NOTES ON TALKS AT THE SIMONS SYMPOSIUM ON FAMILIES OF AUTOMOR PHIC
FORMS AND THE TRACE FORMULA

STEVEN J. MILLER

ABSTRACT. The following are notes on the talks at the Simons Symposiniffamilies of Automorphic Forms
and the Trace Formula, held from January 26 to February lent®&ico.All errors should be attributed solely
to the typist, Steven J. Miller; these notes were TeX-ed ahtime (with no effort made to go back and correct
mistakes!).. See

https://web. mat h. pri nceton. edu/ ~tenplier/famlies/
for more information about the conference.
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1. FAMILIES OF AUTOMORPHIC FORMS OF COHOMOLOGICAL TYPKCALEGARI)
Fix a reductive group G, fix an infinity type,, € G.
Basic problem: count the multiplicitym (7., ') in L2, (T'\ G) asT varies. UsuallyG = G(R). For

cusp
exampleG = SL(N)/Q andI’ C G(Z).
deGeorge-Wallach:

m(m, T(V)) {#0 7 DS (L.)

;
Vs volT(N)\ G/K) ° 1= 0 if 7o, D.S.

(the limit exists in the first case, and is non-zero).
If we takeG = GLy(R) thenw,, D.S. iff 7 is a classical modular form of weight > 2, andn is a
HLDS iff 7 is a classical modular form of weight 1.

General problem: if G does not have D.S., do there exist cuspidal automorphicd®rirthe answer is
yes. Two sources: via functoriality and via trace formula.

ConsiderGL,(R).
e Symplectic / orthogonal groups. Arises via functoriality.

Deficit: the resultingr are not genuinely frond:. Even though it is orzL,, (R) it knows it is not really
from there and came from something smaller.

Want a technique to produce formst coming from smaller groups. Can use Weyl law. This allows us
to count certain classes of automorphic forms and “almdssath form have to genuinely come fro6a.
Just asymptotically number is proportional to volume, ¢hosming from smaller are not enough. Deficit is
allowing 7, to vary.

Whatr,, are of interest to me?

e Cohomological type: These representations contributéeoBetti cohomology of the arithmetic
quotientsX (T') = I' \ G/ K. When talking about ., automorphic form satisfying conditions. Very
specific way have some functional equations, say assumeveige zero and harmonic form, can
compute using deRham cohomology, arise in cohomology ofrafoid.

e Holomorphic limits of D.S.: Loosely speaking, these cdnite to the coherence cohomology of the
Shimura variety (inH%). From a formula point of view, no distinction between diéfat weights,
satisfy a formula for modular form$0 (w®F).

Want to count motives or something on the automorphic sioeyant to restrict.

Can varyl' in several ways. Two types of families. Horizont& V) with N € N. Vertical: T'(p*) with
p a fixed prime and: € N.

Let’s look at classical weight 1 modular forms of levél= Mp* for M fixed. What do we know about
these? Weight 1 modular forms are in bijection to Galoisesentation : Gal(Q/Q) — GL2(C) odd,
irreducible conductorV. Possibilities aredy, As, Sy, D,. Up to twists, the first three occur only finitely
often. As go up the tower, all but finitely many (up to twistsg dihedral down here and are induced from
GL; (and some quadratic extension).

Conjecture A: FiX moo. Leusp (I'(Mp*) \ G). Up to twist, there will only beD(1) forms which don't
come from a smaller group (if- is not DS).

Conjecture B: Let A be the set of all algebraic,,. Make the same conjecture.
Example: TakeGLy/K, 7. equal weight OH!(T'(N) \ H?) + E/K.
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ConsiderG = GL(n)/Q. We should have representations Gal(Q/Q) — GL,(Q,)/ ~, tame level
M, all p : Gal(Q,/Q,) p-adic HT cond. By compactness argument lanin, (Z,) *, GLx(Fp). Xylob is
the rep. variety otz s).

Fix 7, ][, nice spaceB(1)?, X, is a nice spacé3(1)® and X3¢ is a countable union of nice subspaces
B(1). HaveX — X (finite) and X, — A28

In general can do a computation that

if 7o D.S.
dimXige — codimXyp — codimX{# = {0 - Ot;erwise (1.2)
4 _

Examples: Conjecture (Ash-PoIIock)ngsp(SLg)Z, Vi) (with \/ . finite dim alg rep ofSL3RR) equals
the space ofym? from GL(2)/Q.

Let ' = Q(v—2),3 = =7, D/F division alg ram atr, 7 with inv 1/n, —1/n, T equalsO,* — GL,(C),
dimH* (X (F(x")),C) = Hj, (X (P(x"),C) =’ (1.3)
Regard as weak evidence towards problem, but suggest gaioding will be hard as no trivial source.

One last example. L&t be a real quadratic field. Look at Hilbert Modular Forms of gbi( k1, ko) with
k1 = ko mod 2. If ]{71, ko >2D.S. | ifki =k =1 (777), ok, = 1 andks 75 1. |fW€|ght IS(2k‘—|—1m1) then
HY(X, &) (essentially same dimension HS. What are such forms? Can induce grossencharacters. My
students Specter and May found a non-CM form. On the othet,leave the following theorem: For certain
N and totally oddy satisfying some conditions (such exist), the dimensiomefspaces; o.1)(I'(IV), x)
equals CM forms for alk.



2. LIMIT MULTIPLICITIES FOR PRINCIPAL CONGRUENCE SUBGROUPS O&L,, (MULLER)
Much of the following is joint work with T. Finis and E. Lapid.
2.1. Partl. LetG be a semi-simple real Lie group of non-compact type.@_be the unitary dual equipped
with its natural measure / topology. @hwe have the Plancherel measutg,, whose support is the tem-
pered spectrum / dud.,,, C G. Consider a lattic& C G. Have a representatiail — Aut(L?(T"\ G)).
Considerri, L2 =& _=mr(m)H,.

disc

Problem: Information aboutnr ().

We saw in the previous talk that you can fix a representatiahcan consider a sequence of lattices:

Mp(N) (m) d(m) ifrme CA;d
vol(T'(N) \ G) {0 otherwise. @D
Consider .
Hr = m Zml“(ﬂ)ém (2.2)
WE@

where(T',,) is a sequence of lattices withl(T',, \ G) — oco.

Definition 2.1. We say(I';,) satisfies the limit multiplicity property (LMP) if
(1) Forall A C @temp (Jordan measurable subset, which meahis bounded angipr, (0A) = 0) we
havepur, — ppr.
(2) Forall A C G\ Giemp We haveur, — 0.

~

An equivalent statemenff € C.(G) thenur, —n—o0o tpL(f).

Results:I' D I'y D I' - -+ normal subgroups of finite index withl"; = {1}. I \ G cocompact: DeGe-
orge, Wallach, Delorme.

Generalizations: (Albest, Bergeron, et al) Considéf C G maximal compactX = K/G, (Ty), X, =
', \ X, X,, BS-convergent toX if for all R > 0 we havevol((X,,)<gr)/vol(X,,) —n—e 0. We have the
following theorem:(I",,) unif. discrete sequence;,, —ps X implies LMP holds for(T",,).

2.2. Part 2: Non-uniform case. Back in the case of towers of finite index that intersecft¢: I' > I'; D

Ty---. Takem € Gg, limy_s mr, (7)/vol (T, \ G) = d(n). Results by Rohlfs-Speh, Savin, Clozel
> C > 0. Q-rank 1. Deitmar, Hoffmann.

2.3. Part 3: General case.G/F real, F finite field, Py € G minimal parabolic, M. S finite set of places,
Soc C 8. Fs = [I,es For A% =11, 45 Fr- K C G(A®) spec compacyx = vol (K) /vol (G(F)\ G(A)").
Consider
> m(m)dim(r®)F oy (2.3)
m€llgisc (G(A)Y)
LetC = {Kj,i € I}. Measuresix — ppy, if
(1) Forall A C II(G(Fs)iemp) Meas Jux (A) = ppL(A).
(2) BoundedA C TI(G(Fs)')\Hiemp (G(Fs)Y), ur (A) — Oifforall e > 0 have|ux (A)—ppL(A)| >
e for only finitely manyK € mathcal K.

Theorem 2.2. LMS holom forG = GL,, andC(n), n C Op prime toS.
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How to approach? Want to handle it by using the trace form#ast step is the density theorem of
SauveigeotH (G(Fs)) = C$°, compactly supported bics finite.

h € H(G(Fs)) — trr(h) = h. (2.4)
Function oflI(G(Fs)*), var |x|. Getyuy,(h) is tr Raise(h @ 1gs.

Theorem 2.3(Sauvergeot) Let K = {k; : i € I} be such that for alh. € H(G(Fs)'), pux(h) — h(1).
Then LMP holds.

Apply trace formula (non-invariant trace formula of Arthui, € C2°(G(A)Y). Jspec(h) = Jgeom (h).
Here Jopec, Jzeom are sums of distributions ofi(A)!.
TakeL?(G(F) \ G((A)1).

Jspec(h) - tréRdisc(h) + Z JM,spec(h)7 (25)

[M)]
M#G

with M a Levigroup,M > My. Jas spec defined by Eisenstein seriefyeom (h) = vol (G(F) \ G(A!) h(1)+
orbital integrals.
(a) We have
Jspec(h ® 1K) — terisc(h ® 1[{) — 0. (26)
(b) Takeh € H(G(Fs)).
Jgeom (b ® 1) —vol () (h(1)) — O. (2.7)
Q, P parabolic with LeviM, 7 € g (M (AY)).
Mg)p(m,A) : A2 — AZ(P), A € Gy, - intertwining operators.
MQ,P(Wv/\) AN na(ﬂ-> )‘)7RQ|P(7T> )‘) (2.8)
Theorem 2.4(Finis, Lapid, M=) Jarspec Can be expressed in terms of rank one Int. op and log der.
G = GL,, M = GL(m) x GL(ng2). 1 = m ® m2, m; € Heusp(GL(1; A):
L(S, T X %2)
e()N(my X m)=SL(s+ 1,7 x 7)’

n(m,S) = (2.9)



3. FAMILIES OF L-FUNCTIONS AND THEIR SYMMETRY (TEMPLIER)

The following is joint work with P. Sarnak and S.-W. Shin, gatle on the arXiv:
http://arxiv.org/abs/ 1401. 5507,

We'll work on GL(n)/Q.

Let w be an automorphic cusp form, the coefficients. The Sato-Tate problem asks for the edtilulis
tion for thea, as we varyp. To be precise, let's takfu,(p) : p < x} with  — oo. Is this equidistributed
with respect tqugr(m)?

Taylor and his colleagues proved it holdsrifs holomorphic onGL(2).

Example: ConsiderE/Q. Can writep'/?a(p) = p + 1 — #E(F,). Hasse proveth(p)| < 2. Itis equidis-
tributed forust = v4 — a?da/27. Not known in other cases. Even giving a recipe/gr () is hard. Ifr
is algebraic there is a recipe to give the conjectured Sate-Tieasure.

Let F be a family of forms, and leF(y) denote all elements of the family whose conducitr) is less
thany. This always picks out a finite set.

Limit multiplicity, Weyl's law, cohomological growth: askfor the distribution of..(p) for a fixed prime
asy — oo. Refined version is to let the primevary as well.

Sato-Tate for the family: Consider{a,(p) : p < z,7 € F(y)} where now both, y — occ.
Riemann:

#O<YST.(o+i) =0} ~ o-logT (3.2)

asT — oo.
Montgomery pair correlation conjecture: Instead of caumtzeros we count pairs of zeros, and consider
the gap between them. We believe

2ma 27h

, , b sin(mz) 2
#{0<y#7y <T 1o <’Y—vélogT}~N(T)/a (1—< — ))dw, 3.2)

where the integrand is a Dyson kernel related to random xrizieory.

Katz-Sarnak heuristics: zeros 6{s, 7) asw ranges through a family should agree with eithéro),
Sp(c0) or SO(c0) (or one of the subgroups. The question is how to determineythiemetry type? This is
table 2 in their BAMS '99 paper.

Siegel modular formsf (z) with z € Hag, havef((Az + B)(Cz+ D)~1) = det(Cz + D)* f(z), where

( A B > € Sp(2¢g,7Z) and weightt < y.

C D
— —— un —— tem ——— temp, unr

Let t,.(p) be the Satake parametes(0,) > G(O,) < T/W, G(O,) > G(O,) ~
T./W with T = C9.

Get the Sato-Tate measyigr by a push forward of the Haar measure@m

Main result with Shin is:

Theolem 3.1(Shin-T). Sato-Tate for familyF under some assumptions:,, is a discrete seriesp <
C°(T), then

ST o ) > [ s (3.3)

as soon ag < y° for somec which depends o6& and is positive.
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Consider

< ply™? (3.4)

1

lf(y) Z q)(tﬂ(p)) - /q)NZI)D/
TEF(y)

for somed > 0 andA < oo. Ingredients of the proof include the Arthur trace formuta some extra steps.

The extra steps are difficult (integrals, convergence afetfarmula, Fourier transform on the geometric

side).

Conjecture 1 (Montgomery, Katz-Sarnak, Sarnak-Shin-Thhe low-lying zeros of € F follow the fol-
lowing heuristics (moments pkr(F)) for a good family:

Homogeneity type Symmetry
unitary U(o0)
orthogonal Sp(c0)
symplectice =1 | SO(even)
symplectice = —1 | SO(odd)

Cannot calculate large enough support to distinguish tifiereint densities if only do the 1-level, but can
distinguish if calculate the 2-level density.
Harmonic family: Pick a bunch of local conditions. Positive Plancherel measu
Geometric family: X — W C A™, assume map is smooth. Hawes W (Z), X,, Hasse-WeilL-function,
D(w) # 0, L(s, X,,). Similar result holds due to Deligne-Katz equidistribatiheorem.

WF) = / () Pras(6) (~1)
io(F) = /T tr(t) s (t)
B(F) = [ e (3.5)

all of these are integers. FluctuationeofAlluded to a few times that there is some type of Sato-Tabeigr
H(F) which givesug(F); unfortunately the Sato-Tate group can be difficult to defiftee value ofi3(F)
isin {0,—1,1} and is the invariant of the family.



4. USING MODEL THEORY TO OBTAIN UNIFORM BOUNDS FOR ORBITAL INTERALS (GORDON)

Joint with Raf Cluckers and I. Halupczok.

G is a connected reductive group (over a local figldor over a global fieldF'). Sometimes the local
field can vary. Think of a number field, but a lot of the talk imabtransferring between function fields and
fields of characteristic zero. | want to talk about things ammonic analysis o that don’t depend on the
prime. Can do base change to completion, but also a complitedrent method which I'll explain today.

For the moment we’ll be over a local field (until further nefjc First let’s review the classical results of
Harish-Chandra. Consider orbital integrals. We'll alw#slee f to be a test function (locally constant over
K of compact support)f € C°(G(K)). Fory € G(K) semi-simple, we set

0.5) = [ Flg™ 9)d*g. (4.1
Ca(M\G(K)
Set
D(y) = [[ 11 -a) (4.2)
acd
(where® is a root system). Example: idL,,: if v over F' is diagonal (say with entries;, ..., \,) then
aly) = )\Z-)\;rll for a-simple. NoteD(~) vanishes if element is not regular. Consider
D(y) = [ 1=a() (4.3)
a?ve)il

(which is non-zero for non-regular elements). Harish-GCharproved that fory € G 5% for fixed test
function f there is a constar (which can depend ofi and the root datum anfl) such that we have

0| IDM)'? < C. (4.4)

Kottwitz: for all v we have
O [DCI'? < . (4.5)

Normalization of measures: y-regular thenC¢ (v) = T-torus. Have finitely many conjugacy classes of
tori. Fix the normalization of invariant measures on tonisK “canonical” compact subgroup in eag.
Thend*gdg/dt (fix some H.M. onG). Non-regular:Cs(v) = M an be one of finitely many reductive
groups. Pick “canonical” measures.

Question 1: C: how does it depend omas K varies through completionk,? On f?

Question 2: 7-irreducible admissible representation@fK). Let f € C°(G), define

7(f) = / 7(9)(9)dg. (4.6)
G
Let

~

F = Ten(f) = /G O @s @.7)

where©, isin LL  (locally constant orG:*°& 5. How to transfer this statement & ((t)).

Will discuss a method based on model theory. Plan:

(1) Construct a family of test functions for Question 1.
9



(2) Language of logic (first order language).

(3) Define a class of functions “definable” in this languagél e called motivic functions).

(4) “Prove” that orbital integrals belong to this class.

(5) Model theory (and transfer) implies that if a motivic isunded then it has to be bounded {8y
with a a constant. Have to assumes- 0 (so results will be for all but finitely many primes, but we
won’t have control over the bad primes).

Families of L-functions: Generators of the spherical Hecke algebFaglobal (number field)&/F, F,, -
completion ofF’; O, - ring of integers G, = G x - F), - unramified for almost alv. G,,(Q) - hyperspecial
max comp (for unramified), smooth scheme o¥gr

Have the Cartan decompositio*?' - split form of G, fix p : G < GL,, (overZ[1/R]), in G
haveT (diagonal), which is contained i (upper triangular). Letd, - max split torus inT,, C G,,
M € X.(A) « X.(T) c Z". Test functions{ = la (@nw)a, (0,) (With w a normalizer). For example,
on GLy(Q,) have

6(z,) (1) ) @) (4.9
Let
xez' =l |0, (rHIDEIM?E < O, ). (4.9)

Answer: |C(\,v)| < q3+bIIAH for some constants, b which depend only on the root data@fandp.

Definition of language: 3 sorts of variablesy, ..., z,, are valued fieldy,...,y, residue field, and
z1,...,2n € Z. Only allow addition on the's, but allow addition and multiplication in other two; also
have < and=,; on last. Also need constants for each (0, 1). Have map fkGmto Y’s by taking first
non-zero coefficient ofu-adic expansiorac, and map fromX'’s to z’s by valuation (ord). For example,
ord(z) = 0 mod 2 and there exists asuch thatc(z) = 32.
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5. (GEE)

Joint with Matthew Emerton. Won't state any theorems, bukt wstead concentrate on how we think
about things. The motivation is that on the Thursday disonssection we’ll continue with the Taylor-Wiles
method. Today we'll discuss the structures that underlg ffhe idea is that some part of the structures we
talk about will remind someone about something in a related érace formula, geometric Langlands), and
start a dialogue on Thursday. Not too much motivation fos thik. For introductory / maotivation, see my
talks at the Arizona winter school (video on-line and 50-@@gs of notes on my homepage). Will manly
work onGL,/Q. Can generalize, but there are some things known here gaabaknown in higher cases.

Will assumep > 2. Won't discuss Maass forms, will talk about holomorphicnfisrf € Sk(I'1(N),Q,)
where the weighk is at least 2. We have

f = Zanqn7 ap =1, an € @ (51)

Motivating question (which we’ll ignore till Thursday): How doesa, behave asV, k vary? To be
slightly more precise, let’'s assumpealoes not divideV.

Let m = ®y<ome cuspidal automorphic representation(@i, /Q.
T < pr:Gg — GL2/Qp, (5.2)

whereGgy = Gal(Q/Q). Dictionary is defined in local term:  p, 7 <> pr|c, (correspondence by the
local Langlands correspondence, &id= Gal(Q,/Qy).

Gy > Iy (inertia), Gy /I, = (Froby), ¢ doesn't divideN,, p.|1, trivial, trp.(Froby) — a,.

pptla, mp (loses information in general). Idea is the space of Galgiseasentations is a refinement /
replacement for the Bernstein center. Has the nice propétiging equidimensional.

Consider moduli spaces of Galois representatiéiscompact impliepy |, — GL2(Z,) — GLo(F)).
Also have a map from G, to GLy(F,,), with p : G, — GLo(F),) “rigid”.

Moduli space of allp : G, — GLy(Z,) which lift a fixed p. x'°c. prla, IS deRham, with Hodge-
Tate weights), £ — 1. Fix conductor, 1-dimensional laws, infinite union and Zkiridense filling space.
7 : Gg — GLa(F,), with 7|, = pandr : Go — GL2(Z,). Imagine is now a 2-dimensional space
(image of thexelob), yelob ., yloc  Global representations which should come from modulam$or
(Fontaine-Mazur).

Idea: vary tame leveN, = a modular form. Taylor-Wiles method is a way of carefully ocbimg NV so
that we have some control on the Find that each strand either has Koor a Zariski-dense set of ; see
Figure[1.

Let M, be the glued module of modular forms. Highly non-canonical.

Conjecture: M is canonical.GLy/Q,: true: M, “is” p-adic local Langlands.
ConsidetSpecR,, R, My, R,/p M /p. By the work of Kisin, need to understand the Hilbert-Samuel

multiply (??). FM conj:e(R,/p) = e(Mo/p); the left is purely local and the right is the multiplicity of
modp modular forms. Can think / hope of left as geometric side agiit as spectral side as a trace formula.
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FIGURE 1. Image from varying tame leve¥.
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6. RESULTS ONL-FUNCTIONS ANDLOW-LYING ZEROS(MILLER)

Slides available online here:

http: /7 web. wi [ 11 ams. edu/ Mat hemat 1 ¢S/ S| m [T er/ public htnl /mat h/tal Ks/ S nonsTal K Low yi ngZer
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7. UPPER BOUNDS FOR MOMENTS OH.-FUNCTIONS (SOUNDARARAJAN)

Will give a survey of progress in the past ten or fifteen ye8tady objects such as

1
/0 1C(1/2 + it)|?dt, (7.1)

wheref is either a natural number or maybe a positive number. Onéddike to understand the growth (or

even better find an asymptotic formula). A folklore conjeetsays it should be asymptoticdgl’(log T)’fQ,
wherec,, = aggir With a; an Euler product ang, more mysterious. In this case

2
1 k2 [/ o0 d, (g)
ap = 1—= —2 . 7.2
SII() (55 "2
Hardy and Littlewood showeg, = 1 andg, = 2. There was a lot of progress in the '90s. Conrey and

Ghosh conjecturegs = 42 andg, = 24024. Shortly afterwards Keating and Snaith came up with a génera
conjecture forgy:

k—1 .
_ J!
o= O 7 (79

There are analogues for families bffunctions (unitary, symplectic and orthogonal). The agtatics
for the moments reflect the family. For unitary consider &itet characters modutg and conjecture

ST ILA/2,0 ~ egllogg)™. (7.4)
x mod ¢
For the symplectic case, consider
> L(1/2.xa)" ~ epw(logz)FEHD/2, (7.5)
|d|<z
For the orthogonal, let’s look at quadratic twists of a fixéighec curve:
Z L(1/2,E x xg)* ~ cpz(logz)Pk—1)/2, (7.6)
|d|<=z
There are several ways to arrive at these constants andwergof logarithms.

(1) The first is a beautiful idea of Keating and Snaith: used®amMatrix Theory. They proposed that
the correspondence is more than just the zeras-fifnctions correspond to eigenvalues of matri-
ces, but the values df-functions can be modeled by the values of the charactepstynomials.
Unfortunately this misses the arithmetic factqr, which must be added in.

(2) Conrey-Farmer-Keating-Rubinstein-Snaitl(s, x) = ¢, A(1 — s,). Consider

ST AQ/24 01, x) - AL/2+ g, X)A(L/2 = Br,x) - AL/2 = B ). (7.7)
x mod g

Can trivially permute just the’s or just thes’s, but can also switch an with a 5 as that uses the
functional equation twice. So symmetric in alland3:

y Xmxdme) g X)X (7.8)

1/2 1/2 1/2— 1/2—p% °
ml/ +011__,mk/ +ag nl/ Bl"'nk/ Br

M1y...,MMk N1y

Consider

1
Z V2ta, 1/2-8, H«l +a; — o). (7.9)
n.

mi-Mmp=ni-ng Hmj j R4
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Conjecture: Symmetrize:
> Z(r(e,B) (7.10)
TESar/Sk X Sk
gives the2k" moment.
Small moments (Conrey, Iwaniec and S— for the sixth; KharaaekLi for the eight):

>y / A(1/2 + it)|*dt, (7.11)
q<Q x mod qg”

and get the right answer fér= 3 or 4.
S—and Young: Under GRH, get

Z L(1/2,E x xq)* ~ cxlogz. (7.12)
|d|<z

Lower and Upper Bounds in Families: Lower bounds (Rudnick and S—, Radziwill and S—): Know first
moment plus ¢” implies correct lower bounds for ak > 1. If have a lower bound then know some
quantities are non-zero, gives a sharper version of noisiiny. For examplek > 1real,> L(1/2, E x
xa)* > z(log z)Fk—1)/2,

Upper bounds: Recent work of Radziwill and S—: If we know senmement plus implies correct upper
bounds for all smaller moments. As a corollary: fox k& < 1:

Z L(1/2,E x xa)F < z(logz)*+=V/2 <« 7(x)(log z)kF-1/2, (7.13)
|d|<z
If 0 < k < 1 the exponents are negative. Tells us that except on a sehsityle(1) we haveL(1/2, E x
xa) = O((log z)~1/2%€). In the case of rank QI1(d) < v/d/(log |d|)'/?>~¢ almost surely.
If we assume GRH we can do much better. A few years ago S— prvegbper bound up tdog x)¢.

Recently Harper (2013) removed the power of logarithm artdiobd a sharp result.
On GRH:

log L(1/2, f) < ZAJIT(? +% ( Z ) n loi;o;d. (7.14)

p<zx prime squares

(3) Selberg’s Theorem from the 1940s: maylod sizeT’, look at either the real or imaginary part of the
logarithm of the zeta function on the critical line (or loakthem simultaneously)pg ¢(1/2 + it).
These behavior like a normal random variable with mean O anidnce aboug loglogT'.

1 1 1 o]
T meas (t <T:log|C(1/2 4 it)] > A\y/ 3 log log T) ~ NI e " 2. (7.15)

We are looking at¢(1/2 + it)| > ¢”. Frequency:—v*/1eglosT e find

/ IC1kdt = /ezk”(freq of values of size e”), (7.16)

with v ~ kloglog T'.
Conjectural analogues of Selberg’s theorefi; < x: log L(1/2,x4) is a Gaussian with mear
% log log = and variance- log log .
Consider positive functional equations dog L(1/2, E x yx4) is Gaussian with mean% log log = and

variancelog log .
15



Understanding the small moments (letting- 0) is trying to understand the distributionlof; L(1/2, E'x
Xq). Gives the distribution is bounded from above by a Gaussian.
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8. EIGENVARIETIES (URBAN)

Start with G/Q, Z, Q-split. G/Q,) split (B,T) with B = T'N. LetI be the lwasawa subgroup
which is a subset oG(Qp) and letT* equal{t € T(Qp) : tN(Z,)t"' C N(Z,)}, which contains
TH = [t At N(Z) M = {11} < 0 )

KP C G(A%) with K = KPI, S¢(K) = G(Q) \ G(A)/ K Ko

V aG(Q)-rep,V, G(Q) \ (G(A) /K Ko Z*V).

M K-rep, M, (G(Q) \ G(A) /Ko Zoo x M)/K.

GAp) W

X weight spaceX’(0,) = Homeont (T'(Zy), Q, ). Containst?!s = dominant alg weights.
A€ xde Wy = (IndG_\)2e,

0
NeXp Ay = (ma)B— N II/\)
Wy C A, if Xis algebraic.
ATt C AT =T+ (A*T)~! (which containg(Q,)) acts onA, (which containgV’y).
WY <— D, which is continuoud.-dual of A .
H°(Sg,Dy) = lim HO(Sa(K), Dy), H(Sq, WY).
Hy = O(G(AY) x AT, Qy), the left containgt} = = C(G(A}) x ATF,Q,).

Admissible rep of finite slope: (o, V,,) rep of?-t; such that

e Forall KP, VE = 1, (V) is finite dim.
e Forallt € A=, u; = 17 isinvertible.o is real.

Let o be real. We say is automorphic of weighd if o shows up ian(S‘v(;,DA) for someq. If 7 is
classical automorphic and cohomological re@f\) thenm = 7° @ 7.

7r|X+ D o irreducible and\ algebraic.

o is hon ??7? with respect oiff the ??? of the eigenvalues of are small wrth.

K open compact which is spherical away fré(p). R, = C(K*\ G(AT")/K* x AT, Q).

Eigenvariety: K — S.

X — &k x = (65, ) such that (finite slope), : Rs, — @p, 6, shows up inH (Sg(K),D,). Rigid,
analytic space (Agh-Staves, Xiong).

q m; (0, ) the multiplicity of o in H(S¢, D).

m+(07 )‘) = Zq(_l)qm;—((j? )‘)

Theorem: H « &k D &P = {o = (0,, ) if m*(0,\) # 0anda’ # 0}.
If G(IR) does not have discrete series thef(o, \) = 0 if X is regular.
P ® uy. Ig;(f, \) = trace(f : H°(Sg, Dy)).

Theorem: \ — Ig(f, A) is an analytic function o’ multiplied by 1.U C X. Dy = Dyy ® LA(U).
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Remark: X\ algebraic. One can show that
@wzé(w):j Dyxr — W)z\) (81)

IF(f,VE@)N = IL(f,2) mod N(\,t), with the left hand side equal ta(f, HO(——, Wy). N(\,t) =
Inf,q]t .

Corollary: A\, — A p-adically. (a’, \,,) — oo for all o simple root.
IL(F,N) = limy_ o0 €(k)M I5(f, \). Arthur and Fronlu (?) computek, (f, \) for X algebraic.

ERPMESN) = D Ta(f" wx N). (8.2)

p-adic trace formula: v semi-simple element i¢(Q). f, € C°(AT,Qp). I~ (fp, A).
geATT Ne X, <I>TG(g, ) is the trace ofy acting onD,,.
A= <I>TG(g, A) is analytic.

IoA(f, ) = / Fola™ yz) @l (z~ e, \)dz. (8.3)
G(Qp)/G(Qp)
Trace formula:
LN = (D" Y (-1 (G, alg?)/L(v)
vyEG(Q)ss
elliptic
< On (fP) I (fpo N) (8.4)

with f = f? @ f,.
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9. THE TRACE FORMULA AND PREHOMOGENEOUS VECTOR SPACE@1OFFMAN)

We start with induction of conjugacy classes. Héfas a linear algebraic group over a field We
consider geometric conjugacy classes. What is the definitibenG is reductive,P = M N parabolic?
Take a conjugacy class in M, first get a conjugacy class i: (" is the unique densg- -conjugacy class
in CN. TakeC to be the uniquéx-conjugacy class such thatn P = C'. Usually one denote§’ as the
induced class front, written Ind“C, with CC’ = Infi’ C (the inflation). The union of all the inflations is
Pog: P = UcInfi” C.

Theorem (L-L): If P,Q with levi componentM then the induced classésdgC = IndgC are the same
(and hence will often omit the subscript).

Given anyy € G there are only finitely many’ such thaty € P,,q. Tells us that a certain sum will be a
finite sum.

Prehomogeneous varieties:V a G-variety, say it is prehomogeneous if there exists a denbk# O.
p(gz) = x(g)p(x). CallV special if everyp is constant.

p.v.: V vector space, action linear. It is regulaiVif is also prehomogeneous, and there exigtsl. inv.
with dp/p a map from the regular orbi® to V* (with the mapdp/p : O — V* adominant homomorphism).
There is a good theory i is a number field:

Z(b 51, ..., 8) = Sy (g)| 9.1
(Gsteens) = | s P Z #(g2)d (9.1)

z€O(F

Here¢ is a Schwartz functiony € C2°(V'). In general such integrals don't converge, classificatitvens
they do. If regular can apply Poisson summation and obtaierakfunctional equations.

Canonical parabolic: X € g nilpotent. There exist$,Y such that{X,Y]| = H, [H,X] = 2X and
[H,Y] = =2Y. Letq, = {Z € q: [H,Z] = nZ}. 17 = @p>00,, Q@ = Stab(q) will be a parabolic
subgroup ifg is .... Called the maximal parabolic; since in characterstro can also consider the image
under the exponential map (since nilpotent only finitely yngmms). Get an element= exp X € G(F).

Theorem: 1 = ®p,>20n, 7' = Bn>2dn, 7/7 is regular p.v. undef = Contggo.

Mean Value Formula: Theorem (Siegel/Weil/Ono):Let O be a homogeneous variety over a number
field F. Letm(O(C)) = O, m2(O(C)) = O, X*(G) = O, [G(A, N O(F) : G(F)] constant orO(F).

Then
. 9.2
/G D SRS / o, A 9.2)

€€O(F)

Conjecture: There exists a normal subgrodp® of P contained inN such that fory € C” all elements
of YN n C” have the same canonical parabolic and the prehomogenedety vaV/N¢ is special under
Stabp(yN).
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We now come to the geometric side of the trace formula. Reptetion ofG! on L?(NP\ G'). R,(F),

feCe(Gh,
(Rp(f)o)(x) = Kp(z,y)9(y)dy,

GGt

Kp(z,y) = /Nf(X‘lfmy)dn-

~veP/N

with

When P is maximal parabolic:
—7p = char{p € P: Ap(p) > A(expT,)}K.

HereAp is the modular character.
For general paraboli®:

mp(z) = [[ 7o), 7pyri(y@)" = 78(2), T =(Tp)p.

P'OP
max .

JT(f) = /Z ZKp(x,x)?](Dx)d:E.

G\G! P

Arthur:

C geometric conjugacy class @,

Kpc(z,y) = Z /Nf(x_lfyny)dn.

yeP/N
IndG~=C

T =X JE ().
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10. ANALYTIC PROBLEMS WITH THE TRACE FORMULA (MUELLER)

Selberg trace formulakrG = 1.

Arthur trace formularkg G > 1.

F, F(y), m ZWG}—(y) o(m).

Lot of analytic problems not yet solved, want to discuss sdree GL () a number can be solved, want to
indicate what is the difference between @).&nd other groups. For the moment consider a reductive group
overQ, G/Q red. A s will be the finite ring of adeles. LeB(A!) = {g € G(A) : |x(9)| = 1,x € X(G)}.

Limit multiplicities, Weyl law.

k C G(Ay) open compact.

HE = Sel(G@)\ G(A)K) ﬁng}w i) ne 4oy
ConsiderA C [[(G(R))temp, pr(A) = ppr(A).
Reduction:h € C°(G(R)), bi-K -finite.

1
vol (G(Q) \ G(A)')
K C G(Ay), k(N) C K cong subgroup.
(1) Control of residual spectrunt:3, . — L2, & L2
L Reusp(h ® 1)) — h(1).

vol

6 Raise (h © 15) —+Nooo h(1). (10.2)

Moeglin, Waldsburger: Description of residual spectrum.

Trace formula: f € C(G(A)Y), Jopee(f) = Jgeom (f), M Levi containsM.
The spectral side term E[ M Jspec,M(f), where the summands angR gis. (f).
P =MN, RdiSC,Mv Lﬁlsc(AMM(Q) \ M(A))
§g§; (Rdisc,M & e<x7HM(.)>)'
A2 D) AQ(P), T € HdiSC(M(A)l).
A2(P), P,Q € P(M).
Mg p :é?r(P) — A2(Q) intertwining operator.
P max, P.

Toest = [ (b plmit) S h (it
rellgiee(M(A)) 7R

Mp|p(w, 0)pr (p,t, f)dt). (10.3)

Theorem (Finis, Lapid, M—: J,cc(f) is absolutely convergent.

Mﬁ“_—,(ﬂ', s) = n(m, S)Rﬁlp(ﬂ', s),n(m,s) =1],(m,s).

Rﬁ‘P(w, s) = ®V63Rﬁ‘P(wy, s) (local intertwining).

G satisfies temp winding numbers (TWN) if for dlf € £, M # G, F C [[(km,~) finite, there exists
k > 1 such thatr € X,; ande > 0

J

nl (m,s)
N (7, s)

(L+[s)) Fds <Fe (14 Az )" (10.4)
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HereG — GL(n), rankP is 1, M is GL(n1) x GL(ng2), 7 = m @ ma, m; = [ |

L(s, m X m2)
n(m,s) = — — i (10.5)
L(s+1,m x m2)e(1/2,m X mo)N (71 X T2 )

(GL(n; A)),

cusp

Battery ran out.
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11. SATO-TATE CONJECTURE FORFAMILIES (SHIN)

Joint with Templier and Kottwitz and Cluckers-Gordon-Hadmok.

11.1. Introduction. Let F be a family of automorphic representations. Call this a rii@mic family”.
What is the distribution of the Satake parameters @t 7 € F asp, 7 vary? Eventually want to pughto
infinity; = is ordered by analytic conductor and want that to go to infinit

Goal is to explain the precise statement of the conjecturedrem, and discuss some of the ingredients
of the proof. For example, why we need a uniform bound on akitegrals ap varies; very useful in this
context.

11.2. Families in level / weight aspect.Hypothesis:G connected, reductive split group ov@rand assume
the centerZ (G) = 1. Some of these assumptions are for simplicity. The essdnthesis is that:(R)
has discrete series. R

N > 1, ¢ irreducible algebraic representation@foverC. I'(NV) := Ker(G(Z) — G(Z/N)), [1.(&)
equals discreté -packet associated to

We now define a finite set whose union will be the family we cdasiV is the level the weight:

F(N,&) = {7 C L (GR) \ G(A)) : (1) (€)}. (11.1)
Level aspectN — oo, ¢ fixed; weight aspectiV fixed, & — oc.

11.3. Satake theory. HaveT > T andG > G with T  G. Weyl group®. T/ > G(Q,) € T/Q
with 7+ z andInd 5 *) 7, & € Hom(T'(Qy), C*) — X*(T) @z C*.

HY™(G(Qp)) 5 CIT/Qby ¢ — ¢ — trm(e).

LetV := LieG/LieT.

Havezib" (t) = det(1 — ad(t)|V))/ det(1 — p~'ad(t)|V) supported on € T /.

lim b = a5t (11.2)
pP—00
by definition, induced by Haar ofi-.
11.4. Theorem. (N,p) = 1.
. 1
Ane = g Z Or, (11.3)
"> meF(NE)
(counting with multiplicitym (7)dim (7>°) (V).
Introduce the “metric’|| - || : X*(T), X+ (T') — R>o.
In the case of5L(n): want(my, ..., my) — sup |m;|.

Write [| - || © 7, = lgz,)
||highest weight of £]|.

uczy) = ol with 7, = 7, and 1. € HY(G(Qp)), with [[£]| =

Theorem 11.1(S—and Templier) Letk > 1, assume|u|| < k and¢, = 7,,. (Level)

fing(dp) = RS (dp) + O(p*TPENC). (11.4)
In the weight aspect have same main term but now the ero(ig!'+5*||¢||=¢).
Remark 11.2. If p is fixed therim fiy ¢ = fPh.

Corollary 11.3. If a plot of NV or £ versusp grows faster than polynomial théim iy ¢ = ST,
23



Remark 11.4(Application to low-lying zero statistics)Compute or estimate first or second moments of the
Satake parameters afatp. Look at¢(m,) for suitable¢,, get good estimates.

11.5. Idea of the proof. ﬂN,g(qup) = Jspec(Pplpr(ny@e) atoo (“EP function”). Apply the trace formula,
and get it equalgycom (- - - ), which equals

Y Vol(G(R) \ G+(A)) O ()0 (1pp(wy )tré(7) + Levi. (11.5)

YEGR)/~
elliptic

Bound everything in the summand, bound the number of conjuglasses where things are non-zero.
When~ = 1: main term: get R
P () (11.6)
(which equalsp, (1) = O1(¢p)).

All the effort is to control the error terms, arising when# 1. The difficulty comes from the following
fact: p is moving aroundg, can have arbitrarily large support. If increase level tonityi support gets
smaller, eventually meets rational points and error goemyawlave to deal with / live with the fact that
we have a varying set of conjugacy classes. Bound the nunflmErnjugacy classes. Control the num-
ber of v where the summand is non-zero. Looks quite harmless, but s@me control on the volume.
Break global problem into local problems. Ha@é;(fy)l/QO(qu) (work of Cluckers et al comes in here as
things are varying and need uniform bounds, get somethieg’lip*+5%)) and D (v)/20(1 p» () and

tré (y) /dim.
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12. SYMMETRY BREAKING AND THE GROSSPRASAD CONJECTURE FOR ORTHOGONAL GROUPS
(SPEH)

Slides online.
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13. TRACES, CHARACTER SHEAVES, GEOMETRIC LANGLANDS (NADLER)

Plan:

(1) Dictionary between arithmetic/ geometric languagémer in D-modules.
(2) What is a trace? Character sheaves.
(3) Discussion of traces in Geometric Langlands. Persgeiftfield theory.

13.1. Dictionary. We assumé = C.

Arithmetic Geometric

F number field C smooth projective curve oveér
K local field C((t)) power law series

k residue field C residue field / base field

O ring of integers C[[t]] power series

Gr Galois m1(C) fund

G(F)\ G(A)/G(O) Bung(C') moduli of G-bundles
G(O)\ G(K)/G(O) Gre Grassmannian

IG(K)/I Fl¢ affine flag variety

Function O-module coherent sheaf

The notion of a smooth function that is locally constant i3-anodule.
First theorem on the subject, showing where the dictioneags, is the following.

Theorem 13.1. We haveC.(G(O) \ G(K)/G(O)) = K(RepG) (commutative rings) on the arithmetic
side; on the geometric side it 8 — mod(G(O) \ G(K)/G(O)) ~ Rep(G").

Remark 13.2. All constants implicitly defined. Higher homotopical daixample:H(pt) = Sym(&*[—Z])¢.
Arthur parameters in geometric setting.

The way you capture families in geometry is to talk about defdions.
13.2. Primer on D-modules.

Definition 13.3. A D-module onX equals@®-module on de Rham spacéy:
Ax ' X — Xar. (13.1)

D stands for differential operator, can explain in terms clodat. AD-module onX equals ar®-module
plus a complex structure ddx-module, whereDx is dists onAx.

Universal form of special functions. Imagi®(f) = 0 and P is a linear Partial Differential Equation.
For example P = 0, — 1 with solution f(z) = e¢*. The D-moduleM = Dx /Dx(P). The solution ofA/
are

Sol(M) = Homp, (M, fn space). (13.2)
It recoversf, captures all the key parts of the differential equations.

Infinite geom: Smooth functions have values and derivatihisk of D x-modules as objects dfi* X.

Singular supportD x has a natural filtration withrDx = Op«x.

M Dx-module filt ss(M) C T*X.

For example, tak&X = A, Dx = C(z, dx) with 0,z — z0x = 1.
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(1) Favorite example i®x = Dx/(0,). Inx — 9, plane, this is just the-axis.
(2) Takedy = Dx/(x): y-axis now.
(3) expy = Dx/(0; — A): line at height\.
(4) 0, = Dx /(x — a): vertical linex = a.
First three above have singular support equal to the zetimeec

Example: X = G,,, Dx = C(x,z7!,20,). For every\ € t*, My = D)X (zdz — )\). What is the
character sheaf? This is a piece of the Mellin transfofPamod7") = O-modt*/AY.). ss is zero section
+ finite support. Character sheaf’Bfis D-module with singular support equal to zero section.

13.3. What is a trace? Taken x n matrices, have a map to the ground field by taking the trace:
M, «n — k, and satisfiesr(fg) = tr(gf). Itis the “universal coabelianization”. Given a finite dinodule
[/ vector space, any endomorphism has a trace.

Question: what i&? If just give an algebra and want to develop a theory and anetctwverk, how do we
do this?
Example: G formal group,A = C[G], M a finite dimensional-module,tr : End(M) — (C(g) classifies.
Why C(&)?

Abstract: A algebrahh(A) = A® A = [4 A.

Let's do an example of this formalisml = Rep(G") hh(A) — Coh(g). So geometric Satake parame-
ters live inhh(A).

Example: H = D — mod(B \ G/B) jj(H) miracle that equals character sheavestanlIs D —
mOd(%)nilp ss*
Do get interesting things and get them through interestingstuctions.

13.4. Traces in Geometric Langlands. Now consider traces for spherical and affine Hecke operaloys
to ask first the same question: what kind of objects are thay® @abswer that you can imagine is that they

should be class functions. Morall@—mod(%). Escape: Field Theory: predicts characters should be

G(K)
D-modules orBung(Ey).
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14. RGID INNER FORMS AND ENDOSCOPY(KALETHA)

Lecture notes online.
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15. COHOMOLOGY GROWTH ONU (3) (MARSHALL)

Takel' € SO(d, 1), takeT'(n) C T', look athi(T'(n) \ H¢/C) asn — oo. Have L?(I'(n) \ SO(d, 1)) =
ﬂeAm(ﬂ,F(n))ﬂ.

ansideml with 0 < i < d/2,i=d/2, 773{/2.

R{(T(n) \ H?,C) = m(m;, T'(n))m(zx+,IT'(n)) + m(x~,T(n)).
V(n)=|I':T'(n)|.

lim M0 — 0if 4 £ /2.

p(m) = inf{p > 2: (x(g)v,u) € LP(G)}
w discrete series impligg(r) = 2.

S

Conjecture 2 (Sarnak-Xue) m(m, T'(n)) <. V(n)?/P(m+e

Sarnak and Xue reduced this to countiiige) N B¢ (7). If T rkgG = 1, T co-compact, counting implies
result. Proved foBL(2, R) andSL(2, C). Partial bound foSU(2, 1).

Will switch to unitary groups to talk about endoscopy. A kisir to talk about in this case, this is the
case I've worked out in details.

E/F CM, G* = U(n) for anti — diag(1,...,1)(x§).
Lo (G*(F) \ G*(A)).

P = @Sym” ® p;.

wu; CSD onGL,, /E.

> (di + 1)m; = n.

LG (F)\ G*(A) = 3y Xorem, m(m)T.

m(m) < 1.

G inner form,Gy ~ U(p, q).

Parametet), global packell,, 7, € I1,.
Hi(g,K;m,) # 0.

Yex, CF = ( (Z) 291 > C SL(2,C), ¢ : C* — GL(n,C).

krn
AP ® plex : C = GL((Z) ,C) by z + diag(z"1, ..., 2 (p)); 1 should contribute only in degrees
pq + k;.

TakeG —U(3), E/F = Q.

Contributing toH?: p, i1t ® X, X1 ® X2 ® X3-
Contributing toH', H?, H?: sym' & y1 & xo.
Contributing toH°, H2, H*: sym? @ ¥.
H=U(2)xU(1 )
T = {7 (€),75(€)
r(7(€)(f)) + tr(r
tr(7"(§)(f)) — tr(m
m(m) = 1ifand only if (—
S € Sw ﬁ = Z@(S).

b fedse (Gv).

O =M.

*(€)(f)) = tr(my, o e(f)), fonGL3/Es.
1

=
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For examplel/ (3): Sy = I, diag(—1,—1,1) € GL3(C). Pretty reasonable endoscopic group’i) x
U(1) (in the diag(—1,—1,1)), while in I get the relation withGL3/E. There is a special element that
shows up heresy, = (1, —1), s, ~ (Z/2)*.

sy = diag(—1,—1,1).

<,> CSy X Hi/hj' N

Eachs € Sy, (7,-) € Sy.

Yoren,, (M ssy)tr(r(f)) = fF7HH).

U@3), E/F =Q,T'(n) CT.
hgso) (T'(n) \H2,C) = m(m1,0,T(n)), which Sarnak-Xue predict is at mds{n)'/? (other methods can
get / predict exponents of 7/12 and 3/4).

Theorem 15.1(Rogawski) If 7 € L2, hasm., ~ 7, there exist®) = sym! @ y; &2 such thatr € I1,.

disc

There existg onU(2) x U(1) such thatr € Ilg, { fixed.

hgso) < > Y dimrf™

&€ fixed well3

(vol (K(n)) ™' >~ > tr(ms(Lie(m)

13 WEH&
= (vol(K(n)™" > &(1% (n)- (15.1)
3
Can choosé /. = 11y, (n)-
KO« 9 =2p2p5 = pt, (15.2)

(2)

How might this look forlU (4)? TakeG* = U(4), G, = U(3,1), H?.

Expecti?(T(n) \ HE, C) < V(n)¥/15 versusV (n)?/3. Main termy) = y @ sym' @ p.
Most error:sym! @ p.

sy = diag(1,—1,1,1) € GL4(C).

Sotr(n(f)) U(2) x U(2) (x o det x ) equalstr(y o det du(f7))..
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16. ON LOCAL CONSTANCY OF CHARACTERS(KIM)
Joint work with G. Lusztig.

16.1. Applications. Characters are locally constant.

e One application is computing character as a locally congtarction.
e Another application is finding the support of distributions
e Find estimate of characters.

Won't talk about the first aspect.

k a nonarchimedian field with residue fieflg.

G a connected semi-simple group over

G = G(k).

Irr (7 V&) € R(G): category of smooth representations.
Or : CX(G) — Cwith O(f) = [ f(y)Ox(y)dy.

Example: Let 7 be supercuspidal. Harish-Chandra integral formule G*55-:

LTI

with 6 the matrix coefficient ofr, 7 = ¢ — IndGp, 0 = 6, (Sally’s ?7?).
For examplesr = Ind$y,

O:(7) = Y x(v")Dgyr(v) 2. (16.2)
weW

Example: Steinberg subquotient representations.
The aim: computing characters of noncuspidal unipoterntesgmtations at very regular elements. For
example, lwahari spherical representations.

Twls: old (1): Casselman(r V;), r € GG"*%, P, = M N,. N, = {u € G : y"uy™" — 1}.

Ny ={u e G:y"uy" — 1}. Impliesy € M, compact mod center if/x. O(y) = Oy (7),
TN, S R(M-y).

new (2): Local constancy of characters atr.s.s.
Adler-Korman, Meyer-Solleveld: determine the size of idigrhood ofy where©,, is constant. This
neighborhood depends on the depth of the representatsom .

(3) Hecke representations via categorical equivalence.
B(G) = {(M,0)}/ ~ Geconj — R*(G) ~ Mod — H(G//J,p), withs = [M, o] and(J, p) with p
irred f on rep.

Example: [T, 1], lwahari sphericak*(G), Mod — H(G//1,1) with Iwahari subgroug, s = [M, ] with
o unipotent cuspidalR®(G) unipotent.
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Definition 16.1. (1) A splitr.s.s.yis very regular if Dy (v) = 1. (2) Ay € G™** is very regular if it splits
over an unramified extensidel/k and~ is a very regular split element.

Remark 16.2. If M., = G, v is alift of r.s.s. element of finite reductive group.

Exmaple: Steinberg representatidh C B C G,

St = Y (~1)INdGs, ", (16.3)
BCP
The left hand side is polynomial in van Dijk and Casselman. Implies
Osi(7) = dp, (y) (-1 hmA, (16.4)

T < Indfﬂva, depth zerog: depth zero super-cuspidal.

[M o] ~ (Py 00).

~ compact very regular (i.eM,, € G).

Let Q be a smallest parabolic subgroup such that@ > Q.

Theorem 16.3. We haved () = Tr(r(7)|V:E ).

AK. and [MS]: HaveO is constan{7.")“ > Q.
O (7) = Ox(d * 1o+ /vol (QT)) (last fraction is proj operator ontig@ " O

Corollary 16.4. If 97 ¢ Q forall g € G then©,(v) = 0.

Proof. V9" = 0. Let (71' V) be unipotentsy very regular.Q is as above.
ThenO,(v) = [V& Rg{r] with Q = Q/Q. O
)

Here@, (v

C’TW Rty

There exists a 1-1 correspondené@: : max torus split ovek™} and{w € W' : ord(w) < oo}/ ~ by
T Cr.

By corollary Py C Q.

HaveRIM °(G) 5 R7*(Q). SendV, — VO,

Left hand side~ Mod — H(G//P, o), which containsMod — H(G//Py N Q ap) (Which is~ to the
right hand side). Continue along these lines.

€ Z and constant ofil’,)*"*. Cr, conjugacy class ifil’: Weyl group ofQ.

Remark 16.5. v noncompact very regula® () = @ﬂNw (7).
7, ? (Classical groups Tadic). Use Hecke algebra and theoryjué to findryy. .
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17. SUBCONVEXITY BOUNDS FORRANKIN -SELBERG L-FUNCTIONS (HOLOWINSKY)

Basic object of study:w an irreducible automorphic representation, think of it asiig some data
(parameters) associated to it that make it belong to a natamaly (spectrally complete, trace formula).
ConsiderL(s, 7). We have the analytic conduct@X(s, ), measures the complexity of tHefunction. The
reason we're introducing this is that if we establish navidl estimates, then we end up proving something
non-trivial about the associated arithmetic object.

Often want non-trivial estimates Rie(s) = 1/2, where we will restrict for the rest of the talk. Have the
convexity bound, follows trivially from complex analysiginctional equation, Phragmen-Lindelof. Gives
L(s,m) <. Q(s,m)"/**t¢. The sub-convexity problem is to beat this by some power efdabnductor:
L(s,m) < Q(s,m)Y/4=0 (for some positivey). The Riemann hypothesis impliégs, 7) <. Q(s, 7). In
many applications (such as equidistribution) all we neebmes > 0; the larger the the better results we
have on theate of convergence.

17.1. Standard tools and methods. Spectral Formula:

e Orthogonality of Dirichlet characters.
e Petersson / Kuznetsov trace formula.

Reduces complexity / conductor.
Dual summation formula:

e Poisson
e \oronoi

Change arithmetic structure, change in length of summation
Tricks, locally:

e Reciprocity, etc.

17.2. The Moment Method. ChooseF, Q(s,7) = Q(s, F).
Choose a momemnt, study

i, SO IL2 0 < QU2 FYT|F; (17.1)

‘f TeF
goal is to have a better bound that this. In the past theseaueitive just the bound above; we need to do
additional work (amplification) to go further.
Will study 7 = m; x w9, both representations varying, will use this to our advgetarhe first will be
GL(d) and the secon@:L(e). We have associatefl-functions L(s, 7;) with conductorsQ(s, ;). The
Rankin-Selberg convolutioh (s, 7; x ) has conducto€) (s, 71 x m) = Q(s, 71)°Q(s, 2)%.

Advantages:

e Have a large conductor, but know something abo(factorization).

e Extra degree in analytic freedom. Choices in family to ageraver.

e Know that certain co-primality conditions exist. Thigks, 71) = p andQ(s, m2) = ¢ where these
are two different primes.

Motivation: In QUE want to studyL(1/2,sym?f x g) where f is varying andg is fixed. Establishing
sub-convexity here is difficult and hasn’t been done. Bestik by Sound saving a logarithm.
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Cases:m; varying, mo varying. Holomorphic weighk-fixed levelp, trivial nebentypus newformy, €
B’ (p). Form, considerGL(1), y mod ¢, GL(2), levelg, GL(3), sym? f with f of weightk.

Use A for coefficients ofr; and\ (averaging) forrs. Let@Q = Q(1/2, 71 X 7).

Method: A.F.E.

An)A(n A(n)\(n
L(1/2,7T1X7T2) = Z%—FE(l/Zﬂ'lXﬂ‘g) Z % (172)
n<X n<Q/X
Average overm, using Petersson’s trace formulaGet
_ — — S(n,m;c 4m/nm
Z w, I\ (n)Ag(m) = d(n,m) + 2mi~F Z %JkA( . >, (17.3)
9€B;(p) =0 (p)
with w, = KP.
Dual summation in my: Poisson, Voronoi(a, c) = 1.
(a)
A(n) A(n) -
Z e(na/c) — Z e(—nagqz/c). (17.4)
n<X \/ﬁ n<c2q2/X \/ﬁ
® A A(n) S(a
Z (n)e(na/c) — EM (17.5)
n<X \/ﬁ n<c3k2/X " ¢
17.3. Results.
e (with Templier):
q\/?
Z wg_lL(l/Q,X xg) < [14+— ] (pg)°. (17.6)
* p
gEBk(p)

HaveQ = Q(1/2,9 x x) = ¢*p. Convexity: Q'/*/p = ¢'/?/p*/*. So1 < ¢'/?/p*/*, need
p<q*? q"%/p<q"?/p¥t p > 1.

Subconvexity wheg" < p < ¢%/3~" for all > 0.

Lindelsf on averagey'/? /p < 1, ¢1/? < p.

If we amplify in this range, we get subconvexity fgt < p < ¢*/5~" for all > 0.

Another result with Templierf dihedral of level:

> wML(1/2,f x g) < <1 + %) (qp)°. (17.7)

g€B; (p)

Q = ¢*p*, convexityq'/p'/2 /p = ¢'/? [p'/?.
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18. OPENDISCUSSIONSESSION | (CALEGARI)

Let F' be a number fieldD = O, p C O prime of res. chap.

Problem: Is ; (Spec(OF \ p) infinite? LetF, /F be the max. extension unm qutls F}, / F' infinite? Anal-
ogous questions: I8;(Spec(Or)) finite or infinite? Sometimes each. For example, Minkowskivetd
there are no unramified extensions@ftake ' = Q andQ(y/—1): finite. Sometimes it is infinite. The first
example is Golod-Shava.

Easier questions: Does there exist a (smooth, proper) auy\e with good reduction outsidg with
g > 7 (or A/F of dimension at least 1). Just asking for existence, notitefinmany.

ConsiderQ, Xy(p), F totally real,D/F ramified at all but albo-place.

Does there exist a motivé//F with the property that it has good reduction outsidand (2) either
it has bad reduction gt over any finite extension of'? Want to exclude trivial examples, lik& =

qIInz (1 —q™)*.

Let F = Q(v/—1), letp = =7 be a prime congruent to 1 modulo 4 that splits. Goal is to fiff@ r[1/7].

Step 1: does there exist an elliptic curkg Or[1/7]. Try to write down an equation with discriminant,
maybe good reduction outside 2, .... T&y = 16x. If it has rational points you win, else have to do
something else. We're just looking for an abelian varietywv& can do the following.

First compute the maximal abelian extensionfofunramified outsider: iy \ OFr = a4 \Z) =
Ly X IF; /ps. Cantakel’— —F) — —F, — —Fy ---. Try to create an elliptic curve ovéf,. Can ask whether

or not there exists an elliptic cuné&/Op, [1/7]. If yes takeA = Resgn(E). Have a tower. Not only do we
have our original curve (does it have a rational point overttwer), but we have many more elliptic curves
we can write down. Bigger and bigger fields, maybe one evéntoas a rational point.

Weight 2 modular forms. LeveV, (N,¢) = 1. I'y(N). Distribution ofa, in F,,. Naive: givena € F,,
does there exist afiwith a,(f) = o? Does there exist a Galois representapianGal(Q/Q) — GLx(F,)
that is irreducible, continuous, odd, has determinant ktqua unramified at, z2 — oz + £ = (z — 1) (z —

B2). One would believe that if you choose a Galois group and a fixedber of primes then there exists
field with what want at here. Supped up version of Inverse Gafame would be true here. Want elements
that contain this characteristic polynomial.... Is thereage formula-ish method to extract this? If think
about weight 1 modular forms then trace of Frobenius andridyaunt things that are close.
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19. OPENDIsScUSSIONSESSION Il (URBAN)

K = K'I, G/Q, G/Q, split. A weight inX = Hom(T'(Z,),Q,), § equals a system of Hecke eigenval-
ues. We have = (0, ) € € if and only if § shows up inH"(Sg(K), Dy).

We have(d,)\) € Ex D EEF, where the right is a union of the irreducible componentsiofethsion
dimH and the left maps t&’.

Question: What are the dimensions of the irreducible components éngig E£°? = € £, = belongs to
exactly one irreducible componefit(smooth).z = (0,, \;).

Conjecture: There exists integers, b such thatH*(Sq(K), Dy, ), # 0 if and only ifi € [a,b] and the
projection ofC onto X’ has codimension = b — a (which we denoté).

Example: F totally real field,G = SL(2)/F, d = [F : Q], X parallel weight.X" is dimensiond. Construct
Eisenstein classeB Hecke characters df* of weight\ in H*(I', Wy) fori =d,d +1,...,2d — 1.

Conjecture: The projection ofCg;s onto X' is codimensiond — 1 implies the dimension is 1. Implies
correspond to a-adic family of Hecke characters &f of dimensionl + ¢ with ¢ the Leopold defect. This
means

0 — kernel = Op — Of — Clppe — 0. (19.1)

The rank of the kernel i8.

Remark: It is not sufficient to show that the codimension of the prigetis at mosth — 1 implies the
dimension of the component is at ledsin 74 — (b — a). Special case of the conjecture is whére a = 1
— the conjecture holds for trivial reasons.

HY(T,D,) A(u) ‘
Z1,...,x, HY(T,Dy,) #0. ImpliesH"(Dy)y # 0fori =ig,ig — 1,...,i, — .

(2) Let D be a quaternion algebra over an imaginary quadratic fieldHave H', H?. Eigenvarieties
have to be dimension 3. Don't have discrete series.

(3) Now takeG = PGSp,/Q. 7 rep of PGL(2)/Q eigenform of weighRk — 2 for k£ > 2. Assume that
L(m,1/2) = 0. In this case we have two situatiori(r) Saito-Kurakowe type.

L(SK(n),s) = L(m,$)C(s +1/2)C(s — 1/2). (19.2)

Have two cases. ¥ = 1 thenSK(),, nontempered and/?, H*, and ife = —1 then discrete series and
H3. Classes in the cuspidal cohomolo@y ).

L(m,1/2) = 0 implies there exists Eisenstein classes in degree 2, 3 [gjaro

If ¢ = —1 then we have cohomology in degree 3 o(ly*(D,)), HereC maximal dimension.

If ¢ =1 we have cohomology in degree ?, 3, 4. Conjecture: dimensiould be 0, the point is isolated.
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20. OPENDIscUsSIONSESSION Il (CLUCKERS, GORDON)

Families: Sets inG(Q,,). Function onG(Q,). Indexed by integers, points on projections of varietiesrov
the residue field, parametrized fraf(Q,,) variety.

Example: . (in Z™) goes tor, (function onG(Q,)) goes to orbital integraD.,(7,,) (family indexed by
s 7)-

Nilpotent orbits inG(Q,,). (1) Combinatorial (partitions). (2) Res. field parame{@rSL,, with 2™ = 1).
Family of automorphic forms??? Not sure how to answer. Ifdén@v want to talk about a family of elliptic
curves then maybe not so bad as defined by algebraic equatidrizack in business.

Question: £, with A € Op. If F'is local fine, but ifF’ is global...? Here. = j(E). What we can do, which
may or may not be useful, is we can write down some formulasdtefigure out ifj-invariant is definable)
that ensure if global field” = Q and(E,) such that for eacp the j-invariant of £, is [-] modulop. Might
get a lot more objects than want, might end up getting it feradhe you want.

Igusa (homogeneous)f(x1,...,z,) overZ, N > 1, study
N—-1 1
S(N) = Z exp(2mif (x)/N) 37 (20.1)
i=1,...,n
Have
[SE™)lc < cpmmor T (20.2)

wherea(f) = inf, a,(f) in Q. Don't wantC, , < ¢ + ep?; this is trivial. Conjecture can bound indepen-
dently ofp if homogeneous. I&(f) < 1 thena(f) is logcanonical ??
Let ¥ be an additive real character dn, finite. Let¢ S.B. onA&. For\ € A,
0 = [ s@wr@n@). (203)
TEAD

Fir f non-homogeneous: using< «(f) and finiteS(p) should have a bound in terms @f®.
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21. OPENDISCUSSIONSESSION 1V: SLOPES OFMODULAR FORMS (GEE)

Fix p > 2 that doesn’t divideV, letk > 2, f — > a,q".

Sk(PO(Np)7Qp) Up-

Newforms« St atp.

Oldforms: T)-eigenvector inS;.(I'y(N), @,,). Two eigenvectors it5;,(I'o(N,), Q). Up-eigenvaluesy,
roots ofz? —a,z + pF=1

Up-eigenvalues:p-adic valuations = slopes are ji, £ — 1]. Symmetry in slopes of oldformsz(«) +
v(B) = v ") =k -1,

Oldforms: normalize so that slopes are[n1]. What happens to the slopes/as+ co? Do we get a
limiting distribution?

Conjecture (Gouwa): Converges to the distribution which is uniform {n ﬁ] U [1%, 1] and zero else-
where.

Asa, = o+ (it suggests that its valuation(a,) is usually at mosgjr—%; this is not known. We do know

. f— . . .
itis at mostpTi. This should be provable usingadic Hodge theory.

Let's assume thaV, p are such that every mgdGalois representation associated to a forrfiitiy(Vp), @p)
is ordinary in the sense of being reducible when restrioted tlecomposition group at If £ < p + 1,
oldforms Si.(I'g(N,), Q,,) haveT),-eigenvalues which arg-adic units. For exampley = 1,p < 100 and

p & {59,79}.
Can consider local question. Consider local Galois reptasens.
[ pr:Go— GL2(Q,). prla, — GL2(Q,) with G, = Gal(Q,,/Qy).
If a, = 0: pflg, is irreducible.
If a, is p-adically close to zero, i.ev(a,) is Iarge,ﬁf|ap is irreducible.

Assumel’y(N)-regular.

Conjecture (Buzzard): Explicit algorithm with input the list of slopes in weight mttostp + 1 and outputs
the list of slopes in any weight.

Consequence of algorithm is that all slopes arg {ould be false if we didn’t hav€&, (V) regular). At
the heart is a pairing algorithm.

Additional comments available online.
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22. OPENDISCUSSIONSESSION 1V: GROWTH OF FIELD OF RATIONALITY (SHIN)

Considerf € Si(N), the set of weight cusp forms of level'y(V), let's normalize so thai; = 1in
f=>anqg"and setQ(f) = Q(ay).

Define for integerA the setSy,(N)=4 to be all f € Si(N) such thaiQ(f) : Q] < A.
Problem (Serre): Consider Sy (N)<4|/|Sk (V)] in limiting cases (fix one ok, N and let the other tend to
infinity).

Consider the level aspect first.
Theorem 22.1(Serre) There exists a primg, (p, N,,) = 1 for all m, such thatim,,, s, |Sk(N)=4|/|Sk(N)| =

0.

Proof. The crucial ingredient is the proof of Ramanujan transtéteenodular forms. Considef,,>1{a,(f) :
f € Si(N,,)=4}; is finite. Eacha,(f) is an algebraic integer, so a root of a monic polynomiakjm].
Bounded degree, bounded coefficienpim, finitely many such monic polynomials. O

Equidistribution:lim | Sk (N,,)=4|/|Sk (N )|

Example:{N,,} equals2,2-3,2-3-5,....0r2,22.32 23.33.53 ..
Question: Can you prove without this hypothesis?

The cased = 1 is known (counting elliptic curves).

In the weight aspect: No prediction in general.

Maeda’s Conjecture: Let N = 1. For all f € Si(1), [Q(f) : Q] = |Sk(1)| (the left hand side is
[Q(az2) = Q).

Question: For all A > 1, does there exists a primeand anf € Sj(q) such that{Q,(f) : Q,] > A?
Calegari believes ‘yes’ while Hida believes ‘no’.

Additional comments available online.
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23. OPENDISCUSSIONSESSION V: (HOFFMAN)

Slides are online.
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24. OPENDISCUSSIONSESSION VI: CLOSED-FORM MOMENTS IN ELLIPTIC CURVE FAMILIES
(MILLER)

Slides online:

http://web.w 111 ans. edu/ Mat hematics/symliller/public htm /math/tal ks/ Sl nonsTal K_EI'|
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http://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/SimonsTalk_EllCurveFamilies_Miller.pdf

25. OPENDISCUSSIONSESSION VII: GEOMETRIC LANGLANDS (NADLER)

Discussed modules and their connections.
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26. PROBLEM SESSION | (MILLER)

Slides online:

http://web.w il anms. edu/ Mat hematics/symliler/public htm /math/tal ks/ Sl nonsProbl ens

26.1. Introduction. | study n-level density of zeros of families of.-functions
n-level density: F = UFy a family of L-functions ordered by conductorg, an even Schwartz function:

Dn,]:(g):
log Q¢ log Qf
Jm o Y by (B vir) o (5 s

feEFN J1 -----

As N — oo, n-level density converges to

/ 9(F)pogm (T)T = / () g ()T

Conjecture (Katz-Sarnak) (In the limit) Scaled distribution of zeros near centralm@grees with scaled
distribution of eigenvalues near 1 of a classical compamtigyr
Results / Applications

e Results:
o AgreementMany families, small support.

o Extending supportRelated to arithmetic.

e Applications:
¢ Class numberBounds on growth rate.
© Average rankManishing at central point.

Techniques
e Explicit Formula:Convert sums over zeros to sums over Satake parameter moment

e Averaging:Dirichlet, Petersson, Kuznetsov, ....

e CombinatoricsShowing agreement b/w NT and RMT.

26.2. Problem 1: Lower Order Terms. Explicit Formula
e 7 cuspidal automorphic representation©@h,,.

Q@ > 0: analytic conductor oL (s, 7) = > Az(n)/n®

By GRH the non-trivial zeros ark + iv; ;.

Satake paramori(p) }y: Ax(p”) = 3201 ari(p)”.
L(s,m) =32, 22 = T T, (1 — ami(p)p™)

log @r\ _ - vlogp\ Ax(p”)logp
Zg(””’ 2 )_9 22 (bg@) "/ log Q-

J
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http://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/SimonsProblems_Miller.pdf

1-Level Density
Assuming conductors constant in family; have to study

Ar(P") = api(p) + -+ apa(p)”

. [ logp log p 1
57 = 20 =) S A0)
> logR) \/plog R | |F| =
_ (ologp\ logp | 1 9
= 2%:g<210gR> plog R !I\J;Af(p)

Corresponding classical compact group is determined by

0 Unit
) , nitary .
7 Z Ar(p?) = e = 1 Symplectic
fer —1 Orthogonal.

Open Problem: Lower order terms
Very similar to Central Limit Theorem.

e Universal behavior: main term controlled by first two monseot Satake parameters, agrees with
RMT.

e First moment zero save for families of elliptic curves.

e Higher moments control convergence and can depend on atithof family.

Open Problem: Develop a theory of lower order terms to split the univetgaind see the arithmetic.

26.3. Problem 2: Repulsion at the Central Point. Behavior of zerosear central point
For one L-function: good theory high up critical line.

For afamily of L-functions: good theory as conductors tend to infinity.

Goal is to understand behaviat central point for finite conductors
Questions (Elliptic Curve Families)
Excess rankExpected vanishing at central point.

Repulsion:First zero above central point.

Open ProblemModel the observed behavior here (done) and extend to aihaliés (in progress).
Modeling lowest zero of L, (s, x4) With 0 < d < 400, 000
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Lowest zero forL g, (s, x4) (bar chart), lowest eigenvalue of SO(2N) withg (solid), standardV,
(dashed).
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Lowest zero forL g, (s, x4) (bar chart); lowest eigenvalue of SO(2N.g = 2 (solid) with discretisation,
and N.g = 2.32 (dashed) without discretisation.

26.4. Problem 3: Combinatorics. Background
Different techniques to compute Number Theory and Randortmiaheory.

Challenge is showing the two quantities are the same.

n-Level Density: Determinant Expansions from RMT

e U(N), Up(N): det <KO($j’xk)) 164,k6n

e USp(N): det (K_l(xj,xk)) 16k

e SO(even): det <K1($j,$k)) 165k

e SO(0dd): det (K_1(xj, 1)) 16 pen + Doy 6(,) det <K_1(xj, a:k)>16j e
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where
sin (W(ac - y)) sin (W(UU + y))

R e B

Alternative to Determinant Expansion
Expand Bessel-Kloosterman piece, use GRH to drop nonipahcharacters, change variables, main term
is

bvN [* —~ [ 2log(bxv N /4mm) X
— Ji—1(x) Py,
2mm Jy log R log R

with @,,(z) = ¢(z)".

Main Idea Difficulty in comparison with classical RMT is that insteafllmving ann-dimensional inte-
gral of ¢1(z1) - - ¢n(z,) We have a 1-dimensional integral of a new test function. Tédsls to harder
combinatorics but allows us to appeal to the result from e uo-Sarnak.

Problems

Open Problem: Further develop alternatives to the Katz-Sarnak detenmiegpansions.

Open Problem: Directly prove agreement for quadratic Dirichlet familig@mpare with Entin, Roddity-
Gershon and Rudnick).

26.5. References. References to my work on these problems

e Investigations of zeros near the central point of elliptire L-functions Experimental Mathematick5
(2006), no. 3, 257-27http: /7 arxi v. or g/ pdf / mat h/ 0508150

e Low lying zeros ofL.—functions with orthogonal symmetfwith Christopher Hughes), Duke Mathematical
Journall36(2007), no. 1, 115-17htt p://arxi v. or g/ abs/ mat h/ 0507450

e Lower order terms in the 1-level density for families of motophic cuspidal newform#\cta Arithmetica
137(2009), 51-98http://arxiv.org/pdf/0704.0924.pdf

e The effect of convolving families 6ffunctions on the underlying group symmetrfedth Eduardo Duefiez),
Proceedings of the London Mathematical Society, 2009; H®i1112/plms/pdp018.
http://arxiv.org/ pdf/ mat h/ 0607688. pdf

e The lowest eigenvalue of Jacobi Random Matrix EnsemblesPamdevé V] (with Eduardo Duefiez, Duc
Khiem Huynh, Jon Keating and Nina Snaith), Journal of Pts/8icMathematical and Theoretic4B (2010)
405204 (27pp)ntt p: //arxi v. or g/ pdt/ 1005. 1298

e Models for zeros at the central point in families of elliptierves(with Eduardo Duefiez, Duc Khiem Huynh,
Jon Keating and Nina Snaith), J. Phys. A: Math. Thdér(2012) 115207 (32pp).
http://arxiv. or g/ pdf / 1107. 4426

e Then-level density of zeros of quadratic Dirichlétfunctions(with Jake Levinson), Acta Arithmetich61
(2013), 145-18zhttp: /Tarxi v. or g/ abs/ 1208. 0930

¢ Moment Formulas for Ensembles of Classical Compact Gr¢wjik Alan Chang, Geoffrey lyer, Kyle Pratt,
Nicholas Triantafillou and Minh-Tam Trinh), preprint.
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http://arxiv.org/abs/math/0507450
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