal{A}_n^{(s-1)}$. An extension of $\{n\}$ by *k* elements is a choice of *k* elements from

$$\{\underbrace{k+1,\ldots,k+1}_{s-1},\ldots,\underbrace{n-1,\ldots,n-1}_{s-1}\}$$

Equivalently, we put *k* elements into the boxes labelled by k + 1, k + 2, ..., n - 1, each having capacity s - 1. By definition, there are $\binom{n-1-k}{k}_{s-1}$ choices.

Therefore,

$$|\mathcal{A}_{n}^{(s-1)}| = \sum_{k=0}^{\lfloor (n-1)(s-1)/s \rfloor} {n-1-k \choose k}_{s-1} = F_{n}^{(s)}$$

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq ●OO	Nonlinear Schreier condition	Further research

Yet another way to obtain the Fibonacci sequence

Schreier condition	Schreier multisets and s-step Fibonacci	Another way to generate Fib seq O●O	Nonlinear Schreier condition	Further research

Multisets & Fibonacci

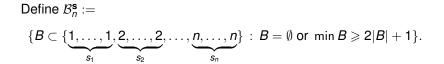
Fix $\mathbf{s} = (s_n)_{n=1}^{\infty} \subset \mathbb{Z}_{\geq 0}$ satisfying

 $s_n \ge k, \forall n \ge 2k + 1, \forall k \ge 1.$

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq O●O	Nonlinear Schreier condition	Further research
Marillian de O	The surgest			

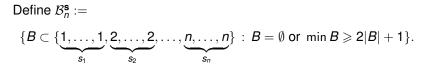
Multisets & Fibonacci

Fix $\mathbf{s} = (s_n)_{n=1}^{\infty} \subset \mathbb{Z}_{\geq 0}$ satisfying $s_n \geq k, \forall n \geq 2k+1, \forall k \geq 1.$



Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq O●O	Nonlinear Schreier condition	Further research
Multisets &	Fibonacci			

Fix
$$\mathbf{s} = (s_n)_{n=1}^{\infty} \subset \mathbb{Z}_{\geq 0}$$
 satisfying
 $s_n \geq k, \forall n \geq 2k+1, \forall k \geq 1.$



Turns out that $|\mathcal{B}_n^s| = F_n$ for $n \in \mathbb{N}$. We prove a more general result.

Schreier condition	n Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq OO●	Nonlinear Schreier condition	Further research

Multisets & other recurrences

Fix $u \ge 2$. Define $(K_n^{(u)})_{n=1}^{\infty}$:

$$K_1^{(u)} = \cdots = K_u^{(u)} = 1$$
 and $K_n^{(u)} = K_{n-1}^{(u)} + K_{n-u}^{(u)}, \quad n \ge u+1.$

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq ○○●	Nonlinear Schreier condition	Further rese

Multisets & other recurrences

Fix
$$u \ge 2$$
. Define $(K_n^{(u)})_{n=1}^{\infty}$:
 $K_1^{(u)} = \cdots = K_u^{(u)} = 1$ and $K_n^{(u)} = K_{n-1}^{(u)} + K_{n-u}^{(u)}, \quad n \ge u+1.$
Given $\mathbf{s} = (s_n)_{n=1}^{\infty} \subset \mathbb{Z}_{\ge 0}$, let
 $\mathcal{B}_n^{\mathbf{s},u} := \{B \subset \{\underbrace{1, \dots, 1}_{s_1}, \underbrace{2, \dots, 2}_{s_2}, \dots, \underbrace{n, \dots, n}_{s_n}\} : \min B \ge u|B|+1\}.$

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq OO●	Nonlinear Schreier condition	Furf 00

Multisets & other recurrences

Fix
$$u \ge 2$$
. Define $(K_n^{(u)})_{n=1}^{\infty}$:
 $K_1^{(u)} = \cdots = K_u^{(u)} = 1$ and $K_n^{(u)} = K_{n-1}^{(u)} + K_{n-u}^{(u)}, \quad n \ge u+1.$
Given $\mathbf{s} = (s_n)_{n=1}^{\infty} \subset \mathbb{Z}_{\ge 0}$, let
 $\mathcal{B}_n^{\mathbf{s}, u} := \{B \subset \{\underbrace{1, \dots, 1}_{s_1}, \underbrace{2, \dots, 2}_{s_2}, \dots, \underbrace{n, \dots, n}_{s_n}\} : \min B \ge u|B|+1\}.$

Theorem (Chu, Irmak, Miller, Szalay, and Zhang, 2023)

Fix $u \ge 2$ and $\mathbf{s} = (s_n)_{n=1}^{\infty} \subset \mathbb{Z}_{\ge 0}$ such that $s_n \ge k$ for all $n \ge uk + 1$ and $k \ge 1$. We have

$$|\mathcal{B}_n^{\mathbf{s},u}| = K_n^{(u)}, \quad n \in \mathbb{N}.$$

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research

Nonlinear Schreier condition

Schreier condition	

Another way to generate Fib seq

Nonlinear Schreier condition

Further research

Nonlinear Schreier condition & decompositions

Define, for $n, p \in \mathbb{N}$,

$$\mathcal{A}_n^p := \{ S \subset \{1, \ldots, n\} : \min S \ge |S|^p \text{ and } n \in S \}.$$

Schreier	condition
00000	

 $K_{n,0}$

Schreier multisets and s-step Fibonacci

Another way to generate Fib seq

Nonlinear Schreier condition

Further research

Nonlinear Schreier condition & decompositions

Define, for $n, p \in \mathbb{N}$,

$$\mathcal{A}^p_n := \{ S \subset \{1, \ldots, n\} : \min S \ge |S|^p \text{ and } n \in S \}.$$

For $(n, p) \in (\mathbb{N}, \mathbb{Z}_{\geq 0})$, let $K_{n,p}$ count decompositions of *n* where the smallest part is greater than the number of parts raised to the p^{th} power:

$$\mathcal{K}_{n,p} := \left| \left\{ (x_1, \dots, x_k) : \sum_{i=1}^k x_i = n \text{ and } \min_{1 \le i \le k} x_i > k^p \right\} \right|.$$
$$= \mathcal{F}_{n-1} \text{ for } n \ge 1.$$

Schreier	condition
00000	

Another way to generate Fib seq

Nonlinear Schreier condition

Further research

Nonlinear Schreier condition & decompositions

Define, for $n, p \in \mathbb{N}$,

$$\mathcal{A}^{p}_{n} := \{ S \subset \{1, \dots, n\} : \min S \geqslant |S|^{p} \text{ and } n \in S \}.$$

For $(n, p) \in (\mathbb{N}, \mathbb{Z}_{\geq 0})$, let $K_{n,p}$ count decompositions of *n* where the smallest part is greater than the number of parts raised to the p^{th} power:

$$\mathcal{K}_{n,p} := \left| \left\{ (x_1, \dots, x_k) : \sum_{i=1}^k x_i = n \text{ and } \min_{1 \le i \le k} x_i > k^p \right\} \right|.$$
$$\mathcal{K}_{n,0} = \mathcal{F}_{n-1} \text{ for } n \ge 1.$$

 $K_{13,1} = 12$ because

$$13 = 3 + 10 = 10 + 3 = 4 + 9 = 9 + 4$$

= 5 + 8 = 8 + 5 = 6 + 7 = 7 + 6
= 4 + 4 + 5 = 4 + 5 + 4 = 5 + 4 + 4.

Schreier	condition
00000	

Another way to generate Fib seq

Nonlinear Schreier condition

Further research

Nonlinear Schreier condition & decompositions

$$\mathcal{A}_{n}^{p} := \left\{ S \subset \{1, \dots, n\} : \min S \ge |S|^{p} \text{ and } n \in S \right\}.$$
$$\mathcal{K}_{n,p} := \left| \left\{ (x_{1}, \dots, x_{k}) : \sum_{i=1}^{k} x_{i} = n \text{ and } \min_{1 \le i \le k} x_{i} > k^{p} \right\} \right|.$$

Theorem (Chu, Irmak, Miller, Szalay, and Zhang, 2023)

For all $n, p \in \mathbb{N}$, have $|\mathcal{A}_n^p| = K_{n+1,p-1}$.

Schreier	condition
00000	

Another way to generate Fib seq

Nonlinear Schreier condition

Further research

Nonlinear Schreier condition & decompositions

$$\mathcal{A}_{n}^{p} := \left\{ S \subset \{1, \dots, n\} : \min S \ge |S|^{p} \text{ and } n \in S \right\}.$$
$$\mathcal{K}_{n,p} := \left| \left\{ (x_{1}, \dots, x_{k}) : \sum_{i=1}^{k} x_{i} = n \text{ and } \min_{1 \le i \le k} x_{i} > k^{p} \right\} \right|.$$

Theorem (Chu, Irmak, Miller, Szalay, and Zhang, 2023)

For all $n, p \in \mathbb{N}$, have $|\mathcal{A}_n^p| = \mathcal{K}_{n+1,p-1}$.

When p = 1, we regain $|\mathcal{A}_n^1| = K_{n+1,0} = F_n$.

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research ●O

Further research

Schreier condition	Schreier multisets and <i>s</i> -step Fibonacci	Another way to generate Fib seq	Nonlinear Schreier condition	Further research O●
Problem				

Counting sets satisfying linear Schreier-type condition $p \min S \ge q|S|$ $(p, q \in \mathbb{N})$ has been done. However, less is known about nonlinear conditions.

We counted sets *F* that satisfying $\min F \ge |F|^s$, where $s \in \mathbb{N}_{\ge 2}$. Further research can investigate other nonlinear conditions.

Thanks to 2022 Polymath Jr REU: https://geometrynyc.wixsite.com/polymathreu.

Paper: https://arxiv.org/pdf/2304.05409.pdf.