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Introduction J




Measures of Spacings: n-Level Correlations

{«;} increasing sequence of numbers, B ¢ R"! a
compact box. Define the n-level correlation by

#{ (% — Qoo Oy — Oq'n) €B,ji # jk}
lim

N—o0 N

Instead of using a box, can use a smooth test function.




Measures of Spacings: n-Level Correlations

© Normalized spacings of ¢(s) starting at 10%°,
(Odlyzko)

10
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70 million spacings between adjacent normalized zeros of
((s), starting at the 102°" zero (from Odlyzko).
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Measures of Spacings: n-Level Correlations

{aj} increasing sequence of numbers, B C R""* a
compact box. Define the n-level correlation by

#{ (ajl T Q-5 Qg a]n) € B,ji # Jk}

Nlﬁ’)noo N

Instead of using a box, can use a smooth test function.

@ Spacings of ((s) starting at 102° (Odlyzko).

@ Pair and triple correlations of ((s) (Montgomery,
Hejhal).

@ n-level correlations for all automorphic cupsidal
L-functions (Rudnick-Sarnak).

@ n-level correlations for the classical compact groups
(Katz-Sarnak).

! @ insensitive to any finite set of zeros.




Measures of Spacings: n-Level Density and Families

Let g; be even Schwartz functions whose Fourier
Transform is compactly supported, L(s, f) an L-function
with zeros % + iyt and conductor Qg:

lo lo
Dnt(9) = 01 <’Yf,jlgTQf) “++On (’Yf,jngTQf)
in

@ Properties of n-level density:
o Individual zeros contribute in limit.
© Most of contribution is from low zeros.
© Average over similar L-functions (family).

¢
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n-Level Density

n-level density: F = UFy a family of L-functions ordered
by conductors, gy an even Schwartz function: D, #(g) =

.1 log Qs log Qs
im0 () o (%)

As N — oo, n-level density converges to

/9 )ongr) (X )dX = /9 )ong(m)(U)d U

Conjecture (Katz-Sarnak)

(In the limit) Scaled distribution of zeros near central point
agrees with scaled distribution of eigenvalues near 1 of a
classical compact group.
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Testing Random Matrix Theory Predictions

Know the right model for large conductors, searching for
the correct model for finite conductors.

In the limit must recover the independent model, and want
to explain data on:

© ExcessRank: Rank r one-parameter family over
Q(T): observed percentages with rank > r + 2.

@ First (Normalized) Zero above Central Point: Influence
of zeros at the central point on the distribution of
zeros near the central point.




Dirichlet L-fns

Example:
Dirichlet L-functions




Dirichlet L-fns
[ 1]

Dirichlet Characters ( m prime)

(Z/mZ)* is cyclic of order m — 1 with generator g. Let
Cm_1 = €27/(m=1)_The principal character g is given by

The m — 2 primitive characters are determined (by
multiplicativity) by action on g.

As each x : (Z/mZ)* — C*, for each x there exists an |
such that y(g) = ¢|._,. Hence foreach|,1 <1 <m —2 we

have
_ B, k=g?m)
k) = {o (k,m) > 0




Dirichlet L-fns
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Dirichlet L-Functions

Let x be a primitive character mod m. Let

m—1 _
— Z X(k)e2mk/m_
k=0

c(m, x) is a Gauss sum of modulus v/m.

L(s,x) = JJ@—x@p~)"
p

S
AS,y) = %S+6>r( ;6) miE+IL(s, y),

where

_JO ifx(-1)= 1
© T 1 (1) =1




Dirichlet L-fns
.

Explicit Formula (Contour Integration)
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Explicit Formula (Contour Integration)

d -1
ol _C?—Slogg(s) = —£|091;[(1—p_s)

d —S
= E;Iog(l—p )

logp - p~° log p
— Zl—ip—s = ZF + Good(s).
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Explicit Formula (Contour Integration)

Contour Integration:

[-@

poo 5) %
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Explicit Formula (Contour Integration)

Contour Integration:

~¢(s) s
/ ) #(s)ds vs ;Iogp/gb(s)p ds.




Dirichlet L-fns
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Explicit Formula (Contour Integration)

Contour Integration (see Fourier Transform arising):

('(s) —ologp o—itlo
[~ Ga olsras s > logp [ ots)errrvetomngs.

Knowledge of zeros gives info on coefficients.
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Explicit Formula

Let ¢ be an even Schwartz function with compact support
(—o,0), let x be a non-trivial primitive Dirichlet character
of conductor m.

()

_ / o(y)dy

—Zlo"’gp 0 (iog = ) Lx(p) + X(p)p

g(m/m)” \log(m/r)
logp -~/ logp 2 2 1
2 fog 759 (2iogim/ I R) + C(p)Ip
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Expansion

{xo0} U {xi1}1<1<m_2 are all the characters mod m.
Consider the family of primitive characters mod a prime m

(m — 2 characters):

/ oy

logp -~/ logp 1
P > fagim/m)" Uiog(m/m) ) NP + KPP

XFX0
1 logp ~/_ logp 2 2 1
- ﬁ¢; oam/77° (Ziogrm ) D)+ @)
1
* O(Iogm)'

Note can pass Character Sum through Test Function.
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Character Sums

) m—-1 k=1(m)
Z x(k) = {O otherwise.




Dirichlet L-fns
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Character Sums

) m—-1 k=1(m)
Z x(k) = {O otherwise.
For any prime p # m

S () - {—1+m—1 p=1(m)

-1 otherwise.
XFX0
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Character Sums

) m—-1 k=1(m)
Z x(k) = {O otherwise.
For any prime p # m

S x(p) = {j*m‘l P = 1(m)

otherwise.
XFX0

Substitute into

logp A logp _ 1
2 Z Z log(m /) (Iog(m/w)>[X(p) +x(p)lp
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First Sum: no contributionif o <2

2 & logp ~/ logp 1
m-—2 Z Iog(m/7r)¢<log(m/7r)>IO i

m-1 << logp ~; logp _
2m—2pz Iog(m/w)(b(log(m/w))p

NI




Dirichlet L-fns
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First Sum: no contributionif o <2

2 & logp ~/ logp 1
m-—2 Z Iog(m/7r)¢<log(m/7r)>IO
m-1 <~ logp ~; logp 1
2m—Zpgl(:)Iog(m/w)(b(Iog(m/w))p

me m?

< I¥pie Y e

p p=1(m)




Dirichlet L-fns
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First Sum: no contributionif o <2

2 & logp ~/ logp 1
m-—2 Z Iog(m/7r)¢<log(m/7r)>IO i

m-1 << logp ~; logp _
2m—2pz Iog(m/w)¢<log(m/w)>p

NI
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First Sum: no contributionif o <2

NI=

2 X logp ~/ logp _
m-—2 Z Iog(m/7r)¢<log(m/7r)>IO

m-1 <~ logp ~; logp s
+ 2—F p2
m—2 o) log(m /) (Iog(m/ﬂ)
l me ) me me me
< FXpte Y ptandete 3t
p p=1(m) k k=1(m)
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Second Sum

logp 5, 10gp_\x*(p) + ¥*(P)
2 Z ZIog (m/m) ( Iog(m/ﬂ)> p '

X#Xo P

> EP) + 7P(p)] = {Z(m ~2) p=4+1(m)

X#Xo -2 p # +1(m)
Upto O (logm> we find that
me/2 /2
2m 2
p=+1(m)
me/2 me /2 me/2

< 2 22k1+ Yok Zkl

k=1(m) k=—1(m
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Increasing support

Notation:
Y(x) = D AM),  ¥(x,q,8) = > An),
n=x nz.’:rgn)(()dq
¥(x)

E(Xaqaa) = w(xaqaa)_m'

If we assume GRH, we have that

P(x) = x+O(xZ(logx)?), E(x,q,a) = O(x2(logx)?).
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Increasing support

Ouir first result uses GRH and the following de-averaging
hypothesis, which depends on a parameter n € [0, 1].

2

3 g 1y YX)
Q/2<q<Q ¢(quvl) (b(q) b
B(x)|?
P22 ke #(q)

Q/2<q<Q 1<a<q:
(a,9)=1

Trivially true for n = 1.

Theorem (Fiorilli-M): GRH and above hypothesis give
(=4 +2n,4 — 2n).
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Increasing support

Can get 1-level density for arbitrary finite support, under a
hypothesis of Montgomery.
For any a, g such that (a,q) = 1 and q < x, we have

1/2

Following weaker version suffices: For any a, q such that
(a,q) =1and g < x, we have

. _,%Kfl x3te
B ) AT

Theorem (Fiorilli-M): GRH and above hypothesis give
arbitrary support.




Convolutions

Identifying Family Symmetry
and Lower Order Terms
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Some Number Theory Results

@ Orthogonal: holomorphic cuspidal newforms:
Iwaniec-Luo-Sarnak, Hughes-Miller, Ricotta-Royer,
.... Elliptic curves: Miller, Young. Maass forms:
Amersi, Alpoge, lyer, Lazarev, Miller and Zhang.

@ Symplectic: Quadratic Dirichlet characters:
Rubinstein, Gao, Levinson-Miller, and Entin,
Roddity-Gershon and Rudnick: n-level densities for
twists L(s, xq) of the zeta-function.

@ Unitary: Dirichlet characters: Fiorilli-Miller,
Hughes-Rudnick. Cuspidal GL(3) Maass forms:
Goldfeld-Kontorovich.
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Main Tools

@ Control of conductors: Usually monotone, gives scale
to study low-lying zeros.

@ Explicit Formula: Relates sums over zeros to sums
over primes.

@ Trac Formulas: Orthogonality of characters in
Fiorilli-Miller, Gao, Hughes-Rudnick, Levinson-Miller,
Rubinstein. Petersson formula in Iwaniec, Luo and
Sarnak, .... Kuznetsov in Amersi et al,
Goldfeld-Kontorovich.




Convolutions
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Applications of n-level density

One application: bounding the order of vanishing at the
central point.
Averagerank - ¢(0) < [ ¢(x)Wg(z)(x)dx if ¢ non-negative.




Convolutions
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Applications of n-level density

One application: bounding the order of vanishing at the
central point.

Averagerank - ¢(0) < [ ¢(x)Wg(z)(x)dx if ¢ non-negative.
Can also use to bound the percentage that vanish to
orderr forany r.

Theorem (Miller, Hughes-Miller)

Using n-level arguments, for the family of cuspidal
newforms of prime level N — oo (split or not split by sign),
for any r there is a ¢, such that probability of at least r
zeros at the central point is at most c,r —".

Better results using 2-level than lwaniec-Luo-Sarnak
using the 1-level forr > 5.

QA
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Identifying the Symmetry Groups

@ Often an analysis of the monodromy group in the
function field case suggests the answer.

@ Tools: Explicit Formula, Orthogonality of Characters /
Petersson Formula.

@ How to identify symmetry group in general? One
possibility is by the signs of the functional equation:

@ Folklore Conjecture: If all signs are even and no
corresponding family with odd signs, Symplectic
symmetry; otherwise SO(even). (False!)




Convolutions
.

Explicit Formula

@ . cuspidal automorphic representation on GL,.
@ Q. > 0: analytic conductor of L(s,7) = > A.(n)/ns.

@ By GRH the non-trivial zeros are % + iz

n

o Satake params {ai(P)}L1; A=(P”) = > iy oxi(P)”.
o L(s,m) =3, =0 =TT, Iy (L — ami(p)p~*) .

logQx\ _ .\ ~ (vlogp\ A(p”)logp
Zg(%w 27 )_g(o) 2z:g(logQw) p“/2log Qx

j p,v
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1-Level Density

Assuming conductors constant in family F, have to study

M(PY) = ara(p) + - +Off,n(_p)y

. [ logp log p 1
Si(F) = —zgpjg(logR)fplogR WZM")I
~ (- logp log p 1 2
So(F) = —zgpjg(zlogR) plogR |17 2 )]

The corresponding classical compact group is determined
by

0 Unitary

1 .
mZ,\f(pz) =Cr = 1 Symplectic
fer —1 Orthogonal.
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Some Results: Rankin-Selberg Convolution of Families

Symmetry constant: ¢, = 0 (resp, 1 or -1) if family £ has
unitary (resp, symplectic or orthogonal) symmetry.

Rankin-Selberg convolution: Satake parameters for

{amxwz,k(p) Er:nl = {am,i(p) : a7r2,j(p)} i<i<n .

1<i<m

Theorem (Duefiez-Miller)

If F and G are nice families of L-functions, then
Crxg = CFr - Cg.

Breaks analysis of compound families into simple ones.
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Some Results: Rankin-Selberg Convolution of Families: Pro ofs

Symmetry constant: ¢, = 0 (resp, 1 or -1) if family £ has
unitary (resp, symplectic or orthogonal) symmetry.

Rankin-Selberg convolution: Moments of Satake
parameters for w1, x m, are

nm n m
Z&MXWz,k(p)y = Z&MJ(p)VZO‘TFzJ(p)V'
k=1 i—1 =1

Theorem (Duefiez-Miller)

If F and G are nice families of L-functions, then
Crxg = CF - Cg.

Breaks analysis of compound families into simple ones.
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Takeaways

Very similar to Central Limit Theorem.

@ Universal behavior: main term controlled by first two
moments of Satake parameters, agrees with RMT.

@ First moment zero save for families of elliptic curves.

@ Higher moments control convergence and can
depend on arithmetic of family.

Open Problem:

Develop a theory of lower order terms to split the
universality and see the arithmetic.

A




Convolutions
.

Lower Order Terms

Convolve families of elliptic curves with ranks r; and r,: see lower
order term of size ryr, (over logarithms).

Difficulty is isolating that from other errors (often of size
loglogR/logR). Study weighted moments

A r(p) = Z wr (F)As (p
ffeesf)
! 1 r
Al £(p) = Wa(F) Z wr(f)At(p)
1#5(e)
S(p) = {feF:p tNi}.

Main difficulty in 1-level density is evaluating

as(P)™ + Bs(p)™ | ~ I
ZZZ Z R (f) f(p)pm/zf(p) |832¢<m ng).

logR
pml f]—‘ °g

A
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Fourier Coefficient Expansion

& A, 7(P) logp [ logp
S(F) = —2323. p™/2  logR r'nlogR
P m=1
~ 2A p)logp 2Ag. #(p)logp ~ [ _logp
2503 0,7 (P) Loy o 3(2
p~ P(p+1)logR P plogR log R
A lo ~ [ lo ~ A 3p + 1) lo
2y 1fzp) gp ( gp)+2¢(0) 1,1f§p)(p 2) gp
pl/2 logR log R pl/2(p +1)2 logR
A logp /| A 4p? +3p + 1) lo
2% 2,7(P) A2, 7(P)logp o ([, logp L2303 2,7 (p)(4p p +1)logp
P plogR logR P p(p + 1)3logR
Z“Arr( PIP/%(p — Llogp (1
P =3 (p+1)*+liogR log3 R

1
= SA/(J:)+SO(.‘F)+Sl(F)+Sz(.7-')+SA(]-')+O<|og—3R> .

. 3
Letting Ax(p) = ﬁ ¢ es(p) WR (f)#ﬂp)\/ﬁ' by the geometric series formula we may replace Sp (F)
with Sz (F), where

Y Az (p)P*/2(p — 1)logp
Si(%) = —260 3 R

A
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Family Dependent Lower Order Terms: Miller '09

Fin the family of even weight  k and prime level N
cuspidal newforms, or just the forms with even (or
odd) functional equation.

Up to O(log—3R), as N — oo for test functions ¢ with
supp(¢) C (—4/3,4/3) the (non-conductor) lower order
term is

—1.33258 - 2¢(0)/ log R.

Note the lower order corrections are independent of the
distribution of the signs of the functional equations.

AR
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Family Dependent Lower Order Terms: Miller '09

CM example, with or without forced torsion:

y2 =x34+B(6T + 1)~

over Q(T), with B € {1,2,3,6} and « € {1, 2}.

CM, sieve to (6T + 1) is (6/«)-power free. If x = 1 then all values of
B the same, if x = 2 the four values of B have different lower order
corrections; in particular, if B = 1 then there is a forced torsion point

of order three, (0,6T + 1).

Up to errors of size O(log > R), the (non-conductor) lower order

terms are approximately

B=1x=1:
B=1k=2:
B=2rk=2:
B=3,k=2:
B=6,xk=2:

—2.124 .
—2.201 -
—2.347 -
—1.921.
—2.042 .
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Family Dependent Lower Order Terms: Miller '09

CM example, with or without rank:
y2 =x3 - B(36T +6)(36T +5)x over Q(T), withB € {1,2}. IfB=1
the family has rank 1, while if B = 2 the family has rank 0.

Sieve to (36T + 6)(36T + 5) is cube-free. Most important difference
between these two families is the contribution from the S z(F) terms,

-~

where the B = 1 family is approximately —.11 - 2¢(0)/ log R, while the
B = 2 family is approximately .63 - 2¢(0)/log R.

This large difference is due to biases of size —r in the Fourier
coefficients a;(p) in a one-parameter family of rank r over Q(T).

Main term of the average moments of the p" Fourier coefficients are
given by the complex multiplication analogue of Sato-Tate in the limit,
for each p there are lower order correction terms which depend on
the rank.

AT




Convolutions
°

Family Dependent Lower Order Terms: Miller '09

Non-CM Example: y2 = x3 —3x + 12T over Q(T). Up to O(log > R),
the (non-conductor) lower order correction is approximately

—2.703-24(0)/ log R,

which is very different than the family of weight 2 cuspidal newforms
of prime level N.

AR




Data/New Model

Data for Elliptic Curve Famillies
Duefiez, Huynh, Keating, Miller and Snaith

A7




Data/New Model
[ ]

Comparing the RMT Models

Theorem: M- "04
For small support, one-param family of rank r over Q(T):

1 log Ce,
im e 3 Yo ()

EieF ]
= [ eIpslx)ax + re(0)
where
SO if half odd
G = ¢ SO(even) ifal even

SO(odd) if al odd.

Supports Katz-Sarnak, B-SD, and Independent model in limit.

A




Data/New Model
L]

RMT: Theoretical Results ( N — o)

0.5

0.5 1 1.5 2
1st normalized evalue above 1: SO(even)

A




Data/New Model
L]

RMT: Theoretical Results ( N — o)

© © o ©°
N AN o o e

0.5 1 1.5 2 2.5

1st normalized evalue above 1: SO(odd)




Data/New Model
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Rank O Curves: 1st Norm Zero: 14 One-Param of Rank 0

© © o ©°
N B O o N

1 1.5 2 2.5

Figure 4a: 209 rank 0 curves from 14 rank 0 families,
log(cond) € [3.26,9.98], median = 1.35, mean = 1.36




Data/New Model
[ ]

Rank O Curves: 1st Norm Zero: 14 One-Param of Rank 0

=

© o oo

0.5 1 1.5 2 2.5

Figure 4b: 996 rank 0 curves from 14 rank 0 families,
log(cond) € [15.00, 16.00], median = .81, mean = .86.




Data/New Model
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Spacings b/w Norm Zeros: Rank 0 One-Param Families over Q(T)

@ All curves have log(cond) € [15, 16];

@ 7 = imaginary part of j”" normalized zero above the central point;

@ 863 rank 0 curves from the 14 one-param families of rank 0 over Q(T);
@ 701 rank 2 curves from the 21 one-param families of rank 0 over Q(T).

863 Rank 0 Curves | 701 Rank 2 Curves t-Statistic
Median z, — z; 1.28 1.30
Mean 2z, —z; 1.30 1.34 -1.60
StDev 7z, —7; 0.49 0.51
Median z3 — z; 1.22 1.19
Mean 2z3— 2, 1.24 1.22 0.80
StDev 73— 27, 0.52 0.47
Median z3 — z; 2.54 2.56
Mean 2z3-—12z; 2.55 2.56 -0.38
StDev 73— 273 0.52 0.52

eSS




Data/New Model
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Spacings b/w Norm Zeros: Rank 2 one-param families over Q(T)

@ All curves have log(cond) € [15, 16];

@ 7 = imaginary part of the j™ norm zero above the central point;

@ 64 rank 2 curves from the 21 one-param families of rank 2 over Q(T);
@ 23 rank 4 curves from the 21 one-param families of rank 2 over Q(T).

64 Rank 2 Curves | 23 Rank 4 Curves t-Statistic
Median z, — z; 1.26 1.27
Mean 2z, —2z; 1.36 1.29 0.59
StDev 2z, — 23 0.50 0.42
Median z3 — z, 1.22 1.08
Mean z3—2z; 1.29 1.14 1.35
StDev 73— 27, 0.49 0.35
Median z3 — z; 2.66 2.46
Mean z3—2z; 2.65 2.43 2.05
StDev 73 — 27, 0.44 0.42




Data/New Model
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Rank 2 Curves from Rank 0 & Rank 2 Families over Q(T)

@ All curves have log(cond) € [15, 16];

@ 7 = imaginary part of the j™ norm zero above the central point;

@ 701 rank 2 curves from the 21 one-param families of rank 0 over Q(T);
@ 64 rank 2 curves from the 21 one-param families of rank 2 over Q(T).

701 Rank 2 Curves | 64 Rank 2 Curves || t-Statistic
Median z, — z; 1.30 1.26
Mean 2z, —2z; 1.34 1.36 0.69
StDev 7z, —7; 0.51 0.50
Median z3 — z» 1.19 1.22
Mean 2z3— 2, 1.22 1.29 1.39
StDev 73— 27, 0.47 0.49
Median z3 — z; 2.56 2.66
Mean 2z3-—12z; 2.56 2.65 1.93
StDev 73 —2z; 0.52 0.44

|~ -~ S
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Summary of Data

@ The repulsion of the low-lying zeros increased with
increasing rank, and was present even for rank O
curves.

@ As the conductors increased, the repulsion
decreased.

@ Statistical tests failed to reject the hypothesis that, on
average, the first three zeros were all repelled equally
(i. e., shifted by the same amount).




Data/New Model
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New Model for Finite Conductors

@ Replace conductor N with Neecive-
o Arithmetic info, predict with L-function Ratios Conj.
o Do the number theory computation.

@ Excised Orthogonal Ensembles.
o L(1/2,E) discretized.
o Study matrices in SO(2Nef ) with [Aa(1)] > ceN.

@ Painlevé VI differential equation solver.
o Use explicit formulas for densities of Jacobi ensembles.
o Key input: Selberg-Aomoto integral for initial conditions.

Open Problem:
Generalize to other families (ongoing with Nathan Ryan).

A



Data/New Model
L]

Modeling lowest zero of Lg,, (S, xq) with 0 < d < 400,000

04 M

0.2 il

0

05 1 15 2

Lowest zero for Lg,, (S, xq) (bar chart),'lowest eigenvalue
of SO(2N) with N (solid), standard Ng (dashed).




Data/New Model
L]

Modeling lowest zero of Lg,, (S, xq) with 0 < d < 400,000

08 ||
06

04

02“7
o "
05 1 15 2

Lowest zero for Lg,, (S, xa) (bar chart); lowest eigenvalue
of SO(2N): Ngt = 2 (solid) with discretisation, and
Negi = 2.32 (dashed) without discretisation.




Ratios to Excised

Ratio’s Conjecture J

GO




Ratios to Excised
[ ]
History

¢

@ Farmer (1993): Considered
T{(s+a)((1—-s+p)
o C(s+7)¢(1—s+0)
conjectured (for appropriate values)

(a+0)(B+7) T1-a-8 (6 =B)v—«a)
(o + B) (v +0) (a+B)(y+d)

dt,




Ratios to Excised
[ ]

History

@ Farmer (1993): Considered

<s+a (1-s+p5)
C(s+7)C(1—-s+90)

dt,

conjectured (for appropriate values)

T (a+0)(B+7) T1-a-5(5 —B)(v —a)
(o + B) (v +0) (a+B)(y+d)

@ Conrey-Farmer-Zirnbauer (2007): conjecture
formulas for averages of products of L-functions over

families:
Z ‘I’ « f)
f
feF + V’f)

¢




Ratios to Excised
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Uses of the Ratios Conjecture

@ Applications:
¢ n-level correlations and densities;
o mollifiers;
¢ moments;
© vanishing at the central point;

@ Advantages:
o RMT models often add arithmetic ad hoc;
o predicts lower order terms, often to square-root
level.

¢




Ratios to Excised
0e00

Inputs for 1-level density

@ Approximate Functional Equation:

a, a
L(s,f) = > _ m—m +eXi(s) ) nT

m<x n<y

© € sign of the functional equation,
o X (s) ratio of I'-factors from functional equation.
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Ratios to Excised
0e00

Inputs for 1-level density

@ Approximate Functional Equation:

a a,
Ls.F) = 3o e (s) 3 o

m<x n<y

© € sign of the functional equation,
o X (s) ratio of I'-factors from functional equation.

@ Explicit Formula: g Schwartz test function,

N I .

feF v

o RA(r) = 2Rx(a.7)

a=vy=r




Ratios to Excised
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Procedure (Recipe)

@ Use approximate functional equation to expand
numerator.
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Ratios to Excised
[o]e] leo}

Procedure (Recipe)

@ Use approximate functional equation to expand
numerator.
@ Expand denominator by generalized Mobius function:

cusp form
1 pe(h)

L(s,f) 4= hs

where p¢(h) is the multiplicative function equaling 1
forh =1, =X\ (p)ifn=p, xo(p) ifh=p?and 0
otherwise.
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Ratios to Excised
[o]e] leo}

Procedure (Recipe)

@ Use approximate functional equation to expand
numerator.
@ Expand denominator by generalized Mobius function:

cusp form
1 pe(h)

L(s,f) 4= hs

where p¢(h) is the multiplicative function equaling 1
forh =1, =X\ (p)ifn=p, xo(p) ifh=p?and 0
otherwise.

@ Execute the sum over F, keeping only main
(diagonal) terms.
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Ratios to Excised
[o]e] leo}

Procedure (Recipe)

@ Use approximate functional equation to expand
numerator.
@ Expand denominator by generalized Mobius function:

cusp form
1 pe(h)

L(s,f) 4= hs

where p¢(h) is the multiplicative function equaling 1
forh =1, =X\ (p)ifn=p, xo(p) ifh=p?and 0
otherwise.

@ Execute the sum over F, keeping only main
(diagonal) terms.

o Extend the m and n sums to infinity (complete the
products).
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Ratios to Excised
[o]e] leo}

Procedure (Recipe)

@ Use approximate functional equation to expand
numerator.
@ Expand denominator by generalized Mobius function:

cusp form
1 pe(h)

L(s,f) 4= hs

where p¢(h) is the multiplicative function equaling 1
forh =1, =X\ (p)ifn=p, xo(p) ifh=p?and 0
otherwise.

@ Execute the sum over F, keeping only main
(diagonal) terms.

o Extend the m and n sums to infinity (complete the
products).

@ Differentiate with respect to the parameters.
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Procedure (‘lllegal Steps’)

@ Use approximate functional equation to expand
numerator.
@ Expand denominator by generalized Mobius function:

cusp form
1 wmh)

L(s,f) 4= hs

where p¢(h) is the multiplicative function equaling 1
forh =1, =X\ (p)ifn=p, xo(p) ifh=p?and 0
otherwise.

@ Execute the sum over F, keeping only main
(diagonal) terms.

@ Extend the m and n sums to infinity (complete the
products).

@ Differentiate with respect to the parameters.
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1-Level Prediction from Ratio’s Conjecture

Ae(a,7)
- oo <15 (0025 - A AE)
- 2 i 2m-+1
I3+ 2 (3 2, o 520
* p1<];2v mz:; p)\m((?j-r;)u) ))
where
Ye (o) = -+ 27)ke(sym?, 1 + 2a)

I+ a+y)Le(sym?, 1+ a+7)
Huynh, Morrison and Miller confirmed Ratios’ prediction, which is
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1-Level Prediction from Ratio’s Conjecture

1 Yl
e ZQ(T)
deF(X) vd
oo M|d r’ i r i
- / 2log VMl +—(1+m—7)+— 1—'”—7) dr
2LX* de? 27 r L r L
1 27 L 27 > (M — 1)logM
e —i(uﬂw 4 (o ) S )
L/ oo ¢ L Le o (@A)
log M | 00 )\ (p2k+2y _ \(p2K
/oe _ logM o1 / o og p (PT7) . _(p )dT
L/ - mk+D) 1+’”" v (p+1) p(k+1)(1+%)
(\/Wd\)*Z"”/LF(l 1) ¢(1+ AET)Lg (sym?, 1 — AxT)
2m r@+ =z) Le (sym?, 1)

/OO
o xe de}‘

|7|'T |7TT
-

><AE( - d7+0(x*1/2+5),

y
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Numerics (J. Stopple): 1,003,083 negative fundamental
discriminants —d € [10'2,10'2 + 3.3 - 109]

0.8 -

0.6 -

0.2

Histogram of normalized zeros (v < 1, about 4 million).
o Red: main term. ¢ Blue: includes O(1/log X) terms.
o Green: al lower order terms.
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Excised Orthogonal Ensembles J
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Excised Orthogonal Ensemble: Preliminaries

Characteristic polynomial of A € SO(2N) is
) N
M(e',N) := det(l—Ae™) = H (1—eB=0)(1— el (-0-0),

w ith et . e* the eigenvalues of A.
Motivated by the arithmetical size constraint on the central

values of the L-functions, consider Excised Orthogonal
Ensemble Ty: A € SO(2N) with |Aa(1,N)| > exp(X).

y
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One-Level Densities

One-level density Rf(N) for a (circular) ensemble G(N):

Rf(N)(G):N/.../P(G,Gg,...,GN)daz...daN,

where P(6,0,, ..., 60\) is the joint probability density function of eigenphases.
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One-Level Densities

One-level density Rf(N) for a (circular) ensemble G(N):

Rf(N)(G):N/.../P(G,Gg,...,GN)daz...daN,

where P(6, 6., ...,0\) is the joint probability density function of eigenphases.
The one-level density excised orthogonal ensemble:

R;¥(61) :=Cx -N /OW.../OWH(log|/\A(1,N)| - X)x

x [ J(cos 6 — cos 6)?dos, - - - don,
j<k
Here H(x) denotes the Heaviside function

1f 0
H(x) = orx >
0forx <O,

and Cy is a normalization constant

y
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One-Level Densities

y

One-level density R®™) for a (circular) ensemble G(N):

—N/.../P(G,GZ,A“,GN)daz.A.dHN,

where P(6, 6., ...,0\) is the joint probability density function of eigenphases.
The one-level density excised orthogonal ensemble:

Cc+ioco o
RI% (6;) = C_X/ 2“’MR3N(el;r —1/2,-1/2)dr

2mi c—ioco

where Cx is a normalization constant and

RN (01,1 —1/2,-1/2) = / / Hw' 1/2.71/3) cos 6;)

x H(cosej — cos 6 )?db;, - - - doy
i<k

is the one-level density for the Jacobi ensemble Jy with weight function

w(®(cos ) = (1-cos 0)**/?(1+cos0)° /%, a=r-1/2and g =-1/2.
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@ With Cx normalization constant and P(N, r, 6) defined in terms of
Jacobi polynomials,

_ C_X erieo exp(_rX)2N2+2Nr—NX
27 Jo_ r

loo

RI™(0)

y H F+)ra/2+ir(r +1/2+j)

r(r+N+j)

X
j=0
21T (N +2)F(N +r)

X (L =cost) S T T RN T~ 1/2)F(N - 1/2)

P(N,r,6)dr.

@ Residue calculus implies R;* (9) = 0 for d (¢, X) < 0 and

R{¥(0) = RPP®V(0) + Cx Y brexp((k +1/2)x) ford(6, X) >0,
k=0
where d(0, X') := (2N — 1) log 2 + log(1 — cos ) — X and by are
coefficients arising from the residues. As X — —oo0, 0 fixed,
R (0) = RV (0).
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Numerical check

R 1 formula ——
TR_lidata +
: f% A, jﬁ ]
1 # 1% 1
al | X& FO -
*‘ A\ A /o
I \ f{
¥
NS S
| o

Figure: One-level density of excized SO(2N), N = 2 with cut-off
|Aa(1,N)| > 0.1. The red curve uses our formula. The blue crosses
give the empirical one-level density of 200,000 numerically generated
matrices.
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Theory vs Experiment

10

08

06

041

0.2

L L L L
0.5 1.0 15 20

Figure: Cumulative probability density of the first eigenvalue from

3 x 108 numerically generated matrices A € SO(2Ngq) With

IAA(L, Netg)| > 2.188 x exp(—Nsq/2) and Ngg = 12 red dots compared
with the first zero of even quadratic twists Lg,, (S, xq4) with prime
fundamental discriminants 0 < d < 400,000 blue crosses. The
random matrix data is scaled so that the means of the two
distributions agree.
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Cuspidal Newforms
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Cuspidal Newforms
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Modular Form Preliminaries: Explicit Formula

Let F be a family of cupsidal newforms (say weight k, prime
level N and possibly split by sign) L(s,f) = >, Af(n)/n®. Then

% ZZ¢ (IOZLWRVO = 5(0) + %d)(O) — |—]1__|pr(f;¢)
€F
loglogR
o (“oor )

~ Iogp) 2logp
f; = A .
P(f; ) %Nj f(p)¢<logR JBlogR
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Key Kloosterman-Bessel integral from ILS

Ramanujan sum:

R(ng) = > e(@n/q) = Y u(a/d)d
amod q d|(n,q)
where x restricts the summation to be over all a relatively prime
to q.

Theorem (ILS)

Let W be an even Schwartz function with supp(¥) C (—2, 2). Then

2 b)R(1,b) [oo 2log(by /N /47
S iz S R(m<, b)R(1 )/y:oj" Ly )w< og(by VN /4 m))i

m<ne M (biN)=1 @(b) logR logR
B sm 27r>( 1 k log log kN
-t / dx — Zw(0)| +0 [ ——— ),
27X 2 log kN

where R = k2N and ¢ is Euler’s totient function.
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2-Level Density

/RU/ log x4 3 log X, 3 4 Vm2x1xN | dx;dx,
— T
=2 Jxp= logR logR k-1 Cc X1X2
Change of variables and Jacobian:
U = X1Xz X2 = ﬂ—i
Uy X1 X1 = W
OX 1 0
| ow | W
Left with
// |OgU1 Iog <ﬂ_i) 1 \/mZUZN dulduz
J_1 | 4m .
logR logR VU2 c up
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2-Level Density

Changing variables, u;-integral is

7 ~ ~ (log uy
/W og ., (b (Wl) (b ( |Og R — W]_) dWl.

1= JogR

Support conditions imply
logu\ = [~ ~ ~ (loguy
v, <IogR> = /Wl:ooﬁf)(Wl)Gf)<logR — Wy | dwg.
Substituting gives

00 2
/ Iy 47r\/m usN v, <Iog u2> duy




Cuspidal Newforms
L]

3-Level Density

[ Lo (o () (2
=2 Jxy=2 Jxz=2 logR logR logR

V/M2x1XoXx3N | dx;dxodxs
*  Je_q1 | 4n

C v/ X1X2X3

Change variables as below and get Jacobian:

Uz = X1X2X3 X3 Uy
u

U, = X1X2 X = u—i

u = X1 X1 = U
0 0

15)4 _ U 1 0 1

_ — UJZ_ Ul [l —

ou o _u 1 UpUs
uz Uy

2
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n-Level Density: Determinant Expansions from RMT

@ U(N), Uc(N): det (Ko(xj,xk)>

1<j,k<n
® USp(N): det (K_l(x,-,xk))l<j -
@ SO(even): det (Kl(xj,xk)) 1<ik<n

@ SO(odd): det (K_1(Xj, k) 1 < +
SN, 6(x,) det (K_l(xj ) Xk))

1<y k#v<n

where

sin (w(x — y)) .\ sin (W(X +Y)>

Ke(x7y) = 7T(X B y) 7T(X _|_y)
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n-Level Density: Sketch of proof

Expand Bessel-Kloosterman piece, use GRH to drop
non-principal characters, change variables, main term is

bvN [ A<2log(bx\/ﬁ/47rm)> dx

N ()
2mm J, ¢ 1(X)®n logR logR

with &, (x) = ¢(x)".

Main ldea

Difficulty in comparison with classical RMT is that instead of
having an n-dimensional integral of ¢1(X1) - - - on(Xn) We have a
1-dimensional integral of a new test function. Leads to harder
combinatorics but allows us to appeal to the result from ILS.
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Support for n-Level Density

Careful book-keeping gives (originally just had ﬁ)

1
n—1

on <

n-Level Density is trivial for oy < -, non-trivial up to ~=5.

Expected % Obstruction from partial summation on primes.
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Support Problems: 2-Level Density

Partial Summation on p; first, looks like

2logp: -~ (logp1 vm2p1poN
;Sm ,p1p2N, C)\/—IogRqﬁ<logR Jo_q | ar Y27

Py #P2

Similar to ILS, obtain (c = bN):

> S(me.pupaN.c) 2900 - 2 B R(M.b.pa)x; 40 (b(bxaN))

pl <Xl
p1tb

> p, 10 [, error < b(bN)‘m+/p,NN“2/2/bN, yields
1 b(bN)m\/poNN7

WY oS oy X e

m<Ne¢ b<NS p2<N<7

< N§+e+az+§+7—2 < N502—1+e’
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Support Problems: n-Level Density:

@ If no sz, have above without the N? which arose from
>_p, 9iving

< Nzte+3+3-2 _ Nzor—1+e

@ Fine for oy < 2. For 3-Level, have two sums over primes
giving N73, giving

< Nite+20s+3+53-2 _ NSos—1+¢

@ n-Level, have an additional (n — 1) prime sums, each
giving N, yields

< N%+6’+(”*1)0n+%+%"*2 _ N@Un*]ri*ﬁ/

Q7R
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Conclusion and Future Work

@ In the limit: Birch and Swinnerton-Dyer, Katz-Sarnak
appear true.

@ Finite conductors: model with Excised Ensembles (cut-off
on characteristic polynomials due to discretization at
central point).

@ Future Work: Joint with Nathan Ryan and his students,
looking at other GL2 families (and hopefully higher) to
study the relationship between repulsion at finite
conductors and central values.

@ Future Work: Further explore lower order terms and
combinatorics.
Qe
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New Cuspidal Results
lyer, Miller and Triantafillou
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Goal:
Prove n-level densities agree for supp(¢) C (—ﬁ, ﬁ)

Philosophy:

Number theory harder - adapt tools to get an answetr.
Random matrix theory easier - manipulate known answer.

Theorem (ILS)

Let W be an even Schwartz function with supp(W) C (=2, 2). Then

R(m2,b)R(1,b) 2log(byvN/47m) \ dy
Z R T/y: Healy ""( logR )ng

o 2 k log log kN
1 / sm 7rxd 77\“(0) oglog ,
log kN

where R = k2N, ¢ is Euler’s totient function, and R(n, ) is a Ramanujan sum.




Number Theory Side: lyer-Miller-Triantafillou:

Appendices
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supp(¢)c( n— 2 nlz)

Sequence of Lemmas - New Contributions Arise

© Apply Petersson Formula

@ Restrict Certain Sums

© Convert Kloosterman Sums to Gauss Sums
© Remove Non-Principal Characters

© Convert Sums to Integrals
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New Results: Number Theory Side: lyer-Miller-Triantafillo

supp(¢)c( n— 2 nlz)

Typical Argument
If any prime is ‘special’, bound error terms

1 “Pn 1
<<—N Z Zerl rp\/_ Vi1

P1,--,Pn<N? m<Ne¢ r=1
n—1
< N_1+€, Z 1 < N—l-‘,—(n—l)a—}—e,
p<Ne

Bounds fail for large support - new terms arise.
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Converting Sums to Integrals - Hughes-Miller:
Supp((b) - ( n— 1 nll)

We want to evaluate

lﬂl <Iogn ) Xo(ni)/\(ni)] Je s <M)

Ny Li—1 logR/ /njlogR bVN
H S0 logni \ xo(ni)A(n;)
27rl Re(s)=1 i1 T logR /) /njlogR

X <47rmb— V\n/lﬁn”> - Gk_1(s)ds




Appendices
[e]e]ele] Telelele]e]e]

Converting Sums to Integrals - Hughes-Miller:
Supp((b) - ( n— 1 nll)

Important Observation

- (logr\ xo(Ar) [1-s
; (Iog R> (1+s)/2logR O\ ami 109R ) +HEG),
where
_ 1 (2z-1-s)logR
£ =5 [ 0 (Bt ) oo

For convenience, rename expressions, X =Y + Z.
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Converting Sums to Integrals - Hughes-Miller:
Supp((b) - ( n— 1 nll)

Important Observation
By the binomial theorem,

eri /w(s X" (::'ir/rl)_s Gk_1(s)ds
= (Y +2Z)" <;17r7an>_s Gk-1(s)ds

:2—7Ti Re(s)=1
. Arm\ "
= yn-iz! Gy_1(s)ds.
Z( >27” /sm(s)_l <b\/ﬁ> -1(8)
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Converting Sums to Integrals - Hughes-Miller:
Supp((b) - ( n— 1 nll)

Z = £(s) is easy to bound (shift coutours), get

2i bv/N

< N(n*j)0/2+€”

—S
i. yn-izl <47Tm> Gk_1(s)ds
(s)=1
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Converting Sums to Integrals - Hughes-Miller:
Supp((b) - ( n— 1 nll)

Z = £(s) is easy to bound (shift coutours), get

2i bv/N

< N(n*j)0/2+€”

—S
i. yn-izl <47Tm> Gk_1(s)ds
(s)=1

Foro < ﬁ only j = 0 term is non-negligible.
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Converting Sums to Integrals - Hughes-Miller:

supp(¢)c( n— 1 nll)

Z = £(s) is easy to bound (shift coutours), get

1 47m\ —°
—_— yn-izi Gy_+(s)ds
5 Lo s (b N) e 1(5)

< N(n*j)0/2+€”
Foro < ﬁ only j = 0 term is non-negligible.

For o < =15, j = 1 term also non-negligible.
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Converting Sums to Integrals - Hughes-Miller:
Supp((b) - ( n— 1 nll)

Z = £(s) is easy to bound (shift coutours), get

1 47m\ ~°
— yn-izi Gy _1(s)ds
271 Jre(s)=1 <b\/ﬁ> -1(8)

< N(n*j)0/2+€”
Foro < ﬁ only j = 0 term is non-negligible.
For o < =15, j = 1 term also non-negligible.

Unfortunately, Z = £(s) is hard to compute with.
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Converting Sums to Integrals - lyer-Miller-Triantafillou:
Supp((b) - ( n— 2 n12)

Keyidea: Recall X =Y +Z,write Z =X —Y.
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Converting Sums to Integrals - lyer-Miller-Triantafillou:

supp(¢)c( n— 2 nlz)

Keyidea: Recall X =Y +Z,write Z =X —Y.

n 47m\ —°
— yn-iz ( ) Gy_1(s)ds
2 Re(s)=1 b\/N k 1( )

n 47m )\ ~—°
= Xy n-1 <—> G_1(s)ds
271 Jore(s)=1 bv/N c-1(s)

n 47m\ ~°
yn Gk_1(s)ds.
27 Re(s)=1 (b\/_> ()

Hughes-Miller handle Y " term, XY "~1 term is similar.
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Converting Sums to Integrals - lyer-Miller-Triantafillou:
Supp((b) - ( n— 2 n12)

When the dust clears, we see

: |

Ng,..., Nn

16 (23) 902, (£m5)
x- 5000

_(1-n) (/ o(x sm27rx

1
2
+n (/ qg(Xz)/ qzSnfl(xl)Sm(Zﬂ-Xl(l — |X2|))dX1dX2

27X,

30) +o(w)
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New Results: Number Theory Side: lyer-Miller-Triantafillo u:

supp(¢) C (—t5. 7t5)

Theorem

Fix n > 4 and let ¢ be an even Schwartz function with

supp($) C ( 12, —= ) Then, the nth centered moment of the
1-level density for holomorphic cusp forms is

LEC a2 ey )
+ (-2 ( / ) as(x)"s';fjx dx — 50(0))

-1, (/: 3(x2) /_Z ¢n—1(xl)sin(27rx217(r)l(1+ ) g g %¢n(o)) |

Compare to RMT (see Appendix I).
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Appendix II:
Random Matrix Theory: New Combinatorial Vantage
lyer-Miller-Triantafillou
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n-Level Density: Katz-Sarnak Determinant Expansions

Example: SO(even)

/ / 925 X1) Xn) det (Kl(xj ) Xk)) 1<i k<ndxl < dXp,

where

sin <7r(x - y)) sin <7T(X + y))

V) =Ty T T Ry
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n-Level Density: Katz-Sarnak Determinant Expansions

Example: SO(even)

/ / 925 X1) Xn) det (Kl(xj ) Xk)) 1<i k<ndxl < dXp,

where

sin <7r(x - y)) sin <7T(X + y))

V) =Ty T T Ry

Problem: n-dimensional integral - looks very different.
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Preliminaries

Easier to work with cumulants.

where P is the probability density function.

n—1

n-1
pn=Cn+ Y <m1>Cmu§1m7

m=1

where yj, is uncentered moment.
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Preliminaries

Manipulating determinant expansions leads to analysis of

(_1)m+1 n!

n
K(y1,---.¥n) = Z Z m )\l!..:)\m!

m=1 A\ +...4+4Am=n
Aj=>1

m
2 sy wepani<ay

€1,...,en=F1/4=1

where
. 10 < Yy A
4j) = . =
n(td) { —1 ifj > Sy A
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New Result: lyer-Miller-Triantafillou: Large Support:

supp(3) € (~ 7tz 75 )

Hughes-Miller solved for supp(¢) C (— =21, =17).

New Complications: If supp(¢) C (— =15, =15),
Q (, j)€yj need not have same sign (at most one can differ);

@ more than one term in product can be zero (for fixed
m, )‘j , ej).
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New Result: lyer-Miller-Triantafillou: Large Support:

supp(3) € (~ 7tz 75 )

Hughes-Miller solved for supp(¢) C (— =21, =17).

New Complications: If supp(¢) C (— =15, =15),
Q (, j)€yj need not have same sign (at most one can differ);

@ more than one term in product can be zero (for fixed
m, )‘j , ej).

Solution: Double count terms and subtract a correcting term p;.
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Generating Function Identity - )\ > 1
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Generating Function Identity - )\ > 1

= _1nn —X 1 = X\ym
S e = e = L)

m=0

e 9] . o] 1 m o] e8] _1)m N
=2 (1) (Zﬂ) S5 DIND IS B

n=0 \m=1 A\ +-—+Am=n "L’
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Generating Function Identity - )\ > 1

= —1)" n —X 1 = X\ym
g(m)x —e g ey - 2

SDIEIPOE >m=2 > xS e

n=0 \m=1\{+-+Am=n 1

> —1)Mn!

m=1 A;++Am=n 1
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New Result: Dealing With * p;’s

All A, N > 1.

n m (—1)™ nl
PJ:ZZ Z m Al - Am!
m=11=1 >\l+"'+>\[,l:j—l
Ap=1

Agp1teFAm=n—j
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New Result: Dealing With * p;’s

All N, A > 1.

n n n m (_1)m n!
2= 2.2 X e WIS W
Ap=1

g1t +HAm=n—]
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New Result: Dealing With * p;’s

All X, X > 1.
n n n m
_ (—1)™ n!
2m=2 2.0 2 m Al Al
=1 j=lm=1¢=1X+-+X_1=]—1

Ap=1
NppptHAm=n—]

= 1™ (n—1)!
=n Z Z ( m) )\&Er.]._)\/n?l!
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New Result: Dealing With * p;’s

All A, N > 1.

n n n m (_1)m n!

I EDIDID DS e

j=1 j=1 m=1¢=1 X\ ++N_1=j—1 1- m!'
Ap=1

App1t o HAm=n—j
n m
(1™ (n—1)!
=n>. > X VIS v
m=1{¢=1 Aj+-+X, _,=n—1 1 m-1

& —1)™-1(n — 1)!
=YY oS

M=1 X ++\,  =n—1
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New Result: Dealing With * p;’s

All A\, N > 1.

n m
_ (-1)m  n
ZPJ— Z Z m Al Ap!
i
App1t - HAm=n—j

n m
(-1)™  (n—1)!
=n>. > X AR T
m=1 /=1 X\ +-4X _ =n-1 1 m—-1°
n
(~1)™(n - 1)!
”Z Z (-1) N\ ]
m=1X+-4X _,=n—1 1 m-—1
=n(-1)".
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New Result: Iyer Miller-Triantafillou: Large Support:

supp(¢) c ( n—2> nlz)

After Fourier transform identities:
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New Result: lyer-Miller-Triantafillou: Large Support:

supp(3) € (~ 7tz 75 )

After Fourier transform identities:

CSO(¢) = 1 n-1 (/ o(x sln27rX —%¢(0)”>

;1 (/7 da / i)

sin(2mx1(1 + [X2])) 1,
= XmdX2 — 2¢ (O) .
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New Result: lyer-Miller-Triantafillou: Large Support:

supp(3) € (~ 7tz 75 )

After Fourier transform identities:

CSO(¢) = 1 n-1 (/ o(x sln27rX —%gb(O)”)

;1 (/7 da / i)

sin(2mx1 (1 + [X2|)) 1,
= XmdX2 — 2¢ (O) .

Agrees with number theory!
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@ Difficult to compare n-dimensional integral from RMT with
NT in general. Harder combinatorics worthwhile to appeal
to result from ILS.

@ Solve combinatorics by using cumulants; support
restrictions translate to which terms can contribute.

© Extend number theory results by bounding Bessel
functions, Kloosterman sums, etc. New terms arise and
match random matrix theory prediction.

© Better bounds on percent of forms vanishing to large order
at the center point.

[e]e]e]e]o]e]
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Appendix IlI:
Dirichlet Characters: Square-Free conductors
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Dirichlet Characters: m Square-free

Fix anr and let mq,..., m; be distinct odd primes.

m = miMms---Mm;
My = (mp—1)(mz—1)---(m; — 1) =¢(m)
My, = (m1*2)(m2 —2)(mr *2)

M, is the number of primitive characters mod m, each of
conductor m. A general primitive character mod m is given by

x(u) = xi, (U)xi,(u) - xo (U). Let F = {x : x = xu,X1, " - X1, }-

logp 3 logp _1
ZIog (m/7) (Iog m/w)) Z[X

logp_ 5, logp_\
Mzzbg (m/m) (Iog (m/x) > lZ[X p)l
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Characters Sums

S ) = Mo =
Py =9 otherwise.

Define
1 p=1(m)
om (P, 1) = {0 otherwise.
Then
my;—2
Zx(p) = Z Z xu(P) - xi (P)
XEF lr=

1
m; —2

l1=
- 11 xh(p)=H<1+(mi1)6mi(p,1)>-

i=1 =1 i=1
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Expansion Preliminaries

k(s) is an s-tuple (kg,kz, ..., ks) with k; < ky < --+ < Ks.
This is just a subset of (1,2, ...,r), 2" possible choices for k(s).

0 S)(pv 1) = Hémki (p7 1)
i=1

If s = 0 we define dyoy(p,1) = 1 Vp.
Then

( — 1+ (m; — 1)m (p, 1))

M*E::~

S
) Sék(s)(pvl)H(mki —-1).
i—1

n
I
o

k(s)




Appendices

First Sum

S

< Zp ZM—<1+ZZ5K(S p,1 H(mki—l)).

s=1k(s) i=1

As m/M; < 3", s = 0 sum contributes
1 m” 1 1
S _ = -3 3|’m§a—l
1,0 M, Ep p 2L )

hence negligible for o < 2.




First Sum

Appendices

S

< Zp 2—(1+Zz5k(s p.1) [ I(m

s=1k(s) i=1
Now we study
S m?
Sikis) = _ZH(mk. —1) P Zd(s)(p, 1)
i=1 p
1 £ Al .
< M—H(mki ~-1) > nz
2 i=1 nzl(mk(s))

(—1).

1 S 1 _1 r 1 -1
< — Mg, —1)=s——— ) nz<3m27" "%
e L1 D ) 2
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First Sum

There are 2" choices, yielding
Sl < 6rm%ail,
which is negligible as m goes to infinity for fixed r if o < 2.

Cannot let r go to infinity.
If m is the product of the first r primes,

r
logm = > logpx
k=1

Therefore
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Second Sum Expansions and Bounds

2
I 2 _Jjmi—-1-1 p=4+1(m)
2. Xi(P) = {—1 otherwise

=1

m—-2  m—
Z X*(p) Z Z Xl1 Xt (p)
XEF =1 lr=1
r m—2
= I > X
i=1 =1

r

= TL(— 1+ (m — Ddm(p. 1) + (i — 1) (p.~1)).

i=1
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Second Sum Expansions and Bounds

Handle similarly as before. Say

p = 1 mod my,,...,mg

a

p = —1modmgq,...,My,

How small can p be?

+1 congruences imply p > my, ---my, + 1.

—1 congruences imply p > my, - -my, — 1.

Since the product of these two lower bounds is greater than

]_[ib:l(mki — 1), at least one must be greater than
1

(TTPa(my 1))

There are 3" pairs, yielding

Second Sum = ZZZSZK ) < 9'm -2,

s=0k(s) j
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Summary

Agrees with Unitary for o < 2 for square-free m € [N, 2N] from:

@ m square-free odd integer with r = r(m) factors;
om=[[_,m
o My =[[_,(m —2).

Then family F, of primitive characters mod m has

. 1
First Sum < ——2'm2°

M2

1

Second Sum < ——3'mz.
M,
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