Closed-form moments in elliptic curve
families and low-lying zeros

Steven J Miller
Dept of Math/Stats, Williams College

siml@williams.edu, Steven.Miller.MC.96 @aya.yale.edu
http://ww. willianms. edu/ Mat hematics/sjmller

Simons Symposium on Families of Automorphic Forms and
the Trace Formula, Rio Grande, Puerto Rico, Jan 31", 2014

A



mailto:sjm1@williams.edu
mailto:Steven.Miller.MC.96@aya.yale.edu
http://www.williams.edu/Mathematics/sjmiller

Goals

FELLOWSHIP OF THE RING SEMINAR

cfprade agfn o bubd Chumb

(Sunda har i ened mente)

W BT SR S R T

Steven J. Miller
Brownm University

Brandeis, April 1=t, 2005
http:/ /www.math.brown. edu/~sjmiller




Conjectures and Theorems

Conjectures
and Theorems




Conjectures and Theorems
[ ]

Tate's Conjecture

A

Tate’s Conjecture for Elliptic Surfaces

Let £/Q be an elliptic surface and L»(&, s) be the L-series
attached to Hét(é’/(@, Q). Then Ly(&,s) has a

meromorphic continuation to C and satisfies
—ords—;L(&,s) = rank NS(£/Q),

where NS(£/Q) is the Q-rational part of the Néron-Severi
group of €. Further, L,(€, s) does not vanish on the line
Re(s) = 2.
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Theorem: Preliminaries

Consider a one-parameter family
E:y?+a(T)xy +as(T)y = x34ay(T)x? 4+ as(T)x + ag(T).

Let a;,(p) = p + 1 — Np, where N, is the number of
solutions mod p (including oc). Define

Ap) = 5> alp)

t(p)

As(p) is bounded independent of p (Deligne).
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Theorem: Preliminaries

Theorem

Rosen-Silverman (Conjecture of Nagao For an elliptic
surface (a one-parameter family), assume Tate’s
conjecture. Then

Jim 3" —Ac(p)logp = rank £(Q(1)).

Tate’s conjecture is known for rational surfaces: An elliptic
surface y? = x3 + A(t)x + B(t) is rational iff one of the
following is true:

@ 0 < max{3degA, 2degB} < 12;

@ 3degA = 2degB = 12 and ordi_ot2A(t~1) = 0.
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Conjectures: ABC, Square-Free

ABC Conjecture

Fix e > 0. For coprime positive integers a, b and ¢ with
c=a-+bandN(ab,c) =[] P, ¢ < N(ab,c)*

Square-Free Sieve Conjecture

Fix an irreducible polynomial f(t) of degree at least 4. As
N — oo, the number of t € [N, 2N] with D(t) divisible by
p? for some p > logN is o(N).
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Conjectures: Restricted Sign

Restricted Sign Conjecture (for the Family F)

Consider a 1-parameter family F of elliptic curves. As
N — oo, the signs of the curves E; are equidistributed for
t € [N, 2N].

Fails: constant j(t) where all curves same sign.
Rizzo:

Ec:y2=x3+tx2— (t+3)x +1, j(t)=256(t>+3t+9),
for every t € Z, E; has odd functional equation,
t 36t2 t3
E,:y2=x%+-x%— - i(t) =
Y =X X e o ee W

as t ranges over Z in the limit 50.1859% have even and
49.8141% have odd functional equation.
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Conjectures: Polynomial Mobius

Polynomial Moebius

Let f(t) be an irreducible polynomial such that no fixed
square divides f(t) for all t. Then S_2N u(f(t)) = o(N).




Conjectures and Theorems
L]

Conjectures: Polynomial Mobius

Helfgott shows the Square-Free Sieve and Polynomial

Moebius imply the Restricted Sign conjecture for many
families. More precisely, let M(t) be the product of the

irreducible polynomials dividing A(t) and not c,(t).

Theorem

Equidistribution of Sign in a Family Let F be a
one-parameter family with coefficients integer polynomials
int € [N, 2N]. If j(t) and M(t) are non-constant, then the
signs of E;, t € [N, 2N], are equidistributed as N — oc.
Further, if we restrict to good t, t € [N, 2N] such that D(t)
is good (usually square-free), the signs are still
equidistributed in the limit.




Constructing Families

Constructing Families
with Moderate Rank

Constructing one-parameter families of elliptic curves over
Q(T) with moderate rank (with Scott Arms and Alvaro
Lozano-Robledo), Journal of Number Theory 123 (2007),
no. 2, 388-402.

http://arxiv.org/ pdf/ mat h/ 0406579. pdf.



http://arxiv.org/pdf/math/0406579.pdf

Constructing Families
°

Mordell-Weil and Legendre Expansions

Mordell-Well Theorem: Rational solutions:
E(Q) = Z" & Finite Group.
Question: how does r depend on E?

Attach an L-Function to E: As ((s) gives us information
on primes, expect L-Function gives us information on E.

Review: Legendre Symbol: (3) = 0 and

a\ 1 if x> = a mod p has two solutions
p/ ]-1 ifx?=amod p has no solutions.

Note 1 + () is the number of solutions to x* = a mod p.
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1-Level Expansion

B log C; loglogN
Dl,]:N(QS) - |]:N| Z Z¢<7tj o > + O <W)

Ei€Fn

= A |E§ [600)+ 4i(0)]
1 logp -~/ logp
- N|E;7—‘ ZF”OQCE <|09CE)at(p)

1 Iogp logp \
| Z sz log Ce < log Ce a:(p)

EicFn

1
Want to move =+ > g . 7, leads us to study

Az(P) = > al(p), r=1lor2

t mod p
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For many families

A1 r(p) = —rp + O(1)
Ao r(p) = p® + O(p*?)

Rational Elliptic Surfaces (Rosen and Silverman): If rank r
over Q(T):

Surfaces with j(T ) non-constant (Michel):
As7(p) = p? + O (p*?).
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Rank 6 Family

Rational Surface of Rank 6 over Q(T):

y2 = x*+(2aT —B)x? 4 (2bT —C)(T? +2T — A+ 1)x
+(2cT = D)(T?+2T —A+1)?

- 8,916,100, 448, 256,000, 000
— 811,365, 140, 824, 616, 222, 208
26,497,490, 347,321, 493,520, 384

— 343,107,594, 345, 448, 813,363, 200
- 16,660,111, 104
- 1,603, 174,809, 600
- 2,149,908, 480, 000

OCT O O0OW>

Need GRH, Sqg-Free Sieve to handle sieving.
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Constructing Rank 6 Family

Idea: can explicitly evaluate linear and quadratic
Legendre sums.

Use: a and b are not both zero mod p and p > 2, then for

teZ
pi <at2+bt+c) ~[(p-1)®) ifpl(o® - 4ac)
s P - (%) otherwise.

Thus if p|(b? — 4ac), the summands are (a(t;t')z) =(9),
and the t-sum is large.
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Constructing Rank 6 Family

y2 = f(x,T) = x3T?+29(x)T —h(x)
g(x) = x3+ax®?+bx+c,c#0
h(x) (A—1)x*+Bx*+Cx +D
Dr(x) = g(x)*+x3h(x).

Note that D+ (x) is one-fourth of the discriminant of the
quadratic (in T) polynomial f(x, T).

Our elliptic curve & is not written in standard form, as the
coefficient of x3 is T2. This is harmless. As y2 = f(x,T),
for the fiber at T =t we have

a(p) = ‘Z(@) _ _Z(x3t2+29fox)t—h(x)).

x(p) x(p)
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Constructing Rank 6 Family

We study —pAs(p) = Zx P ( ();)t))'
When x = 0 the t-sum vanishes if c Z 0, as it is just

o (957°):

Assume now x # 0. By the lemma on Quadratic
Legendre Sums

i (x3t2+29(x)t—h(x)) B {(p—l)(f) if p | Dy(x)

p — (%) otherwise.

t=0

Goal:find coefficients a,b,c, A, B, C, D so that D(x) has
six distinct, non-zero roots that are squares.
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Constructing Rank 6 Family

Assume we can find such coefficients. Then

et = 5 () _ S oo

x=0

- R 20

|
=
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Constructing Rank 6 Family

We must find a, ..., D such that D¢(x) has six distinct,
non-zero roots p?:

Di(x) = 9(x)*+x°h(x)
= Ax® 4+ (B +2a)x® + (C +a% + 2b)x*
+ (D + 2ab + 2¢)x®
+ (2ac + b?)x® + (2bc)x + c?
A(X® + Rsx® + Rax* + Rax® + Rox? 4+ RiX + Ro)
A(X — p5)(x — p5)(X — p3)(x — p3)(X — pa)(X — ).
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Constructing Rank 6 Family

Because of the freedom to choose B, C, D there is no
problem matching coefficients for the x°, x* x3 terms. We
must simultaneously solve in integers

2ac +b?> = R,A
2bc = R, A
c? = RoA.

For simplicity, take A = 64R3. Then

c’? = 64R; — Cc = 8R2
2bc = 64R3R1 — b = 4RoR,
2ac + b2 = 64R8R2 — a = 4RgR, — R%
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Constructing Rank 6 Family
For an explicit example, take r; = p? = i%. For these
choices of roots,
Ro = 518400, R; = —773136, R, = 296296.
Solving for a through D yields

A = 64R3 = 8916100448256000000
c = 8RZ = 2149908480000
b = 4RoR; = —1603174809600
a = 4RoR; —R2 = 16660111104
B = RsA —2a = —811365140824616222208
C = R/A-aZ-2b = 26497490347321493520384
D = RsA-2ab-2c = —343107594345448813363200
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Constructing Rank 6 Family

We convert y2 = f(x,t) toy? = F(x, T), which is in
Weierstrass normal form. We send y — w—3—-,
X = 751 —ar1> @nd then multiply both sides by

(T2+4 2T — A+ 1)2. For future reference, we note that

T242T —A+1 = (T+1-VA(T +1+VA)
= (T-t)(T —t)
(T —2985983999)(T + 2985984001).

We have

fx,T) =T33+ (@3 +2ax® 4 2bx + 2¢)T — (A—1)x* —=Bx> —Cx — D
= (T2 42T — A+ 1)x® + (2aT — B)x? + (2bT — C)x + (2¢T — D)
F(x,T) = x>+ (2aT — B)x? + (2bT — C)(T2 + 2T — A+ 1)x
+(2cT — D)(T2 +2T — A+ 1)




Constructing Families
°

Constructing Rank 6 Family

We now study the —pAg(p) arising from y2 = F(x, T). It is enough to show
this is 6p + O(1) for all p greater than some py. Note that t;, t, are the unique
roots of t? + 2t — A+ 1 = 0 mod p. We find

p—1p—1
o - 23 () - 3 5 () 5 5 (R

Fort #t;,t,, sendx — (242t — A+ 1)x. As (t?+2t — A4+ 1) #0,
(w) = 1. Simple algebra yields

6p + O(1) +Zz<ft(x> (1)

t=ty,ty x=0

6p+OM)+ Y Z <(2at B)x2 + (2bt — )x+(2ct—D)>.

t=ty,ty x=0 P

—pAs(p)
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Constructing Rank 6 Family

The last sum above is negligible (i.e., is O(1)) if
D(t) = (2bt — C)? — 4(2at — B)(2ct — D) # 0(p).
Calculating yields

D(j) = 4291243480243836561123092143580209905401856

= 2%2.3%.75.112.13-.19-29-31-47-67-83-97-103
4291243816662452751895093255391719515488256
2%%.3%2.7.11.13-41-173-17389 - 805873 - 9447850813

D(tz)
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Constructing Rank 6 Family

Hence, except for finitely many primes (coming from factors of D(t;),
a,...,D,t; and t;), —Ag(p) = 6p + O(1) as desired.

We have shown: There exist integers a, b, c,A,B, C, D so that the
curve € : y2 = x3T2 4+ 2g(x)T — h(x) over Q(T), with

g(x) = x3 +ax? +bx +c and h(x) = (A — 1)x3 + Bx2 + Cx + D, has
rank 6 over Q(T). In particular, with the choices of a through D
above, £ is a rational elliptic surface and has Weierstrass form

y? = x*+(2aT —B)x*+(2bT —C)(T*+2T —A+1)x+(2cT —D)(T*42T —A+1)?
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Constructing Rank 6 Family

We show £ is a rational elliptic surface by translating
X — X — (2aT — B)/3, which yields
y? =x3 + A(T)x + B(T) with deg(A) = 3,deg(B) = 5.

Therefore the Rosen-Silverman theorem is applicable,
and because we can compute Ag(p), we know the rank is
exactly 6 (and we never need to calculate height
matrices). O
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Lower order terms J

Variation in the number of points on elliptic curves and
applications to excess rank, C. R. Math. Rep. Acad. Sci.
Canada 27 (2005), no. 4, 111-120.

http://arxiv.org/ pdf/ mat h/ 0506461v2. pdf.



http://arxiv.org/pdf/math/0506461v2.pdf

Lower Order Terms
°

Explicit calculations

Let n3, , equal the number of cube roots of 2 modulo p,
_ 3—xy ]2
and set co(p) = (39) + (. a(p) = [ S sy ()] and
x3
C3/2(p) =p Zx mod p (4 p+l)'

Family A1 £(p) Az s(p)

y2=x3+Sx +T 0 p3 —

— = d
y? =x3424(=3)3(9T +1)? 0 2p 2,, 5zlznT3d33

— = d
y? = x5+ 4(4T + 2)x 0 2p P a3
y? =x3 +(T+1) + TX 0 p272p 1
y2=x34+x242T +1 0 p? —2p — (2
y2=x34+Tx?+1 —p P> — N3 2P — 1+ Cg/2(p.
y2=x3-T2> +T? —2p p?> —p —c1(p) — Co(P)
y2=x3 -T2 + T4 —2p p? —p — cu(p) — Co(P)
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Explicit calculations

The first family is the family of all elliptic curves; it is a two parameter family
and we expect the main term of its second moment to be p3.

Note that except for our family y2 = x® + Tx? + 1, all the families £ have
Az £(p) = p? — h(p)p + O(1), where h(p) is non-negative. Further, many of
the families have h(p) = mg > 0.

Note c1(p) is the square of the coefficients from an elliptic curve with complex
multiplication. It is non-negative and of size p for p # 3 mod 4, and zero for
p =1mod 4 (send x — —x mod p and note (5) = —1).

It is somewhat remarkable that all these families have a correction to the
main term in Michel's theorem in the same direction, and we analyze the
consequence this has on the average rank. For our family which has a p®/2
term, note that on average this term is zero and the p term is negative.
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Lower order terms and average rank

If ¢ is non-negative, we obtain a bound for the average rank in

the family by restricting the sum to be only over zeros at the
central point. The error O ('OI%'%RR) comes from trivial
estimation and ignores probable cancellation, and we expect
o) (IogR> or smaller to be the correct magnitude. For most

families logR ~ log N2 for some integer a.

1
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Lower order terms and average rank (cont)

The main term of the first and second moments of the
a;(p) give rg(0) and —1¢(0).

Assume the second moment of a;(p)? is p? — mgp + O(1),
mg > 0.

We have already handled the contribution from p?, and
—mgp contributes

-2 logp~/.logp\ 1 N
Sz~ sz:logRgb(zlogR)?B(_mgp)
. 2mg ~(.logp\ logp
~ logR zp:¢(zlogR) p2

Thus there is a contribution of size |oglR-
’
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Lower order terms and average rank (cont)

A good choice of test functions (see Appendix A of [ILS])
is the Fourier pair

_osinf(2rgx) o~ o [ ifjul <o
x) = (2mx)? o) = {04 otherwise.

Note ¢(0) = "7 $(0) =2 = ““ and evaluating the prime
sum gives

.986 2.966 Mg
Sz~ ( o _azlogR> logR #(0).
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Lower order terms and average rank (cont)

Let r. denote the number of zeros of E; at the central point (i.e., the analytic
rank). Then up to our O (%) errors (which we think should be smaller),
we have

15 $(0) 1 986  2.966 \ mg
5 g’;nqﬁ(O) < 1 <r + 5) #(0) + (T - aZIogR> IogR¢(O)

A

1 .986 2.966 m
Ave Rank[N,ZN](E) < o N m) ;

1
< - A T
- U+r+2+ logR

o =1, mg = 1: for conductors of size 10*?, the average rank is bounded by
1+r+3%+.03=r+ 3+ 1.03. This s significantly higher than Fermigier's
observed r + % + .40.

o = 2: lower order correction contributes .02 for conductors of size 102, the
average rank bounded by § +r + 3 4+ .02 =r + 1 + .52. Now in the ballpark
of Fermigier's bound (already there without the potential correction term!).

QA
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Excess rank:
Numerics
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Excess rank

One-parameter family, rank r (&) over Q(T).
For each t € Z consider curves E;.

RMT = 50% rank r (&), 50% rank r (&) + 1.
For many families, observe

Rank r(&) = 32% Rankr(£)+1 = 48%
rankr(£)+2 = 18% Rankr(£)+3 = 2%
Problem: small data sets, sub-families, convergence rate
log(conductor)?
Interval Primes Twin Primes Pairs
[1,10] 2,3,5,7 (40%) (3.5). (5.7) (20%)
[11, 20] 11,13,17,19 (40%) (112,13),(17,19) (20%)
Small data can be miseading! Remember Zp<x = ~ loglogx.
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Data on Excess Rank

y2 +aixy +asy = x>+ axx? +asX + ag

Family: a; : 0 to 10, rest —10 to 10.
14 Hours, 2,139,291 curves (2,971 singular, 248,478

distinct).
Rank r = 28.60% Rankr +1 = 47.56%
Rankr +2 = 20.97% Rankr +3 = 2.79%
Rankr +4 = .08%
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Data on excess rank (cont)

y? = x34+16Tx +32

Each data set runs over 2000 consecutive t-values.

t-Start RkO Rk1 Rk2 Rk3 Time (hrs)

-1000 394 478 123 0.6 <1
1000 384 47.3 136 0.6 <1
4000 374 478 13.7 11 1
8000 37.3 488 129 1.0 2.5
24000 35.1 50.1 139 0.8 6.8
50000 36.7 48.3 138 1.2 51.8

Last set has conductors of size 10!, but on logarithmic
_scale still small
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Numerically approximating
analytic rank
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Preliminaries

Cusp form f, level N, weight 2:
f(—1/Nz) = —eNz?(z)
fi/yVN) = ey’f(iy VN).

Define
s — o0 :_\S dz
L(f,s) = (27)°I(s) 1/0 (—iz) f(z)7
A(f,s) = (ZW)_SNS/ZF(S)L(f,S):/Oof(iy/Vﬁ)ys_ldy,
0
Get

A(f,s) =eA(f, 2 —5s), e= =1

To each E corresponds an f, write [7° = [+ [~ and use
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Algorithm for L'(s,E)

Differentiate k times with respect to s:
NE ) = [ 1y M (logy)(y* + e(~1)y )y,
Ats =1,
NE, 1) = (14 e(~1)) [ 1(iy MRi)(log y)'ay.

Trivially zero for half of k; let r be analytic rank.
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Algorithm for L"(s,E): Il

AD(E, 1) Z/loof(iy/%\l_)(log y)d

ZZan/ e~/ (jog y)dy.
n=1 1

Integrating by parts

W & a, / dy
A _ VN n —Zvrny/\/i\_l lo 12y
- ; a . (log y)™*
We obtain
> 2mn
LO(E, 1) =2r Y DG, <—> :
n=1 n \/N_
where

Gi(x) = =gy [ & Plloay) .
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Expansion of G,(x)

Gi(x) = Py (mg %) I Sy et

P:(t) is a polynomial of degree r, P;(t) = Q/(t — ).

Qu(t) = t;

Q) - 24T

Qs(t) = %t3+7lf_;t7C(33)

Qs(t) = %Otﬂ;—;ts—%t%%tf?f“g—é’rz.

R RRRRRRRRRRRRERRRRRRRRRRRREERRRREEEREERRRRRRRERRERERRRNRRNRNRERNENENESESSEEESEEBEEBBBEN.
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.

Expansion of G;(x) (cont)

Forr =0,

™

— W i an —27rny/\/ﬁ_
n=1 n

Need about v/N or v/N log N terms.

A




	Conjectures and Theorems
	Constructing Families
	Lower Order Terms
	Excess Rank: Numerics
	Computing analytic rank

