Conjectures and Theorems

Steven J Miller Dept of Math/Stats, Williams College

sim1@williams.edu, Steven.Miller.MC.96@aya.yale.edu http://www.williams.edu/Mathematics/sjmiller

Simons Symposium on Families of Automorphic Forms and the Trace Formula, Rio Grande, Puerto Rico, Jan 31th. 2014

Goals

FELLOWSHIP OF THE RING SEMINAR

ര്യൂപ്പറ്റെ വറ്റിച്ച ഉപ്പാട്ടി (Sunda har i ened mente)

ငါ့တွင် ကွတ်ကားသူ ငါ့သက်သူကေသသည့် ငူတွင် ကွတ်ကားသူ ငေးကွေသည်တွင် တွင် ကွတ်ကားသူ တင်ကြောင့်ကြေသည်သည့် ငူတွင် ပွဲငျသင်းကိုလုံကို ပြုတက်ငှိတို့သည် (Ash intya durbatuluk ash intya gimbatul. Ash intya thrakatuluk agh kala-ishi krimpatul)

> Steven J. Miller Brown University

Brandeis, April 1st, 2005 http://www.math.brown.edu/~sjmiller

Conjectures and Theorems

Conjectures and Theorems

Tate's Conjecture for Elliptic Surfaces

Let \mathcal{E}/\mathbb{Q} be an elliptic surface and $L_2(\mathcal{E}, s)$ be the *L*-series attached to $H^2_{\acute{\mathbf{e}t}}(\mathcal{E}/\overline{\mathbb{Q}},\mathbb{Q}_I)$. Then $L_2(\mathcal{E},s)$ has a meromorphic continuation to C and satisfies

$$-\operatorname{ord}_{s=2}L_2(\mathcal{E},s) = \operatorname{rank} NS(\mathcal{E}/\mathbb{Q}),$$

where $NS(\mathcal{E}/\mathbb{Q})$ is the \mathbb{Q} -rational part of the Néron-Severi group of \mathcal{E} . Further, $L_2(\mathcal{E}, s)$ does not vanish on the line Re(s) = 2.

Theorem: Preliminaries

Consider a one-parameter family

$$\mathcal{E}: y^2 + a_1(T)xy + a_3(T)y = x^3 + a_2(T)x^2 + a_4(T)x + a_6(T).$$

Let $a_t(p) = p + 1 - N_p$, where N_p is the number of solutions mod p (including ∞). Define

$$A_{\mathcal{E}}(p) := \frac{1}{p} \sum_{t(p)} a_t(p).$$

 $A_{\mathcal{E}}(p)$ is bounded independent of p (Deligne).

Theorem: Preliminaries

Theorem

Rosen-Silverman (Conjecture of Nagao For an elliptic surface (a one-parameter family), assume Tate's conjecture. Then

$$\lim_{X\to\infty}\frac{1}{X}\sum_{p\leq X}-A_{\mathcal{E}}(p)\log p = \operatorname{rank} \mathcal{E}(\mathbb{Q}(t)).$$

Tate's conjecture is known for rational surfaces: An elliptic surface $y^2 = x^3 + A(t)x + B(t)$ is rational iff one of the following is true:

- 0 < max{3degA, 2degB} < 12;</p>
- $3\deg A = 2\deg B = 12$ and $\operatorname{ord}_{t=0} t^{12} \Delta(t^{-1}) = 0$.

Conjectures: ABC, Square-Free

ABC Conjecture

Fix $\epsilon > 0$. For coprime positive integers a, b and c with c=a+b and $N(a,b,c)=\prod_{p|abc}p$, $c\ll_{\epsilon}N(a,b,c)^{1+\epsilon}$.

Square-Free Sieve Conjecture

Fix an irreducible polynomial f(t) of degree at least 4. As $N \to \infty$, the number of $t \in [N, 2N]$ with D(t) divisible by p^2 for some $p > \log N$ is o(N).

Conjectures: Restricted Sign

Restricted Sign Conjecture (for the Family \mathcal{F})

Consider a 1-parameter family \mathcal{F} of elliptic curves. As $N \to \infty$, the signs of the curves E_t are equidistributed for $t \in [N, 2N].$

Fails: constant j(t) where all curves same sign. Rizzo:

$$E_t: y^2 = x^3 + tx^2 - (t+3)x + 1, \ \ j(t) = 256(t^2 + 3t + 9),$$

for every $t \in \mathbb{Z}$, E_t has odd functional equation,

$$E_t: y^2 = x^3 + \frac{t}{4}x^2 - \frac{36t^2}{t - 1728}x - \frac{t^3}{t - 1728}, \ \ j(t) = t,$$

as t ranges over \mathbb{Z} in the limit 50.1859% have even and 49.8141% have odd functional equation.

Conjectures: Polynomial Mobius

Polynomial Moebius

Let f(t) be an irreducible polynomial such that no fixed square divides f(t) for all t. Then $\sum_{t=N}^{2N} \mu(f(t)) = o(N)$.

Conjectures: Polynomial Mobius

Helfgott shows the Square-Free Sieve and Polynomial Moebius imply the Restricted Sign conjecture for many families. More precisely, let M(t) be the product of the irreducible polynomials dividing $\Delta(t)$ and not $c_4(t)$.

Theorem

Equidistribution of Sign in a Family Let \mathcal{F} be a one-parameter family with coefficients integer polynomials in $t \in [N, 2N]$. If j(t) and M(t) are non-constant, then the signs of E_t , $t \in [N, 2N]$, are equidistributed as $N \to \infty$. Further, if we restrict to good t, $t \in [N, 2N]$ such that D(t) is good (usually square-free), the signs are still equidistributed in the limit.

Constructing Families with Moderate Rank

Constructing one-parameter families of elliptic curves over $\mathbb{Q}(T)$ with moderate rank (with Scott Arms and Álvaro Lozano-Robledo), Journal of Number Theory **123** (2007), no. 2, 388–402.

http://arxiv.org/pdf/math/0406579.pdf.

Mordell-Weil and Legendre Expansions

Mordell-Weil Theorem: Rational solutions:

 $E(\mathbb{Q}) = \mathbb{Z}^r \bigoplus \text{Finite Group}.$

Question: how does r depend on E?

Attach an L-Function to E: As $\zeta(s)$ gives us information on primes, expect L-Function gives us information on E.

Review: Legendre Symbol: $(\frac{0}{p}) = 0$ and

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{if } x^2 \equiv a \mod p \text{ has two solutions} \\ -1 & \text{if } x^2 \equiv a \mod p \text{ has no solutions.} \end{cases}$$

Note $1 + (\frac{a}{p})$ is the number of solutions to $x^2 \equiv a \mod p$.

1-Level Expansion

$$D_{1,\mathcal{F}_{N}}(\phi) = \frac{1}{|\mathcal{F}_{N}|} \sum_{E_{t} \in \mathcal{F}_{N}} \sum_{j} \phi\left(\gamma_{t,j} \frac{\log C_{t}}{2\pi}\right) + O\left(\frac{\log\log N}{\log N}\right)$$

$$= \frac{1}{|\mathcal{F}_{N}|} \sum_{E_{t} \in \mathcal{F}_{N}} \left[\widehat{\phi}(0) + \phi_{i}(0)\right]$$

$$- \frac{2}{|\mathcal{F}_{N}|} \sum_{E_{t} \in \mathcal{F}_{N}} \sum_{p} \frac{1}{p} \frac{\log p}{\log C_{E}} \widehat{\phi}\left(\frac{\log p}{\log C_{E}}\right) a_{t}(p)$$

$$- \frac{2}{|\mathcal{F}_{N}|} \sum_{E_{t} \in \mathcal{F}_{N}} \sum_{p} \frac{1}{p^{2}} \frac{\log p}{\log C_{E}} \widehat{\phi}\left(2\frac{\log p}{\log C_{E}}\right) a_{t}^{2}(p)$$

Want to move $\frac{1}{|\mathcal{F}_N|} \sum_{E_t \in \mathcal{F}_N}$, leads us to study

$$A_{r,\mathcal{F}}(p) = \sum_{t \bmod p} a_t^r(p), \quad r = 1 \text{ or } 2.$$

Input

For many families

$$A_{1,\mathcal{F}}(p) = -rp + O(1)$$

 $A_{2,\mathcal{F}}(p) = p^2 + O(p^{3/2})$

Rational Elliptic Surfaces (Rosen and Silverman): If rank r over $\mathbb{Q}(T)$:

$$\lim_{X\to\infty}\frac{1}{X}\sum_{p< X}-\frac{A_{1,\mathcal{F}}(p)\log p}{p}=r$$

Surfaces with j(T) non-constant (Michel):

$$A_{2,\mathcal{F}}(p) = p^2 + O(p^{3/2})$$
.

Rank 6 Family

Rational Surface of Rank 6 over $\mathbb{Q}(T)$:

$$y^2 = x^3 + (2aT - B)x^2 + (2bT - C)(T^2 + 2T - A + 1)x + (2cT - D)(T^2 + 2T - A + 1)^2$$

$$A = 8,916,100,448,256,000,000$$
 $B = -811,365,140,824,616,222,208$
 $C = 26,497,490,347,321,493,520,384$
 $D = -343,107,594,345,448,813,363,200$
 $a = 16,660,111,104$
 $b = -1,603,174,809,600$
 $c = 2,149,908,480,000$

Need GRH, Sq-Free Sieve to handle sieving.

Conjectures and Theorems

Idea: can explicitly evaluate linear and quadratic Legendre sums.

Use: a and b are not both zero mod p and p > 2, then for $t \in \mathbb{Z}$

$$\sum_{t=0}^{p-1} \left(\frac{at^2 + bt + c}{p} \right) = \begin{cases} (p-1)(\frac{a}{p}) & \text{if } p | (b^2 - 4ac) \\ -(\frac{a}{p}) & \text{otherwise.} \end{cases}$$

Thus if $p|(b^2-4ac)$, the summands are $(\frac{a(t-t')^2}{b})=(\frac{a}{b})$, and the *t*-sum is large.

$$y^2 = f(x, T) = x^3T^2 + 2g(x)T - h(x)$$

 $g(x) = x^3 + ax^2 + bx + c, c \neq 0$
 $h(x) = (A-1)x^3 + Bx^2 + Cx + D$
 $D_T(x) = g(x)^2 + x^3h(x)$.

Note that $D_T(x)$ is one-fourth of the discriminant of the quadratic (in T) polynomial f(x, T).

Our elliptic curve \mathcal{E} is not written in standard form, as the coefficient of x^3 is T^2 . This is harmless. As $y^2 = f(x, T)$, for the fiber at T = t we have

$$a_t(p) = -\sum_{x(p)} \left(\frac{f(x,t)}{p} \right) = -\sum_{x(p)} \left(\frac{x^3t^2 + 2g(x)t - h(x)}{p} \right).$$

We study $-pA_{\mathcal{E}}(p) = \sum_{x=0}^{p-1} \sum_{t=0}^{p-1} \left(\frac{f(x,t)}{p}\right)$. When $x \equiv 0$ the t-sum vanishes if $c \not\equiv 0$, as it is just $\sum_{t=0}^{p-1} \left(\frac{2ct-D}{p}\right)$.

Assume now $x \not\equiv 0$. By the lemma on Quadratic Legendre Sums

$$\sum_{t=0}^{p-1} \left(\frac{x^3 t^2 + 2g(x)t - h(x)}{p} \right) = \begin{cases} (p-1) \left(\frac{x^3}{p} \right) & \text{if } p \mid D_t(x) \\ -\left(\frac{x^3}{p} \right) & \text{otherwise.} \end{cases}$$

Goal:find coefficients a, b, c, A, B, C, D so that $D_t(x)$ has six distinct, non-zero roots that are squares.

Assume we can find such coefficients. Then

$$-pA_{\mathcal{E}}(p) = \sum_{x=0}^{p-1} \sum_{t=0}^{p-1} \left(\frac{f(x,t)}{p} \right) = \sum_{x=0}^{p-1} \sum_{t=0}^{p-1} \left(\frac{x^3 t^2 + 2g(x)t - h(x)}{p} \right)$$

$$= \sum_{x=0}^{p-1} \sum_{t=0}^{p-1} \left(\frac{f(x,t)}{p} \right) + \sum_{x:D_t(x) \equiv 0} \sum_{t=0}^{p-1} \left(\frac{f(x,t)}{p} \right)$$

$$+ \sum_{x:xD_t(x) \not\equiv 0} \sum_{t=0}^{p-1} \left(\frac{f(x,t)}{p} \right)$$

$$= 0 + 6(p-1) - \sum_{x:xD_t(x) \not\equiv 0} \left(\frac{x^3}{p} \right) = 6p.$$

We must find a, ..., D such that $D_t(x)$ has six distinct, non-zero roots ρ_i^2 :

$$D_{t}(x) = g(x)^{2} + x^{3}h(x)$$

$$= Ax^{6} + (B+2a)x^{5} + (C+a^{2}+2b)x^{4}$$

$$+ (D+2ab+2c)x^{3}$$

$$+ (2ac+b^{2})x^{2} + (2bc)x + c^{2}$$

$$= A(x^{6} + R_{5}x^{5} + R_{4}x^{4} + R_{3}x^{3} + R_{2}x^{2} + R_{1}x + R_{0})$$

$$= A(x-\rho_{1}^{2})(x-\rho_{2}^{2})(x-\rho_{3}^{2})(x-\rho_{4}^{2})(x-\rho_{5}^{2})(x-\rho_{6}^{2}).$$

Because of the freedom to choose B, C, D there is no problem matching coefficients for the x^5 , x^4 , x^3 terms. We must simultaneously solve in integers

$$2ac + b^2 = R_2A$$
$$2bc = R_1A$$
$$c^2 = R_0A.$$

For simplicity, take $A = 64R_0^3$. Then

For an explicit example, take $r_i = \rho_i^2 = i^2$. For these choices of roots.

$$R_0 = 518400, R_1 = -773136, R_2 = 296296.$$

Solving for a through D yields

=	$64R_0^3$	=	8916100448256000000
=	$8R_0^2$	=	2149908480000
=	$4R_0R_1$	=	-1603174809600
=	$4R_0R_2 - R_1^2$	=	16660111104
=	R_5A-2a	=	-811365140824616222208
=	$R_4A - a^2 - 2b$	=	26497490347321493520384
=	<i>R</i> ₃ <i>A</i> − 2 <i>ab</i> − 2 <i>c</i>	=	-343107594345448813363200
		$= 8R_0^2$ = $4R_0R_1$ = $4R_0R_2 - R_1^2$ = $R_5A - 2a$ = $R_4A - a^2 - 2b$	$ \begin{array}{rcl} & & & 8R_0^2 & = \\ & = & 4R_0R_1 & = \\ & = & 4R_0R_2 - R_1^2 & = \\ & = & R_5A - 2a & = \end{array} $

Excess Rank: Numerics

Constructing Rank 6 Family

We convert $y^2 = f(x, t)$ to $y^2 = F(x, T)$, which is in Weierstrass normal form. We send $y \to \frac{y}{T^2 + 2T - 4 + 1}$, $x \to \frac{x}{T^2 + 2T - A + 1}$, and then multiply both sides by $(T^2 + 2T - A + 1)^2$. For future reference, we note that

$$T^2 + 2T - A + 1 = (T + 1 - \sqrt{A})(T + 1 + \sqrt{A})$$

= $(T - t_1)(T - t_2)$
= $(T - 2985983999)(T + 2985984001).$

We have

$$f(x,T) = T^2x^3 + (2x^3 + 2ax^2 + 2bx + 2c)T - (A-1)x^3 - Bx^2 - Cx - D$$

$$= (T^2 + 2T - A + 1)x^3 + (2aT - B)x^2 + (2bT - C)x + (2cT - D)$$

$$F(x,T) = x^3 + (2aT - B)x^2 + (2bT - C)(T^2 + 2T - A + 1)x$$

$$+ (2cT - D)(T^2 + 2T - A + 1)^2.$$

Excess Rank: Numerics

Constructing Rank 6 Family

We now study the $-pA_{\mathcal{E}}(p)$ arising from $y^2 = F(x, T)$. It is enough to show this is 6p + O(1) for all p greater than some p_0 . Note that t_1, t_2 are the unique roots of $t^2 + 2t - A + 1 \equiv 0 \mod p$. We find

$$-\rho A_{\mathcal{E}}(\rho) = \sum_{t=0}^{\rho-1} \sum_{x=0}^{\rho-1} \left(\frac{F(x,t)}{\rho} \right) = \sum_{t \neq t_1,t_2} \sum_{x=0}^{\rho-1} \left(\frac{F(x,t)}{\rho} \right) + \sum_{t=t_1,t_2} \sum_{x=0}^{\rho-1} \left(\frac{F(x,t)}{\rho} \right).$$

For $t \neq t_1, t_2$, send $x \longrightarrow (t^2 + 2t - A + 1)x$. As $(t^2 + 2t - A + 1) \not\equiv 0$. $\left(\frac{(t^2+2t-A+1)^2}{2}\right)=1$. Simple algebra yields

$$-pA_{\mathcal{E}}(p) = 6p + O(1) + \sum_{t=t_1,t_2} \sum_{x=0}^{p-1} \left(\frac{f_t(x)}{p}\right) + O(1) \\
= 6p + O(1) + \sum_{t=t_1,t_2} \sum_{x=0}^{p-1} \left(\frac{(2at-B)x^2 + (2bt-C)x + (2ct-D)}{p}\right).$$

The last sum above is negligible (i.e., is O(1)) if

$$D(t) = (2bt - C)^2 - 4(2at - B)(2ct - D) \not\equiv 0(p).$$

Calculating yields

$$\begin{array}{lll} D(t_1) & = & 4291243480243836561123092143580209905401856 \\ & = & 2^{32} \cdot 3^{25} \cdot 7^5 \cdot 11^2 \cdot 13 \cdot 19 \cdot 29 \cdot 31 \cdot 47 \cdot 67 \cdot 83 \cdot 97 \cdot 103 \\ D(t_2) & = & 4291243816662452751895093255391719515488256 \\ & = & 2^{33} \cdot 3^{12} \cdot 7 \cdot 11 \cdot 13 \cdot 41 \cdot 173 \cdot 17389 \cdot 805873 \cdot 9447850813. \end{array}$$

Hence, except for finitely many primes (coming from factors of $D(t_i)$, a, \ldots, D, t_1 and t_2 , $-A_{\mathcal{E}}(p) = 6p + O(1)$ as desired.

We have shown: There exist integers a, b, c, A, B, C, D so that the curve $\mathcal{E}: y^2 = x^3T^2 + 2g(x)T - h(x)$ over $\mathbb{Q}(T)$, with $a(x) = x^3 + ax^2 + bx + c$ and $h(x) = (A-1)x^3 + Bx^2 + Cx + D$, has rank 6 over $\mathbb{Q}(T)$. In particular, with the choices of a through D above, \mathcal{E} is a rational elliptic surface and has Weierstrass form

$$y^2 = x^3 + (2aT - B)x^2 + (2bT - C)(T^2 + 2T - A + 1)x + (2cT - D)(T^2 + 2T - A + 1)^2$$

We show \mathcal{E} is a rational elliptic surface by translating $x \mapsto x - (2aT - B)/3$, which yields $y^2 = x^3 + A(T)x + B(T)$ with $\deg(A) = 3, \deg(B) = 5$.

Therefore the Rosen-Silverman theorem is applicable, and because we can compute $A_{\mathcal{E}}(p)$, we know the rank is exactly 6 (and we never need to calculate height matrices).

Lower order terms

Variation in the number of points on elliptic curves and applications to excess rank, C. R. Math. Rep. Acad. Sci. Canada **27** (2005), no. 4, 111–120.

http://arxiv.org/pdf/math/0506461v2.pdf.

Excess Rank: Numerics

Explicit calculations

Let $n_{3,2,p}$ equal the number of cube roots of 2 modulo p, and set $c_0(p)=\left(\frac{-3}{p}\right)+\left(\frac{3}{p}\right),\ c_1(p)=\left[\sum_{x\bmod p}\left(\frac{x^3-x}{p}\right)\right]^2$ and $c_{3/2}(\rho) = \rho \sum_{x \bmod \rho} \left(\frac{4x^3 + 1}{\rho} \right).$

Family	$A_{1,\mathcal{E}}(p)$	$\mathcal{A}_{2,\mathcal{E}}(p)$
$y^2 = x^3 + Sx + T$	0	$p^3 - p^2$
$y^2 = x^3 + 2^4(-3)^3(9T + 1)^2$	0	$\begin{cases} 2p^2 - 2p & p \equiv 2 \mod 3 \\ 0 & p \equiv 1 \mod 3 \end{cases}$
$y^2 = x^3 \pm 4(4T + 2)x$	0	$\begin{cases} 0 & p \equiv 1 \mod 3 \\ 2p^2 - 2p & p \equiv 1 \mod 3 \\ 0 & p \equiv 3 \mod 3 \end{cases}$
$y^2 = x^3 + (T+1)x^2 + Tx$	0	$\hat{p}^2 - 2p - 1$
$y^2 = x^3 + x^2 + 2T + 1$	0	$p^2-2p-\left(\frac{-3}{p}\right)$
$y^2 = x^3 + Tx^2 + 1$	-p	$p^2 - n_{3,2,p}p - 1 + c_{3/2}(p$
$y^2 = x^3 - T^2x + T^2$	−2 <i>p</i>	$p^2 - p - c_1(p) - c_0(p)$
$y^2 = x^3 - T^2x + T^4$	−2 <i>p</i>	$p^2 - p - c_1(p) - c_0(p)$

Explicit calculations

The first family is the family of all elliptic curves; it is a two parameter family and we expect the main term of its second moment to be p^3 .

Note that except for our family $y^2 = x^3 + Tx^2 + 1$, all the families \mathcal{E} have $A_{2,\mathcal{E}}(p) = p^2 - h(p)p + O(1)$, where h(p) is non-negative. Further, many of the families have $h(p) = m_{\mathcal{E}} > 0$.

Note $c_1(p)$ is the square of the coefficients from an elliptic curve with complex multiplication. It is non-negative and of size p for $p \not\equiv 3 \mod 4$, and zero for $p \equiv 1 \mod 4$ (send $x \mapsto -x \mod p$ and note $\left(\frac{-1}{p}\right) = -1$).

It is somewhat remarkable that all these families have a correction to the main term in Michel's theorem in the same direction, and we analyze the consequence this has on the average rank. For our family which has a $p^{3/2}$ term, note that on average this term is zero and the p term is negative.

Excess Rank: Numerics

Lower order terms and average rank

$$\frac{1}{N} \sum_{t=N}^{2N} \sum_{\gamma_t} \phi\left(\gamma_t \frac{\log R}{2\pi}\right) = \widehat{\phi}(0) + \phi(0) - \frac{2}{N} \sum_{t=N}^{2N} \sum_{p} \frac{\log p}{\log R} \frac{1}{p} \widehat{\phi}\left(\frac{\log p}{\log R}\right) a_t(p) \\
- \frac{2}{N} \sum_{t=N}^{2N} \sum_{r} \frac{\log p}{\log R} \frac{1}{p^2} \widehat{\phi}\left(\frac{2\log p}{\log R}\right) a_t(p)^2 + O\left(\frac{\log \log R}{\log R}\right).$$

If ϕ is non-negative, we obtain a bound for the average rank in the family by restricting the sum to be only over zeros at the central point. The error $O\left(\frac{\log\log R}{\log R}\right)$ comes from trivial estimation and ignores probable cancellation, and we expect O $\left(\frac{1}{\log R}\right)$ or smaller to be the correct magnitude. For most families log $R \sim \log N^a$ for some integer a.

Lower order terms and average rank (cont)

The main term of the first and second moments of the $a_t(p)$ give $r\phi(0)$ and $-\frac{1}{2}\phi(0)$.

Assume the second moment of $a_t(p)^2$ is $p^2 - m_{\varepsilon}p + O(1)$, $m_{\varepsilon} > 0$.

We have already handled the contribution from p^2 , and $-m_{\varepsilon}p$ contributes

$$S_{2} \sim \frac{-2}{N} \sum_{p} \frac{\log p}{\log R} \widehat{\phi} \left(2 \frac{\log p}{\log R} \right) \frac{1}{p^{2}} \frac{N}{p} (-m_{\mathcal{E}} p)$$

$$= \frac{2m_{\mathcal{E}}}{\log R} \sum_{p} \widehat{\phi} \left(2 \frac{\log p}{\log R} \right) \frac{\log p}{p^{2}}.$$

Thus there is a contribution of size $\frac{1}{\log R}$.

Lower order terms and average rank (cont)

A good choice of test functions (see Appendix A of [ILS]) is the Fourier pair

$$\phi(x) = \frac{\sin^2(2\pi\frac{\sigma}{2}x)}{(2\pi x)^2}, \quad \widehat{\phi}(u) = \begin{cases} \frac{\sigma - |u|}{4} & \text{if } |u| \leq \sigma \\ 0 & \text{otherwise.} \end{cases}$$

Note $\phi(0) = \frac{\sigma^2}{4}$, $\widehat{\phi}(0) = \frac{\sigma}{4} = \frac{\phi(0)}{\sigma}$, and evaluating the prime sum gives

$$S_2 \sim \left(\frac{.986}{\sigma} - \frac{2.966}{\sigma^2 \log R}\right) \frac{m_{\mathcal{E}}}{\log R} \phi(0).$$

Excess Rank: Numerics

Lower order terms and average rank (cont)

Let r_t denote the number of zeros of E_t at the central point (i.e., the analytic rank). Then up to our $O\left(\frac{\log\log R}{\log R}\right)$ errors (which we think should be smaller), we have

$$\frac{1}{N} \sum_{t=N}^{2N} r_t \phi(0) \leq \frac{\phi(0)}{\sigma} + \left(r + \frac{1}{2}\right) \phi(0) + \left(\frac{.986}{\sigma} - \frac{2.966}{\sigma^2 \log R}\right) \frac{m_{\mathcal{E}}}{\log R} \phi(0)$$
Ave $\operatorname{Rank}_{[N,2N]}(\mathcal{E}) \leq \frac{1}{\sigma} + r + \frac{1}{2} + \left(\frac{.986}{\sigma} - \frac{2.966}{\sigma^2 \log R}\right) \frac{m_{\mathcal{E}}}{\log R}.$

 $\sigma = 1$, $m_{\mathcal{E}} = 1$: for conductors of size 10^{12} , the average rank is bounded by $1 + r + \frac{1}{2} + .03 = r + \frac{1}{2} + 1.03$. This is significantly higher than Fermigier's observed $r + \frac{1}{2} + .40$.

 $\sigma = 2$: lower order correction contributes .02 for conductors of size 10^{12} , the average rank bounded by $\frac{1}{2} + r + \frac{1}{2} + .02 = r + \frac{1}{2} + .52$. Now in the ballpark of Fermigier's bound (already there without the potential correction term!).

Excess rank: Numerics

Computing analytic rank

Excess rank

One-parameter family, rank $r(\mathcal{E})$ over $\mathbb{Q}(T)$.

For each $t \in \mathbb{Z}$ consider curves E_t .

RMT \Longrightarrow 50% rank $r(\mathcal{E})$, 50% rank $r(\mathcal{E}) + 1$.

For many families, observe

$$\begin{array}{lllll} \operatorname{Rank} r(\mathcal{E}) & = & 32\% & \operatorname{Rank} r(\mathcal{E}) + 1 & = & 48\% \\ \operatorname{rank} r(\mathcal{E}) + 2 & = & 18\% & \operatorname{Rank} r(\mathcal{E}) + 3 & = & 2\% \end{array}$$

Problem: small data sets, sub-families, convergence rate log(conductor)?

Interval	Primes	Twin Primes Pairs
[1, 10]	2, 3, 5, 7 (40%)	(3,5),(5,7) $(20%)$
[11, 20]	11, 13, 17, 19 (40%)	(11, 13), (17, 19) (20%)

Small data can be misleading! Remember $\sum_{p \le x} \frac{1}{p} \sim \log \log x$.

Data on Excess Rank

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

Family: a_1 : 0 to 10, rest -10 to 10. 14 Hours, 2,139,291 curves (2,971 singular, 248,478 distinct).

Rank
$$r=28.60\%$$
 Rank $r+1=47.56\%$ Rank $r+2=20.97\%$ Rank $r+3=2.79\%$ Rank $r+4=.08\%$

Data on excess rank (cont)

$$y^2 = x^3 + 16Tx + 32$$

Each data set runs over 2000 consecutive *t*-values.

<u>t-Start</u>	<u>Rk 0</u>	<u>Rk 1</u>	<u>Rk 2</u>	<u>Rk 3</u>	Time (hrs)
-1000	39.4	47.8	12.3	0.6	<1
1000	38.4	47.3	13.6	0.6	<1
4000	37.4	47.8	13.7	1.1	1
8000	37.3	48.8	12.9	1.0	2.5
24000	35.1	50.1	13.9	8.0	6.8
50000	36.7	48.3	13.8	1.2	51.8

Last set has conductors of size 10¹¹, but on logarithmic scale still small.

Numerically approximating analytic rank

Preliminaries

Cusp form f, level N, weight 2:

$$f(-1/Nz) = -\epsilon Nz^2 f(z)$$

$$f(i/y\sqrt{N}) = \epsilon y^2 f(iy/\sqrt{N}).$$

Define

$$L(f,s) = (2\pi)^{s} \Gamma(s)^{-1} \int_{0}^{t\infty} (-iz)^{s} f(z) \frac{dz}{z}$$

$$\Lambda(f,s) = (2\pi)^{-s} N^{s/2} \Gamma(s) L(f,s) = \int_{0}^{\infty} f(iy/\sqrt{N}) y^{s-1} dy.$$

Get

$$\Lambda(f, s) = \epsilon \Lambda(f, 2 - s), \ \epsilon = \pm 1.$$

To each E corresponds an f, write $\int_0^\infty = \int_0^1 + \int_1^\infty$ and use transformations.

Algorithm for $L^r(s, E)$

$$\Lambda(E,s) = \int_0^\infty f(iy/\sqrt{N})y^{s-1}dy$$

$$= \int_0^1 f(iy/\sqrt{N})y^{s-1}dy + \int_1^\infty f(iy/\sqrt{N})y^{s-1}dy$$

$$= \int_1^\infty f(iy/\sqrt{N})(y^{s-1} + \epsilon y^{1-s})dy.$$

Differentiate *k* times with respect to *s*:

$$\Lambda^{(k)}(E,s) = \int_{1}^{\infty} f(iy/\sqrt{N}) (\log y)^{k} (y^{s-1} + \epsilon(-1)^{k} y^{1-s}) dy.$$

At s=1,

$$\Lambda^{(k)}(E,1) = (1 + \epsilon(-1)^k) \int_1^\infty f(iy/\sqrt{N}) (\log y)^k dy.$$

Trivially zero for half of k; let r be analytic rank.

Algorithm for $L^r(s, E)$: II

$$\Lambda^{(r)}(E,1) = 2 \int_{1}^{\infty} f(iy/\sqrt{N}) (\log y)^{r} dy$$
$$= 2 \sum_{n=1}^{\infty} a_{n} \int_{1}^{\infty} e^{-2\pi ny/\sqrt{N}} (\log y)^{r} dy.$$

Integrating by parts

$$\Lambda^{(r)}(E,1) = \frac{\sqrt{N}}{\pi} \sum_{n=1}^{\infty} \frac{a_n}{n} \int_1^{\infty} e^{-2\pi n y/\sqrt{N}} (\log y)^{r-1} \frac{dy}{y}.$$

We obtain

$$L^{(r)}(E,1) = 2r! \sum_{n=1}^{\infty} \frac{a_n}{n} G_r \left(\frac{2\pi n}{\sqrt{N}} \right),$$

where

$$G_r(x) = \frac{1}{(r-1)!} \int_1^\infty e^{-xy} (\log y)^{r-1} \frac{dy}{y}.$$

Expansion of $G_r(x)$

$$G_r(x) = P_r\left(\log\frac{1}{x}\right) + \sum_{n=1}^{\infty} \frac{(-1)^{n-r}}{n^r \cdot n!} x^n$$

 $P_r(t)$ is a polynomial of degree r, $P_r(t) = Q_r(t - \gamma)$.

$$Q_{1}(t) = t;$$

$$Q_{2}(t) = \frac{1}{2}t^{2} + \frac{\pi^{2}}{12};$$

$$Q_{3}(t) = \frac{1}{6}t^{3} + \frac{\pi^{2}}{12}t - \frac{\zeta(3)}{3};$$

$$Q_{4}(t) = \frac{1}{24}t^{4} + \frac{\pi^{2}}{24}t^{2} - \frac{\zeta(3)}{3}t + \frac{\pi^{4}}{160};$$

$$Q_{5}(t) = \frac{1}{120}t^{5} + \frac{\pi^{2}}{72}t^{3} - \frac{\zeta(3)}{6}t^{2} + \frac{\pi^{4}}{160}t - \frac{\zeta(5)}{5} - \frac{\zeta(3)\pi^{2}}{36}.$$

For r = 0,

Conjectures and Theorems

$$\Lambda(E,1) = \frac{\sqrt{N}}{\pi} \sum_{n=1}^{\infty} \frac{a_n}{n} e^{-2\pi n y/\sqrt{N}}.$$

Need about \sqrt{N} or $\sqrt{N} \log N$ terms.