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1. FAMILIES OF AUTOMORPHIC FORMS OF COHOMOLOGICAL TYPE(CALEGARI)

Fix a reductive group G, fix an infinity typeπ∞ ∈ Ĝ.

Basic problem: count the multiplicitym(π∞,Γ) in L2
cusp(Γ \ G) asΓ varies. UsuallyG = G(R). For

example,G = SL(N)/Q andΓ ⊂ G(Z).
deGeorge-Wallach:

lim
N→∞

m(π∞,Γ(N))

vol(Γ(N) \G/K)
is

{
6= 0 if π∞ D.S.

= 0 if π∞ D.S.
(1.1)

(the limit exists in the first case, and is non-zero).
If we takeG = GL2(R) thenπ∞ D.S. iff π is a classical modular form of weightk ≥ 2, andπ∞ is a

HLDS iff π is a classical modular form of weight 1.

General problem: if G does not have D.S., do there exist cuspidal automorphic forms? The answer is
yes. Two sources: via functoriality and via trace formula.

ConsiderGLM (R).

• Symplectic / orthogonal groups. Arises via functoriality.

Deficit: the resultingπ are not genuinely fromG. Even though it is onGLM (R) it knows it is not really
from there and came from something smaller.

Want a technique to produce formsnot coming from smaller groups. Can use Weyl law. This allows us
to count certain classes of automorphic forms and “almost all” such form have to genuinely come fromG.
Just asymptotically number is proportional to volume, those coming from smaller are not enough. Deficit is
allowingπ∞ to vary.

Whatπ∞ are of interest to me?

• Cohomological type: These representations contribute to the Betti cohomology of the arithmetic
quotientsX(Γ) = Γ \G/K. When talking aboutπ∞ automorphic form satisfying conditions. Very
specific way have some functional equations, say assume eigenvalue zero and harmonic form, can
compute using deRham cohomology, arise in cohomology of a manifold.
• Holomorphic limits of D.S.: Loosely speaking, these contribute to the coherence cohomology of the

Shimura variety (inH0). From a formula point of view, no distinction between different weights,
satisfy a formula for modular forms,H0(w⊗k).

Want to count motives or something on the automorphic side, so want to restrict.
Can varyΓ in several ways. Two types of families. Horizontal:Γ(N) with N ∈ N. Vertical: Γ(pk) with

p a fixed prime andk ∈ N.
Let’s look at classical weight 1 modular forms of levelN = Mpk for M fixed. What do we know about

these? Weight 1 modular forms are in bijection to Galois representationsρ : Gal(Q/Q) → GL2(C) odd,
irreducible conductorN . Possibilities areA4, A5, S4,D∗. Up to twists, the first three occur only finitely
often. As go up the tower, all but finitely many (up to twists) are dihedral down here and are induced from
GL1 (and some quadratic extension).

Conjecture A: Fix π∞. Lcusp(Γ(Mpk) \ G). Up to twist, there will only beO(1) forms which don’t
come from a smaller group (ifπ∞ is not DS).

Conjecture B: LetA be the set of all algebraicπ∞. Make the same conjecture.

Example: TakeGL2/K, π∞ equal weight 0.H1(Γ(N) \H3)← E/K.
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ConsiderG = GL(n)/Q. We should have representationsρ : Gal(Q/Q) → GLn(Qp)/ ∼, tame level
M , all ρ : Gal(Qp/Qp) p-adic HT cond. By compactness argument land inGLn(Zp)

ρ
→GLN(Fp). Xglob is

the rep. variety ofGQ,Sp.
Fix ρ,

∐
ρ nice spaceB(1)2, Xloc is a nice spaceB(1)3 andX dR

loc is a countable union of nice subspaces

B(1). HaveX → Xloc (finite) andX dR
glob → X dRloc .

In general can do a computation that

dimXloc − codimXglob − codimXdR
loc =

{
0 if π∞ D.S.

−ℓ0 > 0 otherwise.
(1.2)

Examples: Conjecture (Ash-Pollock):H2
cusp(SL3Z,

∨
K) (with

∨
K finite dim alg rep ofSL3R) equals

the space ofsym2 from GL(2)/Q.

LetF = Q(
√
−2), 3 = ππ,D/F division alg ram atπ, π with inv 1/n,−1/n, Γ equalsO×

p → GLn(C),

dimH∗(X(Γ(πk)),C) = H∗
inv(X(Γ(πk),C) =? (1.3)

Regard as weak evidence towards problem, but suggest that disproving will be hard as no trivial source.

One last example. LetF be a real quadratic field. Look at Hilbert Modular Forms of weight (k1, k2) with
k1 ≡ k2 mod 2. If k1, k2 ≥ 2 D.S., ifk1 = k2 = 1 (???), ork1 = 1 andk2 6= 1. If weight is(2k+1m1) then
H0(X, Ek) (essentially same dimension asH1. What are such forms? Can induce grossencharacters. My
students Specter and May found a non-CM form. On the other hand, have the following theorem: For certain
N and totally oddχ satisfying some conditions (such exist), the dimension of the spaceS(1,2k+1)(Γ(N), χ)
equals CM forms for allk.
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2. LIMIT MULTIPLICITIES FOR PRINCIPAL CONGRUENCE SUBGROUPS OFGLn (MULLER)

Much of the following is joint work with T. Finis and E. Lapid.

2.1. Part 1. LetG be a semi-simple real Lie group of non-compact type. LetĜ be the unitary dual equipped
with its natural measure / topology. On̂G we have the Plancherel measureµPL, whose support is the tem-
pered spectrum / dual̂Htemp ⊂ Ĝ. Consider a latticeΓ ⊂ G. Have a representationG→ Aut(L2(Γ \G)).
ConsiderRdisc

Γ , L2
disc = ⊕̂π∈ĜmΓ(π)Hπ.

Problem: Information aboutmΓ(π).

We saw in the previous talk that you can fix a representation and can consider a sequence of lattices:

mΓ(N)(π)

vol(Γ(N) \G) →
{
d(π) if π ∈ Ĝd
0 otherwise.

(2.1)

Consider

µΓ =
1

vol(Γ \G)
∑

π∈Ĝ

mΓ(π)δπ, (2.2)

where(Γn) is a sequence of lattices withvol(Γn \G)→∞.

Definition 2.1. We say(Γn) satisfies the limit multiplicity property (LMP) if

(1) For all A ⊂ Ĝtemp (Jordan measurable subset, which meansA is bounded andµPL(∂A) = 0) we
haveµΓn → µPL.

(2) For all A ⊂ Ĝ \ Ĝtemp we haveµΓn → 0.

An equivalent statement:f ∈ Cc(Ĝ) thenµΓn →n→∞ µPL(f).

Results:Γ ⊃ Γ1 ⊃ Γ2 · · · normal subgroups of finite index with∩Γi = {1}. Γ \ G cocompact: DeGe-
orge, Wallach, Delorme.

Generalizations: (Albest, Bergeron, et al) ConsiderK ⊂ G maximal compact,̃X = K/G, (Γn), Xn =

Γn \ X̃ , Xn BS-convergent tõX if for all R > 0 we havevol((Xn)<R)/vol(Xn) →n→∞ 0. We have the
following theorem:(Γn) unif. discrete sequence,Xn →BS X̃ implies LMP holds for(Γn).

2.2. Part 2: Non-uniform case. Back in the case of towers of finite index that intersect to{1}: Γ ⊃ Γ1 ⊃
Γ2 · · · . Takeπ ∈ Ĝd, limn→∞mΓn(π)/vol (Γn \G) = d(π). Results by Rohlfs-Speh, Savin, Clozel
≥ C > 0. Q-rank 1: Deitmar, Hoffmann.

2.3. Part 3: General case.G/F real,F finite field,P0 ⊂ G minimal parabolic,M0. S finite set of places,
S∞ ⊂ S. FS =

∏
ν∈S Fν ,AS =

∏
ν 6∈S Fν . K ⊂ G(AS) spec compact,µK = vol (K) /vol

(
G(F ) \G(A)1

)
.

Consider ∑

π∈Πdisc(G(A)1)

m(π)dim(πS)kδπS . (2.3)

LetK = {Ki, i ∈ I}. MeasuresµK → µPL if

(1) For allA ⊂ Π(G(FS)
1
temp) meas J,µK(A)→ µPL(A).

(2) BoundedA ⊂ Π(G(FS)
1)\Πtemp(G(FS)

1), µK(A)→ 0 if for all ǫ > 0 have|µK(A)−µPL(A)| ≥
ǫ for only finitely manyK ∈ mathcalK.

Theorem 2.2. LMS holom forG = GLn andK(n), n ⊂ OF prime toS.
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How to approach? Want to handle it by using the trace formula.First step is the density theorem of
Sauveigeot:H(G(FS)) = C∞

+ , compactly supported bi-KS finite.

h ∈ H(G(FS)) 7→ trπ(h) = ĥ. (2.4)

Function ofΠ(G(FS)1), var |χ|. Getµk(ĥ) is trRdisc(h⊗ 1KS .

Theorem 2.3(Sauvergeot). LetK = {ki : i ∈ I} be such that for allh ∈ H(G(FS)1), µK(ĥ) → h(1).
Then LMP holds.

Apply trace formula (non-invariant trace formula of Arthur). h ∈ C∞
c (G(A)1). Jspec(h) = Jgeom(h).

HereJspec, Jgeom are sums of distributions onG(A)1.
TakeL2(G(F ) \G((A)1).

Jspec(h) = trRdisc(h) +
∑

[M]
M 6=G

JM,spec(h), (2.5)

withM a Levi group,M ⊃M0. JM,spec defined by Eisenstein series.Jgeom(h) = vol
(
G(F ) \G(A1

)
h(1)+

orbital integrals.
(a) We have

Jspec(h⊗ 1K)− trRdisc(h⊗ 1K) → 0. (2.6)

(b) Takeh ∈ H(G(FS)1).
Jgeom(h⊗ 1K)− vol ( ) (h(1)) → 0. (2.7)

Q,P parabolic with LeviM , π ∈ Πdisc(M(A1)).
MQ|P (π, λ) : A2

π → A2
π(P ), λ ∈ G×

M,C intertwining operators.

MQ,P (π, λ) ↔ nα(π, λ), RQ|P (π, λ). (2.8)

Theorem 2.4(Finis, Lapid, M–). JM,spec can be expressed in terms of rank one Int. op and log der.

G = GLn,M = GL(m)×GL(n2). π = π1 ⊗ π2, πi ∈ Πcusp(GL(n;A):

n(π, S) =
L(s, π1 × π̃2)

ǫ()N(π1 × π2)h−SL(s+ 1, π1 × π̃2)
. (2.9)

6



3. FAMILIES OF L-FUNCTIONS AND THEIR SYMMETRY (TEMPLIER)

The following is joint work with P. Sarnak and S.-W. Shin, available on the arXiv:

http://arxiv.org/abs/1401.5507.

We’ll work on GL(n)/Q.
Let π be an automorphic cusp form,aπ the coefficients. The Sato-Tate problem asks for the equidistribu-

tion for theaπ as we varyp. To be precise, let’s take{aπ(p) : p < x} with x → ∞. Is this equidistributed
with respect toµST(π)?

Taylor and his colleagues proved it holds ifπ is holomorphic onGL(2).

Example: ConsiderE/Q. Can writep1/2a(p) = p+ 1−#E(Fp). Hasse proved|a(p)| ≤ 2. It is equidis-
tributed forµST =

√
4− a2da/2π. Not known in other cases. Even giving a recipe forµST(π) is hard. Ifπ

is algebraic there is a recipe to give the conjectured Sato-Tate measure.

LetF be a family of forms, and letF(y) denote all elements of the family whose conductorC(π) is less
thany. This always picks out a finite set.

Limit multiplicity, Weyl’s law, cohomological growth: asks for the distribution ofaπ(p) for a fixed prime
asy →∞. Refined version is to let the primep vary as well.

Sato-Tate for the family: Consider{aπ(p) : p < x, π ∈ F(y)} where now bothx, y →∞.
Riemann:

#{0 ≤ γ ≤ T, ζ(σ + iγ) = 0} ∼ T

2π
log T (3.1)

asT →∞.
Montgomery pair correlation conjecture: Instead of counting zeros we count pairs of zeros, and consider

the gap between them. We believe

#{0 ≤ γ 6= γ′ ≤ T, 2πa

log T
≤ γ − γ′ ≤ 2πb

log T
} ∼ N(T )

∫ b

a

(
1−

(
sin(πx)

πx

)2
)
dx, (3.2)

where the integrand is a Dyson kernel related to random matrix theory.
Katz-Sarnak heuristics: zeros ofL(s, π) asπ ranges through a family should agree with eitherU(∞),

Sp(∞) or SO(∞) (or one of the subgroups. The question is how to determine thesymmetry type? This is
table 2 in their BAMS ’99 paper.

Siegel modular forms:f(z) with z ∈ H2g, havef((Az+B)(Cz+D)−1) = det(Cz+D)kf(z), where(
A B
C D

)
∈ Sp(2g,Z) and weightk < y.

Let tπ(p) be the Satake parameters,̂G(Op) ⊃ Ĝ(Op)
unr
⊂ T̂ /W , Ĝ(Op)

temp
⊃ Ĝ(Op)

temp, unr
≃

T̂c/W with T̂ = Cg.
Get the Sato-Tate measureµST by a push forward of the Haar measure onĜc.
Main result with Shin is:

Theorem 3.1 (Shin-T). Sato-Tate for familyF under some assumptions:π∞ is a discrete series,Φ ∈
C∞
c (T̂ ), then

1

π(x)

1

|F(y)|
∑

π∈F(y)
p<x

Φ(tπ(p)) →
∫

ΦµST (3.3)

as soon asx < yc for somec which depends onG and is positive.
7
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Consider ∣∣∣∣∣∣
1

|F(y)|
∑

π∈F(y)

Φ(tπ(p))−
∫

ΦµpP ′

∣∣∣∣∣∣
≪ pAy−δ (3.4)

for someδ > 0 andA <∞. Ingredients of the proof include the Arthur trace formula and some extra steps.
The extra steps are difficult (integrals, convergence of trace formula, Fourier transform on the geometric
side).

Conjecture 1 (Montgomery, Katz-Sarnak, Sarnak-Shin-T). The low-lying zeros ofπ ∈ F follow the fol-
lowing heuristics (moments ofµST(F)) for a good family:

Homogeneity type Symmetry
unitary U(∞)
orthogonal Sp(∞)
symplecticǫ = 1 SO(even)
symplecticǫ = −1 SO(odd)

Cannot calculate large enough support to distinguish the different densities if only do the 1-level, but can
distinguish if calculate the 2-level density.
Harmonic family: Pick a bunch of local conditions. Positive Plancherel measure.
Geometric family: X →W ⊂ Am, assume map is smooth. Havew ∈W (Z),Xw Hasse-WeilL-function,
D(w) 6= 0, L(s,Xw). Similar result holds due to Deligne-Katz equidistribution theorem.

i1(F) =

∫
|tr(t)|2µST(t) (−1)

i2(F) =

∫

T
tr(t)2µST(t)

i3(F) =

∫

T
tr(t2)µST(t); (3.5)

all of these are integers. Fluctuation ofǫ. Alluded to a few times that there is some type of Sato-Tate group
H(F) which givesµST(F); unfortunately the Sato-Tate group can be difficult to define. The value ofi3(F)
is in {0,−1, 1} and is the invariant of the family.
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4. USING MODEL THEORY TO OBTAIN UNIFORM BOUNDS FOR ORBITAL INTEGRALS (GORDON)

Joint with Raf Cluckers and I. Halupczok.
G is a connected reductive group (over a local fieldK or over a global fieldF ). Sometimes the local

field can vary. Think of a number field, but a lot of the talk is about transferring between function fields and
fields of characteristic zero. I want to talk about things on harmonic analysis onG that don’t depend on the
prime. Can do base change to completion, but also a completely different method which I’ll explain today.

For the moment we’ll be over a local field (until further notice). First let’s review the classical results of
Harish-Chandra. Consider orbital integrals. We’ll alwaystakef to be a test function (locally constant over
K of compact support):f ∈ C∞

c (G(K)). Forγ ∈ G(K) semi-simple, we set

Oγ(f) =

∫

Ca(γ)\G(K)
f(g−1γg)d×g. (4.1)

Set
D(γ) =

∏

α∈Φ

|1− α(γ)| (4.2)

(whereΦ is a root system). Example: inGLn: if γ overF is diagonal (say with entriesλ1, . . . , λn) then
α(γ) = λiλ

−1
i+1 for α-simple. NoteD(γ) vanishes if element is not regular. Consider

Da(γ) =
∏

α∈Φ
α(γ) 6=1

|1− α(γ)| (4.3)

(which is non-zero for non-regular elements). Harish-Chandra proved that forγ ∈ Greg s.s. for fixed test
functionf there is a constantC (which can depend onf and the root datum andK) such that we have

|O(γ)| |D(γ)|1/2 ≤ C. (4.4)

Kottwitz: for all γ we have
|O(γ)| |DG(γ)|1/2 ≤ C. (4.5)

Normalization of measures: γ-regular thenCG(γ) = T -torus. Have finitely many conjugacy classes of
tori. Fix the normalization of invariant measures on torus (pick “canonical” compact subgroup in eachT ).
Thend∗gdg/dt (fix some H.M. onG). Non-regular:CG(γ) = M an be one of finitely many reductive
groups. Pick “canonical” measures.

Question 1:C: how does it depend onν asK varies through completionsFν? Onf?

Question 2:π-irreducible admissible representation ofG(K). Let f ∈ C∞
c (G), define

π(f) =

∫

G
π(g)f(g)dg. (4.6)

Let

f̂ = Trπ(f) =

∫

G(K)
Θπ(g)f(g)dg, (4.7)

whereΘπ is inL1
loc (locally constant onGreg s.s.. How to transfer this statement toFq((t)).

Will discuss a method based on model theory. Plan:

(1) Construct a family of test functions for Question 1.
9



(2) Language of logic (first order language).
(3) Define a class of functions “definable” in this language (will be called motivic functions).
(4) “Prove” that orbital integrals belong to this class.
(5) Model theory (and transfer) implies that if a motivic is bounded then it has to be bounded byqa

with a a constant. Have to assumep≫ 0 (so results will be for all but finitely many primes, but we
won’t have control over the bad primes).

Families ofL-functions: Generators of the spherical Hecke algebra.F global (number field),G/F , Fν -
completion ofF ; Oν - ring of integers.Gν = G×F Fν - unramified for almost allν. Gν(Q) - hyperspecial
max comp (for unramified), smooth scheme overFν .

Have the Cartan decomposition.Gspl - split form ofG, fix ρ : Gspl →֒ GLn (overZ[1/R]), in Gspl

haveT (diagonal), which is contained inB (upper triangular). LetAν - max split torus inTν ⊂ Gν ,
λ ∈ X∗(Aν) ← X∗(T ) ⊂ Zn. Test functionsτGλ = 1Gν(Q)λ(ω)Gν(Oν)

(with ω a normalizer). For example,
onGL2(Qp) have

G(Zp)

(
pn 0
0 pm

)
G(Zp). (4.8)

Let
λ ∈ Zn τGλ |Oγ(τGλ )| |DG(γ)|1/2 ≤ C(ν, λ). (4.9)

Answer: |C(λ, ν)| ≤ qa+b||λ||ν for some constantsa, b which depend only on the root data ofG andρ.

Definition of language: 3 sorts of variables:x1, . . . , xm are valued field,y1, . . . , yn residue field, and
z1, . . . , zn ∈ Z. Only allow addition on thez’s, but allow addition and multiplication in other two; also
have≤ and≡d on last. Also need constants for each (0, 1). Have map fromX ’s to Y ’s by taking first
non-zero coefficient ofω-adic expansionac, and map fromX ’s to z’s by valuation (ord). For example,
ord(x) ≡ 0 mod 2 and there exists ay such thatac(x) = y2.
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5. (GEE)

Joint with Matthew Emerton. Won’t state any theorems, but will instead concentrate on how we think
about things. The motivation is that on the Thursday discussion section we’ll continue with the Taylor-Wiles
method. Today we’ll discuss the structures that underlie this. The idea is that some part of the structures we
talk about will remind someone about something in a related area (trace formula, geometric Langlands), and
start a dialogue on Thursday. Not too much motivation for this talk. For introductory / motivation, see my
talks at the Arizona winter school (video on-line and 50-60 pages of notes on my homepage). Will manly
work onGL2/Q. Can generalize, but there are some things known here that are not known in higher cases.

Will assumep > 2. Won’t discuss Maass forms, will talk about holomorphic formsf ∈ SR(Γ1(N),Qp)
where the weightk is at least 2. We have

f =
∑

anq
n, a1 = 1, an ∈ Q. (5.1)

Motivating question (which we’ll ignore till Thursday): How doesap behave asN, k vary? To be
slightly more precise, let’s assumep does not divideN .

Let π = ⊗ℓ≤∞πℓ cuspidal automorphic representation ofGL2/Q.

π ↔ ρπ : GQ → GL2/Qp, (5.2)

whereGQ = Gal(Q/Q). Dictionary is defined in local terms:ℓ 6= p, πℓ ↔ ρπ|Gℓ (correspondence by the
local Langlands correspondence, andGℓ = Gal(Qℓ/Qℓ).
Gℓ � Iℓ (inertia),Gℓ/Iℓ = 〈Frobℓ〉, ℓ doesn’t divideNp, ρπ|Iℓ trivial, trρπ(Frobℓ)− aℓ.
ρpi|ap πp (loses information in general). Idea is the space of Galois representations is a refinement /

replacement for the Bernstein center. Has the nice propertyof being equidimensional.
Consider moduli spaces of Galois representations.Gp compact impliesρπ|ap → GL2(Zp) → GL2(Fp).

Also have a mapρ fromGp to GL2(Fp), with ρ : Gp → GL2(Fp) “rigid”.
Moduli space of allρ : Gp → GL2(Zp) which lift a fixed ρ. X loc. ρπ|ap is deRham, with Hodge-

Tate weights0, k − 1. Fix conductor, 1-dimensional laws, infinite union and Zariski dense filling space.
r : GQ → GL2(Fq), with r|Gp = ρ andr : GQ → GL2(Zp). Imagine is now a 2-dimensional space
(image of theX glob). X glob →֒ X loc. Global representations which should come from modular forms
(Fontaine-Mazur).

Idea: vary tame levelN , x a modular form. Taylor-Wiles method is a way of carefully choosingN so
that we have some control on thex. Find that each strand either has noX or a Zariski-dense set ofX; see
Figure 1.

LetM∞ be the glued module of modular forms. Highly non-canonical.

Conjecture: M∞ is canonical.GL2/Qp: true:M∞ “is” p-adic local Langlands.

ConsiderSpecRp,Rp M∞,Rp/p M∞/p. By the work of Kisin, need to understand the Hilbert-Samuel
multiply (??). FM conj:e(Rp/p) = e(M∞/p); the left is purely local and the right is the multiplicity of
modpmodular forms. Can think / hope of left as geometric side and right as spectral side as a trace formula.
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FIGURE 1. Image from varying tame levelN .
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6. RESULTS ONL-FUNCTIONS AND LOW-LYING ZEROS(M ILLER)

Slides available online here:

http://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/SimonsTalk_LowlyingZeros_M
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7. UPPER BOUNDS FOR MOMENTS OFL-FUNCTIONS (SOUNDARARAJAN)

Will give a survey of progress in the past ten or fifteen years.Study objects such as
∫ 1

0
|ζ(1/2 + it)|2kdt, (7.1)

wherek is either a natural number or maybe a positive number. One would like to understand the growth (or
even better find an asymptotic formula). A folklore conjecture says it should be asymptotic tockT (log T )k

2
,

whereck = akgk with ak an Euler product andgk more mysterious. In this case

ak =
∏

p

(
1− 1

p

)k2 ( ∞∑

a=0

d∗
(
a
p

)2

pa

)
. (7.2)

Hardy and Littlewood showedg1 = 1 andg2 = 2. There was a lot of progress in the ’90s. Conrey and
Ghosh conjecturedg3 = 42 andg4 = 24024. Shortly afterwards Keating and Snaith came up with a general
conjecture forgk:

gk = (k2)!

k−1∏

j=0

j!

(k + j)!
. (7.3)

There are analogues for families ofL-functions (unitary, symplectic and orthogonal). The asymptotics
for the moments reflect the family. For unitary consider Dirichlet characters moduloq, and conjecture

∑

χ mod q

|L(1/2, χ)|2k ∼ ckq(log q)
k2 . (7.4)

For the symplectic case, consider
∑

|d|≤x

L(1/2, χd)
k ∼ ckx(log x)

k(k+1)/2. (7.5)

For the orthogonal, let’s look at quadratic twists of a fixed elliptic curve:
∑

|d|≤x

L(1/2, E × χd)k ∼ ckx(log x)
k(k−1)/2. (7.6)

There are several ways to arrive at these constants and the powers of logarithms.

(1) The first is a beautiful idea of Keating and Snaith: use Random Matrix Theory. They proposed that
the correspondence is more than just the zeros ofL-functions correspond to eigenvalues of matri-
ces, but the values ofL-functions can be modeled by the values of the characteristic polynomials.
Unfortunately this misses the arithmetic factorak, which must be added in.

(2) Conrey-Farmer-Keating-Rubinstein-Snaith:Λ(s, χ) = ǫχΛ(1 − s, χ). Consider
∑

χ mod q

Λ(1/2 + α1, χ) · · ·Λ(1/2 + αk, χ)Λ(1/2 − β1, χ) · · ·Λ(1/2 − βk, χ). (7.7)

Can trivially permute just theα’s or just theβ’s, but can also switch anα with a β as that uses the
functional equation twice. So symmetric in allα andβ:

∑

m1,...,mk

χ(m1) · · ·χ(mk)

m
1/2+α1

1 · · ·m1/2+αk
k

∑

n1,...,nk

χ(n1) · · ·χ(nk)
n
1/2−β1
1 · · · n1/2−βkk

. (7.8)

Consider ∑

m1···mk=n1···nk

1
∏
m

1/2+αj
j n

1/2−βj
j

→
∏

j,ℓ

ζ(1 + αj − βℓ). (7.9)
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Conjecture: Symmetrize: ∑

π∈S2k/Sk×Sk

Z(π(α, β)) (7.10)

gives the2kth moment.

Small moments (Conrey, Iwaniec and S– for the sixth; Khandeeand Li for the eight):
∑

q≤Q

∑

χ mod q

∫ ∞

−∞
|Λ(1/2 + it)|2kdt, (7.11)

and get the right answer fork = 3 or 4.
S– and Young: Under GRH, get

∑

|d|≤x

L(1/2, E × χd)2 ∼ cx log x. (7.12)

Lower and Upper Bounds in Families: Lower bounds (Rudnick and S–, Radziwill and S–): Know first
moment plus “ǫ” implies correct lower bounds for allk ≥ 1. If have a lower bound then know some
quantities are non-zero, gives a sharper version of non-vanishing. For example:k ≥ 1 real,

∑
L(1/2, E ×

χd)
k ≫ x(log x)k(k−1)/2.

Upper bounds: Recent work of Radziwill and S–: If we know somemoment plusǫ implies correct upper
bounds for all smaller moments. As a corollary: for0 ≤ k ≤ 1:

∑

|d|≤x

L(1/2, E × χd)k ≪ x(log x)k(k−1)/2 ≪ π(x)(log x)k(k−1)/2. (7.13)

If 0 < k < 1 the exponents are negative. Tells us that except on a set of density o(1) we haveL(1/2, E ×
χd) = O((log x)−1/2+ǫ). In the case of rank 0,X(d)≪

√
d/(log |d|)1/2−ǫ almost surely.

If we assume GRH we can do much better. A few years ago S– provedan upper bound up to(log x)ǫ.
Recently Harper (2013) removed the power of logarithm and obtained a sharp result.

On GRH:

logL(1/2, f) ≤
∑

p≤x

λf (p)√
p

+
1

2


 ∑

prime squares

· · ·


+

log cond

log x
. (7.14)

(3) Selberg’s Theorem from the 1940s: maybet of sizeT , look at either the real or imaginary part of the
logarithm of the zeta function on the critical line (or look at them simultaneously),log ζ(1/2 + it).
These behavior like a normal random variable with mean 0 and variance about12 log log T .

1

T
meas

(
t ≤ T : log |ζ(1/2 + it)| ≥ λ

√
1

2
log log T

)
∼ 1√

2π

∫ ∞

λ
e−x

2/2dx. (7.15)

We are looking at|ζ(1/2 + it)| ≥ ev . Frequencye−v
2/ log log T . We find

∫
|ζ|2kdt =

∫
e2kv(freq of values of size ev), (7.16)

with v ∼ k log log T .

Conjectural analogues of Selberg’s theorem:|ℓ| ≤ x: logL(1/2, χd) is a Gaussian with mean∼
1
2 log log x and variance∼ log log x.

Consider positive functional equations andlogL(1/2, E × χd) is Gaussian with mean−1
2 log log x and

variancelog log x.
15



Understanding the small moments (lettingk → 0) is trying to understand the distribution oflogL(1/2, E×
χd). Gives the distribution is bounded from above by a Gaussian.
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8. EIGENVARIETIES (URBAN)

Start withG/Q, Z, Q-split. G/Qp) split (B,T ) with B = TN . Let I be the Iwasawa subgroup
which is a subset ofG(Qp), and letT+ equal{t ∈ T (Qp) : tN(Zp)t−1 ⊂ N(Zq)}, which contains

T++ = {t : ∩M tMN(Zp)t−M = {1}}
(
pα 0
0 pβ

)
.

Kp ⊂ G(Apf ) with K = KpI, SG(K) = G(Q) \G(A)/KK∞.

V aG(Q)-rep,Ṽ ,G(Q) \ (G(A)/KK∞Z
×V ).

M K-rep,M̃ , (G(Q) \G(A)/K∞Z∞ ×M)/K.
G(Af )W

X weight space,X (Op) = Homcont(T (Zp),Q
×
p ). ContainsX alg = dominant alg weights.

λ ∈ X alg Wλ = (IndGB−λ)alg.

λ ∈ XL Aλ =
(
Ind)B− ∩ IIλ

)ℓa
.

Wλ ⊂ Aλ if λ is algebraic.
∆++ ⊂ ∆+ = IT+I (∆+)−1 (which containsG(Qp)) acts onAλ (which containsWλ).
W v
λ ←− Dλ which is continuousL-dual ofAλ.

H0(S̃G,Dλ) = lim−→
Kp H

0(SG(K),Dλ),H0(S̃G,W
v
λ ).

H+
p = C∞

c (G(Apf )×∆+,Qp), the left containsH++
p = C∞

c (G(Apf )×∆++,Qp).

Admissible rep of finite slope:(σ, Vσ) rep ofH+
p such that

• For allKp, V K = 1K(V ) is finite dim.
• For all t ∈ ∆−, ut = 1ItI is invertible.σ is real.

Let σ be real. We sayσ is automorphic of weightλ if σ shows up inHq(S̃G,Dλ) for someq. If π is
classical automorphic and cohomological rep ofG(A) thenπ = πp ⊗ πf .
π|X+

p
⊃ σ irreducible andλ algebraic.

σ is non ??? with respect toλ iff the ??? of the eigenvalues ofut are small wrtλ.
K open compact which is spherical away fromSU(p). Rs,p = C(Ks \G(Asup

f )/Ks ×∆+,Qp).

Eigenvariety: K → S.
X ← ξK x = (θσ, λ) such that (finite slope)θσ : Rs,p → Qp, θp shows up inH(SG(K),Dλ). Rigid,

analytic space (Agh-Staves, Xiong).
q m+

q (σ, λ) the multiplicity ofσ in Hq(S̃G,Dλ).
m+(σ, λ) =

∑
q(−1)qm+

q (σ, λ).

Theorem: H ← ξK ⊃ ξEPK = {x = (θσ, λ) if m+(σ, λ) 6= 0 andσK 6= 0}.
If G(R) does not have discrete series thenmd(σ, λ) = 0 if λ is regular.
fp ⊗ ut. I†G(f, λ) = trace(f : H0(S̃G,Dλ)).

Theorem: λ 7→ I†G(f, λ) is an analytic function onX multiplied by 1.U ⊂ X . D̃λ = DUλ ⊗ LA(U).

17



Remark: λ algebraic. One can show that

⊕w:ℓ(w)=j Dw×λ → W v
λ (8.1)

I??G (f, λ)ξ(t)λ ≡ I†G(f, λ) modN(λ, t), with the left hand side equal totr(f,H0(−−,W v
? ). N(λ, t) =

Infw 6=id|tλ−w×λ|.

Corollary: λn → λ p-adically. (αv, λn)→∞ for all αv simple root.
I†G(F, λ) = limk→∞ ξ(k)λnIℓG(f, λn). Arthur and Fronlu (?) computedIℓG(f, λ) for λ algebraic.

ξ(k)λIℓG(f, λ) =
∑

w

IG(f
w, w × λ). (8.2)

p-adic trace formula: γ semi-simple element inG(Q). fp ∈ C∞
c (∆++,Qp). IG,γ(fp, λ).

g ∈ ∆++, λ ∈ X , Φ†
G(g, λ) is the trace ofg acting onDλ.

λ 7→ Φ†
G(g, λ) is analytic.

IG,γ(f, λ) =

∫

G(Qp)/Gγ(Qp)
fp(x

−1γx)Φ†
G(x

−1γx, λ)dx. (8.3)

Trace formula:

I†G(f, λ) = (−1)??
∑

γ∈G(Q)ss

elliptic

(−1)ǫ(γ)χ(Gγ , alg?)/L(γ)

×Oγ(fp)I†G(fp, λ) (8.4)

with f = fp ⊗ fp.
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9. THE TRACE FORMULA AND PREHOMOGENEOUS VECTOR SPACES(HOFFMAN)

We start with induction of conjugacy classes. HereG is a linear algebraic group over a fieldF . We
consider geometric conjugacy classes. What is the definition whenG is reductive,P = MN parabolic?
Take a conjugacy classC in M , first get a conjugacy class inP : C ′ is the unique denseP -conjugacy class
in CN . TakeC̃ to be the uniqueG-conjugacy class such that̃C ∩ P = C ′. Usually one denotes̃C as the
induced class fromC, written IndGC, with CC ′ = InflPC (the inflation). The union of all the inflations is
Pinfl: Pinfl = ∪CInflPC.

Theorem (L-L): If P,Q with levi componentM then the induced classesIndGPC = IndGQC are the same
(and hence will often omit the subscript).

Given anyγ ∈ G there are only finitely manyP such thatγ ∈ Pinfl. Tells us that a certain sum will be a
finite sum.

Prehomogeneous varieties:V a G-variety, say it is prehomogeneous if there exists a dense orbit O:
p(gx) = χ(g)p(x). CallV special if everyp is constant.

p.v.: V vector space, action linear. It is regular ifV ∗ is also prehomogeneous, and there existsp rel. inv.
with dp/p a map from the regular orbitO toV ∗ (with the mapdp/p : O → V ∗ a dominant homomorphism).
There is a good theory ifF is a number field:

Z(φ, s1, . . . , sr) =

∫

G(A/G(F )
|χ1(g)|s1 · · · |χr(g)|sr

∑

x∈O(F )

φ(gx)dg. (9.1)

Hereφ is a Schwartz function:φ ∈ C∞
c (V ). In general such integrals don’t converge, classification where

they do. If regular can apply Poisson summation and obtain several functional equations.

Canonical parabolic: X ∈ g nilpotent. There existsH,Y such that[X,Y ] = H, [H,X] = 2X and
[H,Y ] = −2Y . Let qn = {Z ∈ q : [H,Z] = nZ}. ?? = ⊕n≥0gn, Q = Stab(q) will be a parabolic
subgroup ifg is .... Called the maximal parabolic; since in characteristic zero can also consider the image
under the exponential map (since nilpotent only finitely many terms). Get an elementγ = expX ∈ G(F ).

Theorem: ň = ⊕n≥2gn, ň′ = ⊕n>2qn, ň/ň′ is regular p.v. underL = ContGg0.

Mean Value Formula: Theorem (Siegel/Weil/Ono):Let O be a homogeneousG variety over a number
field F . Let π1(O(C)) = O, π2(O(C)) = O, X∗(G) = O, [G(Aξ ∩ O(F ) : G(F )] constant onO(F ).
Then ∫

G(A/G(F )

∑

ξ∈O(F )

φ(gξ) =

∫

G(A)O(F )
φ(x)dx. (9.2)

Conjecture: There exists a normal subgroupNC of P contained inN such that forγ ∈ C ′ all elements
of γNC ∩ C ′ have the same canonical parabolic and the prehomogeneous variety γN/NC is special under
StabP (γN).
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We now come to the geometric side of the trace formula. Representation ofG1 onL2(NP \G1). Rp(F ),
f ∈ C∞

c (G1),

(Rp(f)φ)(x) =

∫

GG1

KP (x, y)φ(y)dy, (9.3)

with

KP (x, y) =
∑

γ∈P/N

∫

N
f(X−1γny)dn. (9.4)

WhenP is maximal parabolic:

− τ̂P = char{p ∈ P : ∆P (p) > ∆(expTp)}K. (9.5)

Here∆P is the modular character.
For general parabolicP :

τP (x) =
∏

P ′⊃P
max .

τP ′(x), τγPγ−1(γx)T = τTP (x), T = (TP )P . (9.6)

Arthur:

JT (f) =

∫ ∑

G\G1

∑

P

KP (x, x)τ̂
(
Px)dx. (9.7)

C geometric conjugacy class inG,

KP,C(x, y) =
∑

γ∈P/N

IndGγ=C

∫

N
f(x−1γny)dn. (9.8)

JT (f) =
∑

C J
T
C (f).
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10. ANALYTIC PROBLEMS WITH THE TRACE FORMULA (MUELLER)

Selberg trace formula:rkRG = 1.
Arthur trace formula:rkRG ≥ 1.
F , F(y), 1

|F(y)|

∑
π∈F(y) φ(π).

Lot of analytic problems not yet solved, want to discuss some. For GL(n) a number can be solved, want to
indicate what is the difference between GL(n) and other groups. For the moment consider a reductive group
overQ,G/Q red.Af will be the finite ring of adeles. LetG(A1) = {g ∈ G(A) : |χ(g)| = 1, χ ∈ X(G)}.

Limit multiplicities, Weyl law.
k ⊂ G(Af ) open compact.

µK =
1

vol (G(Q) \G(A)1/K)

∑

π∈Πdisc(G(A)1

m(π)dim(πf )
kf δπ∞ . (10.1)

ConsiderA ⊂∏(G(R))temp, µk(A)→ µPL(A).
Reduction:h ∈ C∞

c (G(R)), bi-K∞-finite.

1

vol (G(Q) \G(A)1)trRdisc(h⊗ 1K) →N→∞ h(1). (10.2)

K ⊂ G(Af ), k(N) ⊂ K cong subgroup.
(1) Control of residual spectrum:L2

disc − L2
cusp ⊕ L2

res.
1
volRcusp(h⊗ 1k)→ h(1).

Moeglin, Waldsburger: Description of residual spectrum.

Trace formula: f ∈ C∞
c (G(A)1), Jspec(f) = Jgeom(f),M Levi containsM0.

The spectral side term is
∑

[M ] Jspec,M(f), where the summands aretrRdisc(f).

P =MN ,Rdisc,M, L2
disc(AMM(Q) \M(A)).

I
G(A)
P (A) (Rdisc,M ⊗ e〈x,HM (·)〉).

A2 ⊃ A2(P ), π ∈ Πdisc(M(A)1).
A2
π(P ), P,Q ∈ P(M).

MQ|P : A2
π(P )→ A2

π(Q) intertwining operator.
P max,P .

Jspec,M =
∑

π∈Πdisc(M(A)1)

∫

R
tr
(
MP |P (π, it)

−1 d

dt
MP |P (π, it)

MP |P (w, o)ρπ(p, t, f)dt
)
. (10.3)

Theorem (Finis, Lapid, M–: Jspec(f) is absolutely convergent.
MP |P (π, s) = n(π, s)RP |P (π, s), n(π, s) =

∏
ν(πν , s).

RP |P (π, s) = ⊗ν∈SRP |P (πν , s) (local intertwining).
G satisfies temp winding numbers (TWN) if for allM ∈ L, M 6= G, F ⊂ ∏(kM,∞) finite, there exists

k > 1 such thatα ∈ ΣM andǫ > 0
∫

R

∣∣∣∣
n′α(π, s)

nα(π, s)

∣∣∣∣ (1 + |s|)−kds ≪F ,ǫ (1 + Λπ∞)k. (10.4)
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HereG−GL(n), rankP is 1,M isGL(n1)×GL(n2), π = π1 ⊗ π2, πi =
∏

cusp(GL(n;A)),

n(π, s) =
L(s, π1 × π̃2)

L(s+ 1, π1 × π̃2)ǫ(1/2, π1 × π̃2)N(π1 × π̃21/2−s)
. (10.5)

Battery ran out.
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11. SATO-TATE CONJECTURE FORFAMILIES (SHIN)

Joint with Templier and Kottwitz and Cluckers-Gordon-Halupczok.

11.1. Introduction. Let F be a family of automorphic representations. Call this a “harmonic family”.
What is the distribution of the Satake parameters atp of π ∈ F asp, π vary? Eventually want to pushp to
infinity; π is ordered by analytic conductor and want that to go to infinity.

Goal is to explain the precise statement of the conjecture / theorem, and discuss some of the ingredients
of the proof. For example, why we need a uniform bound on orbital integrals asp varies; very useful in this
context.

11.2. Families in level / weight aspect.Hypothesis:G connected, reductive split group overQ and assume
the centerZ(G) = 1. Some of these assumptions are for simplicity. The essential hypothesis is thatG(R)
has discrete series.
N ≥ 1, ξ irreducible algebraic representation ofG overC. Γ(N) := Ker(G(Ẑ) → G(Z/N)),

∏
∞(ξ)

equals discreteL-packet associated toξ.
We now define a finite set whose union will be the family we consider.N is the level,ξ the weight:

F(N, ξ) = {π ⊂ L2
disc(G(R) \G(A)) : (π∞)(ξ)}. (11.1)

Level aspect:N →∞, ξ fixed; weight aspect:N fixed,ξ →∞.

11.3. Satake theory. HaveT̂ ⊃ T̂C andĜ ⊃ ĜC with T̂ ⊂ Ĝ. Weyl groupΩ. T̂C/Ω ⊃ Ĝ(Qp) ⊂ T̂ /Ω

with π 7→ x andIndG(Qp)
B π, x ∈ Hom(T (Qp),C×)−X∗(T )⊗Z C×.

Hur(G(Qp))
∼
→ C[T̂ /Ω] by φ→ φ̂ : π → trπ(φ).

Let V := LieĜ/LieT̂ .
Haveµ̂pl,urp (t) = det(1 − ad(t)|V )/det(1− p−1ad(t)|V ) supported ont ∈ T̂C/Ω.

lim
p→∞

µ̂pl,urp = µ̂ST (11.2)

by definition, induced by Haar on̂GC .

11.4. Theorem. (N, p) = 1.

µ̂N,ξ :=
1

F(N, ξ)
∑

π∈F(N,ξ)

δπp (11.3)

(counting with multiplicitym(π)dim(π∞)P (N).
Introduce the “metric”|| · || : X∗(T ),X∗(T )→ R≥0.
In the case ofGL(n): want(m1, . . . ,mn) 7→ sup |mi|.
Write || · || : τµ := 1G(Zp)µ(p)G(Zp) 7→ ||µ||, with τµ = τµ,p and1··· ∈ Hur(G(Qp)), with ||ξ|| :=

||highest weight of ξ||.

Theorem 11.1(S– and Templier). Letk ≥ 1, assume||µ|| ≤ k andφp = τµ. (Level)

µ̂N,ξ(φ̂p) = µ̂pl,urp (φ̂p) +O(pA+BkN−C). (11.4)

In the weight aspect have same main term but now the error isO(pA+Bk||ξ||−C).
Remark 11.2. If p is fixed thenlim µ̂N,ξ = µ̂pl,ur.

Corollary 11.3. If a plot ofN or ξ versusp grows faster than polynomial thenlim µ̂N,ξ = µ̂ST.
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Remark 11.4(Application to low-lying zero statistics). Compute or estimate first or second moments of the
Satake parameters ofπ at p. Look atφ̂(πp) for suitableφp, get good estimates.

11.5. Idea of the proof. µ̂N,ξ(φ̂p) = Jspec(φp1P p(N)φξ) at∞ (“EP function”). Apply the trace formula,
and get it equalsIgeom(· · · ), which equals

∑

γ∈G(R)/∼
elliptic

vol (G(R) \Gγ(A))Oγ(φp)Oγ(1P p(N))trξ(γ) + Levi. (11.5)

Bound everything in the summand, bound the number of conjugacy classes where things are non-zero.
Whenγ = 1: main term: get

µ̂pl,ur(φ̂p) (11.6)

(which equalsφp(1) = O1(φp)).
All the effort is to control the error terms, arising whenγ 6= 1. The difficulty comes from the following

fact: p is moving around,φp can have arbitrarily large support. If increase level to infinity support gets
smaller, eventually meets rational points and error goes away. Have to deal with / live with the fact that
we have a varying set of conjugacy classes. Bound the number of conjugacy classes. Control the num-
ber of γ where the summand is non-zero. Looks quite harmless, but need some control on the volume.
Break global problem into local problems. HaveDG(γ)1/2O(φp) (work of Cluckers et al comes in here as
things are varying and need uniform bounds, get something likeO(pA+Bk)) andDG(γ)1/2O(1P p(N)) and
trξ(γ)/dimξ.
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12. SYMMETRY BREAKING AND THE GROSSPRASAD CONJECTURE FOR ORTHOGONAL GROUPS

(SPEH)

Slides online.
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13. TRACES, CHARACTER SHEAVES, GEOMETRIC LANGLANDS (NADLER)

Plan:
(1) Dictionary between arithmetic/ geometric language. Primer inD-modules.
(2) What is a trace? Character sheaves.
(3) Discussion of traces in Geometric Langlands. Perspective if field theory.

13.1. Dictionary. We assumek = C.

Arithmetic Geometric
F number field C smooth projective curve overk
K local field C((t)) power law series
k residue field C residue field / base field
O ring of integers C[[t]] power series
GF Galois π1(C) fund
G(F ) \G(A)/G(O) BunG(C) moduli ofG-bundles
G(O) \G(K)/G(O) GrG Grassmannian
IG(K)/I FlG affine flag variety
Function O-module coherent sheaf

The notion of a smooth function that is locally constant is aD-module.
First theorem on the subject, showing where the dictionary leads, is the following.

Theorem 13.1. We haveCc(G(O) \ G(K)/G(O)) = K(RepG) (commutative rings) on the arithmetic
side; on the geometric side it isD −mod(G(O) \G(K)/G(O)) ≃ Rep(Gv).

Remark 13.2. All constants implicitly defined. Higher homotopical data.Example:HG(pt) = Sym(G∗[−Z])G.
Arthur parameters in geometric setting.

The way you capture families in geometry is to talk about deformations.

13.2. Primer on D-modules.

Definition 13.3. AD-module onX equalsO-module on de Rham spaceXdR:

∆̂X ’ X → XdR. (13.1)

D stands for differential operator, can explain in terms of descent. AD-module onX equals anO-module
plus a complex structure ofDX -module, whereDX is dists on∆̂X .

Universal form of special functions. ImagineP (f) = 0 andP is a linear Partial Differential Equation.
For example,P = ∂x − 1 with solutionf(x) = ex. TheD-moduleM = DX/DX(P ). The solution ofM
are

Sol(M) = HomDX (M, fn space). (13.2)

It recoversf , captures all the key parts of the differential equations.
Infinite geom: Smooth functions have values and derivativesthink ofDX -modules as objects onT ∗X.
Singular support:DX has a natural filtration withgrDX = OT ∗X .
M DX -module filt ss(M) ⊂ T ∗X.
For example, takeX = A,DX = C〈x, ∂x〉 with ∂xx− x∂x = 1.
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(1) Favorite example isOX = DX/(∂x). In x− ∂x plane, this is just thex-axis.
(2) Take∂0 = DX/(x): y-axis now.
(3) expλ = DX/(∂x − λ): line at heightλ.
(4) ∂a = DX/(x− a): vertical linex = a.

First three above have singular support equal to the zero section.

Example:X = Gm, DX = C〈x, x−1, x∂x〉. For everyλ ∈ t∗, Mλ = D)X(x∂x − λ). What is the
character sheaf? This is a piece of the Mellin transform.D-mod(T ) = O-mod(t∗/ΛvT ). ss is zero section
↔ finite support. Character sheaf ofT isD-module with singular support equal to zero section.

13.3. What is a trace? Taken × n matrices, have a map to the ground field by taking the trace:tr :
Mn×n → k, and satisfiestr(fg) = tr(gf). It is the “universal coabelianization”. Given a finite dim module
/ vector space, any endomorphism has a trace.

Question: what isk? If just give an algebra and want to develop a theory and ant torecoverk, how do we
do this?
Example: G formal group,A = C[G],M a finite dimensionalA-module,tr : End(M)→ C(GG) classifies.
WhyC(GG)?

Abstract:A algebrahh(A) = A⊗A =
∫
S1 A.

Let’s do an example of this formalism.A = Rep(Gv) hh(A) − Coh(GG). So geometric Satake parame-
ters live inhh(A).

Example: H = D − mod(B \ G/B) jj(H) miracle that equals character sheaves onG. Is D −
mod(GG )nilp ss.

Do get interesting things and get them through interesting constructions.

13.4. Traces in Geometric Langlands.Now consider traces for spherical and affine Hecke operators. Try
to ask first the same question: what kind of objects are they? One answer that you can imagine is that they
should be class functions. MorallyD-mod(G(K)

G(K)). Escape: Field Theory: predicts characters should be
D-modules onBunG(Eq).
:
:
:
:
:
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14. RIGID INNER FORMS AND ENDOSCOPY(KALETHA )

Lecture notes online.
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15. COHOMOLOGY GROWTH ONU(3) (MARSHALL)

TakeΓ ⊂ SO(d, 1), takeΓ(n) ⊂ Γ, look athi(Γ(n) \ Hd/C) asn →∞. HaveL2(Γ(n) \ SO(d, 1)) =
⊕
π∈Ĝ

m(π,Γ(n))π.
Considerπ1 with 0 < i < d/2, i = d/2, π+d/2.

hi(Γ(n) \Hφ,C) = m(πi,Γ(n))m(π+,Γ(n)) +m(π−,Γ(n)).
V (n) = |Γ : Γ(n)|.
lim m(π,Γ(n))

V (n) = 0 if i 6= d/2.
p(π) = inf{p ≥ 2 : 〈π(g)v, u〉 ∈ Lp(G)}
π discrete series impliesp(π) = 2.

Conjecture 2 (Sarnak-Xue). m(π,Γ(n))≪ǫ V (n)2/p(π)+ǫ.

Sarnak and Xue reduced this to countingΓ(n)∩BG(T ). If ↑ rkRG = 1, Γ co-compact, counting implies
result. Proved forSL(2,R) andSL(2,C). Partial bound forSU(2, 1).

Will switch to unitary groups to talk about endoscopy. A bit easier to talk about in this case, this is the
case I’ve worked out in details.

E/F CM,G∗ = U(n) for anti− diag(1, . . . , 1)(×ξ).
L2
disc(G

∗(F ) \G∗(A)).
ψ = ⊕Symdi ⊗ µi.
µi CSD onGLni/E.∑

(di + 1)mi = n.
L2
d(G

∗(F ) \G∗(A)) =
∑

ψ

∑
π∈Πψ

m(π)π.
m(π) ≤ 1.
G inner form,GV ≃ U(p, q).
Parameterψ, global packetΠψ, πv ∈ Πψ.
H i(g,K;πv) 6= 0.

ψC× , C× =

(
z 0
0 z−1

)
⊂ SL(2,C), ψ : C× → GL(n,C).

Λp ⊗ ψ|C× : C× → GL(
(
n
p

)
,C) by z 7→ diag(zk1 , . . . , z

k(np )); ψ should contribute only in degrees

pq + ki.

TakeG− U(3), E/F = Q.
Contributing toH2: µ, µ⊕ χ, χ1 ⊕ χ2 ⊕ χ3.
Contributing toH1,H2,H3: sym1 ⊕ χ1 ⊕ χ2.
Contributing toH0,H2,H4: sym2 ⊕ χ.
H = U(2)× U(1).
πψv = {πn(ξ), πS(ξ)}, f ∈ C∞

0 (Gv).
tr(πn(ξ)(f)) + tr(πs(ξ)(f)) = ξ(fH).
tr(πn(ξ)(f))− tr(πs(ξ)(f)) = tr(π̃ψq ◦ ǫ(f̃)), f̃ onGL3/E2.
m(π) = 1 if and only if (−1)ns = ǫ.
s ∈ Sψ Ĥ = Z

Ĝ
(s).
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For example:U(3): Sψ = I, diag(−1,−1, 1) ∈ GL3(C). Pretty reasonable endoscopic group isU(2)×
U(1) (in the diag(−1,−1, 1)), while in I get the relation withGL3/E. There is a special element that
shows up here.sψ = ψ(1,−1), sψ ≃ (Z/2)2.
sψ = diag(−1,−1, 1).
〈, 〉 : sψ ×Πψv .
Eachs ∈ Sψ, 〈π, ·〉 ∈ Ŝψ.∑

π∈Πψi
〈π, ssψ〉tr(π(f)) = fH(ψH ).

U(3), E/F = Q, Γ(n) ⊂ Γ.

h
(1,0)
(2) (Γ(n) \H3

C,C) = m(π1,0,Γ(n)), which Sarnak-Xue predict is at mostV (n)1/2 (other methods can
get / predict exponents of 7/12 and 3/4).

Theorem 15.1(Rogawski). If π ∈ L2
disc hasπ∞ ≃ π1,0, there existsψ = sym1⊗χ1⊕χ2 such thatπ ∈ Πψ.

There existsξ onU(2)× U(1) such thatπ ∈ Πξ, ξ∞ fixed.

h
(1,0)
(2) ≤

∑

ξ:ξ∞ fixed

∑

π∈Π3

dimπ
K(n)
f

= (vol (K(n)))−1
∑

ξ

∑

π∈Πξ

tr(πf (1K(n)))

= (vol (K(n)))−1
∑

ξ

ξ(1HK(n)). (15.1)

Can choose1HK(n) = n−21KH (n).

h
(1,0)
(2) ≪ n9n−2n2n−5 = n4. (15.2)

How might this look forU(4)? TakeG∗ = U(4), G∞ = U(3, 1), H2.
ExpectH2(Γ(n) \H3

C,C)≪ V (n)8/15 versusV (n)2/3. Main termψ = χ⊗ sym1 ⊕ µ.
Most error:sym1 ⊗ µ.
sψ = diag(1,−1, 1, 1) ∈ GL4(C).∑

tr(π(f)) U(2)× U(2) (χ ◦ det×µ) equalstr(χ ◦ det⊕µ(fH))..
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16. ON LOCAL CONSTANCY OF CHARACTERS(K IM )

Joint work with G. Lusztig.

16.1. Applications. Characters are locally constant.

• One application is computing character as a locally constant function.
• Another application is finding the support of distributions.
• Find estimate of characters.

Won’t talk about the first aspect.

k a nonarchimedian field with residue fieldFq.
G a connected semi-simple group overk.
G = G(k).
Irr (π Vπ) ∈ R(G): category of smooth representations.
Θπ : C∞

c (G)→ C with Θπ(f) =
∫
G f(y)Θπ(y)dy.

Example: Let π be supercuspidal. Harish-Chandra integral formula:γ ∈ Gr.s.s.:

Θπ(γ) =
degπ

Θ(1)

∫

G/ZG

∫

K
θ

((
gk

γ

))
dkdg, (16.1)

with θ the matrix coefficient ofπ, π = c− IndGJ ρ, θ = θρ (Sally’s ??).
For example,π = IndGBχ,

Θπ(γ) =
∑

w∈W

χ(γw)DG/T (γ
w)−1/2. (16.2)

Example: Steinberg subquotient representations.
The aim: computing characters of noncuspidal unipotent representations at very regular elements. For

example, Iwahari spherical representations.

T∞|s: old (1): Casselman:(π Vπ), r ∈ GGr.s.s., Pγ = MγNγ . Nγ = {u ∈ G : γnuγ−n → 1}.
Nγ = {u ∈ G : γ−nuγn → 1}. Implies γ ∈ Mγ compact mod center inMK . Θπ(γ) = ΘπNγ (γ),
πNγ ∈ R(Mγ).

new (2): Local constancy of characters at r.s.s.
Adler-Korman, Meyer-Solleveld: determine the size of neighborhood ofγ whereΘγ is constant. This

neighborhood depends on the depth of the representationπ andγ.

(3) Hecke representations via categorical equivalence.
B(G) = {(M,σ)}/ ∼ Gconj → Rs(G) ≃ Mod − H(G//J, ρ), with s = [M,σ] and(J, ρ) with ρ

irredf on rep.

Example: [T, 1], Iwahari sphericalRs(G), Mod −H(G//I, 1) with Iwahari subgroupI, s = [M,σ] with
σ unipotent cuspidal,Rs(G) unipotent.
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Definition 16.1. (1) A split r.s.s.γ is very regular ifDMγ (γ) = 1. (2) Aγ ∈ Gr.s.s. is very regular if it splits
over an unramified extensionk′/k andγ is a very regular split element.

Remark 16.2. If Mγ = Gγ , γ is a lift of r.s.s. element of finite reductive group.

Exmaple: Steinberg representationT ⊂ B ⊂ G,

St =
∑

B⊂P

(−1)INdGP δ
−1/2
P . (16.3)

The left hand side is polynomial inq. van Dijk and Casselman. Implies

ΘSt(γ) = δPγ (γ)(−1)dimT−dimAγ . (16.4)

π < IndGMNσ, depth zero,σ: depth zero super-cuspidal.
[M σ] ∼ (P0 σ0).
γ compact very regular (i.e.,Mγ ∈ G).
LetQ be a smallest parabolic subgroup such thatγ ∈ Q ⊃ Q+.

Theorem 16.3.We haveΘπ(γ) = Tr(π(γ)|V Q+

π ).

AK. and [MS]: HaveΘπ is constant(γT+
γ )G ⊃ Q+.

Θπ(γ) = Θπ(δ ∗ 1Q+/vol (Q+)) (last fraction is proj operator ontoV Q+
. �

Corollary 16.4. If gP0 * Q for all g ∈ G thenΘπ(γ) = 0.

Proof. V Q+
= 0. Let (π Vπ) be unipotent.γ very regular.Q is as above.

ThenΘπ(γ) = [V Q+

π : RQctr]Q with Q = Q/Q+. �

HereQπ(γ) ∈ Z and constant on(Tγ)cvr. CTγ conjugacy class inW : Weyl group ofQ.
CTγ Rctr.
There exists a 1-1 correspondence:{T : max torus split overkm} and{w ∈ W ′ : ord(w) < ∞}/ ∼ by

T CT .
By corollaryP0 ⊂ Q.
HaveR[M σ](G) ⊃ Rσ?(Q). SendVπ → V Q+

.
Left hand side≃ Mod − H(G//P0 σ0), which containsMod − H(G//P0 ∩Q σ0) (which is≃ to the

right hand side). Continue along these lines.

Remark 16.5. γ noncompact very regular.Θπ(γ) = ΘπNγ (γ).
πNγ? (Classical groups Tadic). Use Hecke algebra and theory of type to findπNγ .
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17. SUBCONVEXITY BOUNDS FORRANKIN -SELBERGL-FUNCTIONS (HOLOWINSKY)

Basic object of study:π an irreducible automorphic representation, think of it as having some data
(parameters) associated to it that make it belong to a natural family (spectrally complete, trace formula).
ConsiderL(s, π). We have the analytic conductorQ(s, π), measures the complexity of theL-function. The
reason we’re introducing this is that if we establish non-trivial estimates, then we end up proving something
non-trivial about the associated arithmetic object.

Often want non-trivial estimates atRe(s) = 1/2, where we will restrict for the rest of the talk. Have the
convexity bound, follows trivially from complex analysis,functional equation, Phragmen-Lindelof. Gives
L(s, π) ≪ǫ Q(s, π)1/4+ǫ. The sub-convexity problem is to beat this by some power of the conductor:
L(s, π) ≪ǫ Q(s, π)1/4−δ (for some positiveδ). The Riemann hypothesis impliesL(s, π) ≪ǫ Q(s, π)ǫ. In
many applications (such as equidistribution) all we need issomeδ > 0; the larger theδ the better results we
have on therateof convergence.

17.1. Standard tools and methods. Spectral Formula:

• Orthogonality of Dirichlet characters.
• Petersson / Kuznetsov trace formula.

Reduces complexity / conductor.
Dual summation formula:

• Poisson
• Voronoi

Change arithmetic structure, change in length of summation.
Tricks, locally:

• Reciprocity, etc.

17.2. The Moment Method. ChooseF ,Q(s, π) = Q(s,F).
Choose a momentr, study

1

|F|
∑

π∈F

|L(1/2, π)|r ≪ Q(1/2,F)r/4/|F|; (17.1)

goal is to have a better bound that this. In the past these methods give just the bound above; we need to do
additional work (amplification) to go further.

Will study π = π1 × π2, both representations varying, will use this to our advantage. The first will be
GL(d) and the secondGL(e). We have associatedL-functionsL(s, πi) with conductorsQ(s, πi). The
Rankin-Selberg convolutionL(s, π1 × π2) has conductorQ(s, π1 × π2) = Q(s, π1)

eQ(s, π2)
d.

Advantages:

• Have a large conductor, but know something aboutπ (factorization).
• Extra degree in analytic freedom. Choices in family to average over.
• Know that certain co-primality conditions exist. ThinkQ(s, π1) = p andQ(s, π2) = q where these

are two different primes.

Motivation: In QUE want to studyL(1/2, sym2f × g) wheref is varying andg is fixed. Establishing
sub-convexity here is difficult and hasn’t been done. Best iswork by Sound saving a logarithm.
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Cases:π1 varying,π2 varying. Holomorphic weightk-fixed levelp, trivial nebentypus newform,π2 ∈
B∗
K(p). Forπ1, considerGL(1), χ mod q, GL(2), levelq, GL(3), sym2f with f of weightk.
UseA for coefficients ofπ1 andλ (averaging) forπ2. LetQ = Q(1/2, π1 × π2).
Method: A.F.E.

L(1/2, π1 × π2) =
∑

n≤X

A(n)λ(n)√
n

+ ǫ(1/2, π1 × π2)
∑

n≤Q/X

A(n)λ(n)√
n

. (17.2)

Average overπ2 using Petersson’s trace formula.Get

∑

g∈B∗
k(p)

w−1
g λg(n)λg(m) = δ(n,m) + 2πi−k

∑

c≡0 (p)
c>0

S(n,m; c)

c
Jk−1

(
4π
√
nm

c

)
, (17.3)

with wg ∼= KP .

Dual summation in π2: Poisson, Voronoi,(a, c) = 1.
(a) ∑

n≤X

A(n)√
n
e(na/c) →

∑

n≤c2q2/X

A(n)√
n
e(−naq2/c). (17.4)

(b) ∑

n≤X

A(n)√
n
e(na/c) →

∑

n≤c3k2/X

A(n)√
n

S(a, n; c)√
c

. (17.5)

17.3. Results.
• (with Templier):

∑

g∈B∗
k(p)

w−1
g L(1/2, χ × g) ≪

(
1 +

q1/2

p

)
(pq)ǫ. (17.6)

HaveQ = Q(1/2, g × χ) = q2p. Convexity: Q1/4/p = q1/2/p3/4. So 1 < q1/2/p3/4, need
p < q2/3, q1/2/p < q1/2/p3/4, p > 1/.

Subconvexity whenqη < p < q2/3−η for all η > 0.
Lindelöf on average:q1/2/p < 1, q1/2 < p.
If we amplify in this range, we get subconvexity forqη < p < q4/5−η for all η > 0.

Another result with Templier:f dihedral of levelq:
∑

g∈B∗
k(p)

w−1
g L(1/2, f × g) ≪

(
1 +

√
q

p

)
(qp)ǫ. (17.7)

Q = q2p2, convexityq1/2p1/2/p = q1/2/p1/2.
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18. OPEN DISCUSSIONSESSION: I (CALEGARI)

LetF be a number field,O = OF , p ⊂ OF prime of res. charp.

Problem: Is π1(Spec(OF \p) infinite? LetFp/F be the max. extension unm outp. IsFp/F infinite? Anal-
ogous questions: Isπ1(Spec(OF )) finite or infinite? Sometimes each. For example, Minkowski showed
there are no unramified extensions ofQ; takeF = Q andQ(

√
−1): finite. Sometimes it is infinite. The first

example is Golod-Shava.
Easier questions: Does there exist a (smooth, proper) curveC/F with good reduction outsidep with

g ≥ 7 (orA/F of dimension at least 1). Just asking for existence, not infinitely many.
ConsiderQ,X0(p), F totally real,D/F ramified at all but all∞-place.
Does there exist a motiveM/F with the property that it has good reduction outsidep and (2) either

it has bad reduction atp over any finite extension ofF? Want to exclude trivial examples, like∆ =
q
∏∞
n=1(1− qn)24.

LetF = Q(
√
−1), letp = ππ be a prime congruent to 1 modulo 4 that splits. Goal is to findA/OF [1/π].

Step 1: does there exist an elliptic curveE/OF [1/π]. Try to write down an equation with discriminant,
maybe good reduction outside 2, .... Try∆ = 16π. If it has rational points you win, else have to do
something else. We’re just looking for an abelian variety, so we can do the following.

First compute the maximal abelian extension ofF unramified outsideπ: µ4 \ O∗
F,π = µ4 \ Z×

p =

Zp×F×
p /µ4. Can takeF −−F1−−F2−−F2 · · · . Try to create an elliptic curve overFn. Can ask whether

or not there exists an elliptic curveE/OFn [1/π]. If yes takeA = ResFFn(E). Have a tower. Not only do we
have our original curve (does it have a rational point over the tower), but we have many more elliptic curves
we can write down. Bigger and bigger fields, maybe one eventually has a rational point.

Weight 2 modular forms. LevelN , (N, ℓ) = 1. Γ0(N). Distribution ofaℓ in Fp. Naive: givenα ∈ Fp,
does there exist anf with aℓ(f) = α? Does there exist a Galois representationρ : Gal(Q/Q) → GL2(Fp)
that is irreducible, continuous, odd, has determinant equal to ǫ, unramified atℓ, x2−αx+ ℓ = (x−β1)(x−
β2). One would believe that if you choose a Galois group and a fixednumber of primes then there exists
field with what want at here. Supped up version of Inverse Galois. Same would be true here. Want elements
that contain this characteristic polynomial.... Is there atrace formula-ish method to extract this? If think
about weight 1 modular forms then trace of Frobenius and try and count things that are close.
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19. OPEN DISCUSSIONSESSION: II (U RBAN)

K = KP I,G/Q,G/Qp split. λ weight inX = Hom(T (Zp),Qp), θ equals a system of Hecke eigenval-
ues. We havex = (θ, λ) ∈ E if and only if θ shows up inH0(SG(K),Dλ).

We have(θ, λ) ∈ EK ⊃ EEPK , where the right is a union of the irreducible components of dimension
dimH and the left maps toX .

Question: What are the dimensions of the irreducible components inside E \ EEPK ? x ∈ EK , x belongs to
exactly one irreducible componentC (smooth).x = (θx, λx).

Conjecture: There exists integersa, b such thatH i(SG(K),Dλx)θx 6= 0 if and only if i ∈ [a, b] and the
projection ofC ontoX has codimensionc = b− a (which we denoteℓ0).

Example: F totally real field,G = SL(2)/F , d = [F : Q], λ parallel weight.X is dimensiond. Construct
Eisenstein classesF Hecke characters ofF× of weightλ in H i(Γ,Wλ) for i = d, d + 1, . . . , 2d − 1.

Conjecture: The projection ofCEis ontoX is codimensiond − 1 implies the dimension is 1. Implies
correspond to ap-adic family of Hecke characters ofF of dimension1 + δ with δ the Leopold defect. This
means

0 → kernel → O
x
P → O×

F,p → ClF,p∞ → 0. (19.1)

The rank of the kernel isδ.

Remark: It is not sufficient to show that the codimension of the projection is at mostb − 1 implies the
dimension of the component is at leastdimH− (b− a). Special case of the conjecture is whereb− a = 1
=⇒ the conjecture holds for trivial reasons.

H i(T,Du) A(u)
x1, . . . , xν H i0(T,Du) 6= 0. ImpliesH i(Dλ)θ 6= 0 for i = i0, i0 − 1, . . . , io − r.

(2) LetD be a quaternion algebra over an imaginary quadratic fieldK. HaveH1, H2. Eigenvarieties
have to be dimension 3. Don’t have discrete series.

(3) Now takeG = PGSp4/Q. π rep ofPGL(2)/Q eigenform of weight2k − 2 for k ≥ 2. Assume that
L(π, 1/2) = 0. In this case we have two situations.SK(π) Saito-Kurakowe type.

L(SK(π), s) = L(π, s)ζ(s + 1/2)ζ(s − 1/2). (19.2)

Have two cases. Ifǫ = 1 thenSK(π)∞ nontempered andH2, H4, and if ǫ = −1 then discrete series and
H3. Classes in the cuspidal cohomology(k, k).
L(π, 1/2) = 0 implies there exists Eisenstein classes in degree 2, 3 (Harole).
If ǫ = −1 then we have cohomology in degree 3 only(H i(Dλ)), HereC maximal dimension.
If ǫ = 1 we have cohomology in degree ?, 3, 4. Conjecture: dimension should be 0, the point is isolated.
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20. OPEN DISCUSSIONSESSION: III (C LUCKERS, GORDON)

Families: Sets inG(Qp). Function onG(Qp). Indexed by integers, points on projections of varieties over
the residue field, parametrized fromX(Qp) variety.

Example:µ (in Zn) goes toτµ (function onG(Qp)) goes to orbital integralOγ(τµ) (family indexed by
µ, γ).

Nilpotent orbits inG(Qp). (1) Combinatorial (partitions). (2) Res. field parameters(in SLn with xn = 1).
Family of automorphic forms??? Not sure how to answer. If however want to talk about a family of elliptic
curves then maybe not so bad as defined by algebraic equationsand back in business.

Question:Eλ with λ ∈ OF . If F is local fine, but ifF is global...? Hereλ = j(E). What we can do, which
may or may not be useful, is we can write down some formulas (need to figure out ifj-invariant is definable)
that ensure if global fieldF = Q and(Ep) such that for eachp thej-invariant ofEp is [–] modulop. Might
get a lot more objects than want, might end up getting it for the one you want.

Igusa (homogeneous):f(x1, . . . , xn) overZ,N > 1, study

S(N) =

N−1∑

xi=1
i=1,...,n

exp(2πif(x)/N)
1

Nm
. (20.1)

Have
|S(pm)|C ≤ cǫp

−m0αp(f)+ǫ, (20.2)

whereα(f) = infp αp(f) in Q. Don’t wantCǫ,p ≤ c + ǫpa; this is trivial. Conjecture can bound indepen-
dently ofp if homogeneous. Ifα(f) ≤ 1 thenα(f) is logcanonical ??

LetΨ be an additive real character onAQ, finite. Letφ S.B. onAnQ. Forλ ∈ A,

I(λ) =

∫

x∈Anp

φ(x)Ψ(f(x)λ)(dx). (20.3)

Fir f non-homogeneous: usingq < α(f) and finiteS(p) should have a bound in terms ofp−a.
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21. OPEN DISCUSSIONSESSION: IV: SLOPES OFMODULAR FORMS (GEE)

Fix p > 2 that doesn’t divideN , let k ≥ 2, f −∑ anq
n.

Sk(Γ0(Np),Qp) Up.
Newforms↔ St atp.
Oldforms:Tp-eigenvector inSk(Γ0(N),Qp). Two eigenvectors inSk(Γ0(Np),Qp). Up-eigenvaluesα, β

roots ofx2 −apx+ pk−1.
Up-eigenvalues:p-adic valuations = slopes are in[0, k − 1]. Symmetry in slopes of oldforms:ν(α) +

ν(β) = ν(pk−1) = k − 1.
Oldforms: normalize so that slopes are in[0, 1]. What happens to the slopes ask → ∞? Do we get a

limiting distribution?

Conjecture (Gouv̂ea): Converges to the distribution which is uniform on[0, 1
p+1 ] ∪ [ p

p+1 , 1] and zero else-
where.

As ap = α+ β it suggests that its valuationν(ap) is usually at mostk−1
p+1 ; this is not known. We do know

it is at mostk−1
p−1 . This should be provable usingp-adic Hodge theory.

Let’s assume thatN, p are such that every modpGalois representation associated to a form inSk(Γ0(Np),Qp)
is ordinary in the sense of being reducible when restricted to a decomposition group atp. If k ≤ p + 1,
oldformsSk(Γ0(Np),Qp) haveTp-eigenvalues which arep-adic units. For example,N = 1, p < 100 and
p 6∈ {59, 79}.

Can consider local question. Consider local Galois representations.
f ρf : GQ → GL2(Qp). ρf |Gp → GL2(Qp) with Gp = Gal(Qp/Qp).
If ap = 0: ρf |Gp is irreducible.
If ap is p-adically close to zero, i.e.,ν(ap) is large,ρf |ap is irreducible.

AssumeΓ0(N)-regular.

Conjecture (Buzzard): Explicit algorithm with input the list of slopes in weight atmostp+ 1 and outputs
the list of slopes in any weight.

Consequence of algorithm is that all slopes are inZ (would be false if we didn’t haveΓ0(N) regular). At
the heart is a pairing algorithm.

Additional comments available online.
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22. OPEN DISCUSSIONSESSION: IV: GROWTH OF FIELD OF RATIONALITY (SHIN)

Considerf ∈ Sk(N), the set of weightk cusp forms of levelΓ0(N), let’s normalize so thata1 = 1 in
f =

∑
anq

n and setQ(f) = Q(an).
Define for integerA the setSk(N)≤A to be allf ∈ Sk(N) such that[Q(f) : Q] ≤ A.

Problem (Serre): Consider|Sk(N)≤A|/|Sk(N)| in limiting cases (fix one ofk,N and let the other tend to
infinity).

Consider the level aspect first.

Theorem 22.1(Serre). There exists a primep, (p,Nm) = 1 for all m, such thatlimm→∞ |Sk(N)≤A|/|Sk(N)| =
0.

Proof. The crucial ingredient is the proof of Ramanujan transferred to modular forms. Consider∪m≥1{ap(f) :
f ∈ Sk(Nm)

≤A}; is finite. Eachap(f) is an algebraic integer, so a root of a monic polynomial inZ[x].
Bounded degree, bounded coefficient inp,A, finitely many such monic polynomials. �

Equidistribution:lim |Sk(Nm)
≤A|/|Sk(Nm)|.

Example:{Nm} equals2, 2 · 3, 2 · 3 · 5, . . . . Or 2, 22 · 32, 23 · 33 · 53, . . . .

Question: Can you prove without this hypothesis?

The caseA = 1 is known (counting elliptic curves).

In the weight aspect: No prediction in general.

Maeda’s Conjecture: Let N = 1. For all f ∈ Sk(1), [Q(f) : Q] = |Sk(1)| (the left hand side is
[Q(a2) : Q]).

Question: For all A ≥ 1, does there exists a primeq and anf ∈ Sk(q) such that[Qp(f) : Qp] ≥ A?
Calegari believes ‘yes’ while Hida believes ‘no’.

Additional comments available online.
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23. OPEN DISCUSSIONSESSION: V: (HOFFMAN)

Slides are online.
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24. OPEN DISCUSSIONSESSION: VI: CLOSED-FORM MOMENTS IN ELLIPTIC CURVE FAMILIES

(M ILLER)

Slides online:

http://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/SimonsTalk_EllC
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25. OPEN DISCUSSIONSESSION: VII: G EOMETRIC LANGLANDS (NADLER)

Discussed modules and their connections.
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26. PROBLEM SESSION: I (M ILLER)

Slides online:

http://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/SimonsProblems_

26.1. Introduction. I study n-level density of zeros of families ofL-functions
n-level density:F = ∪FN a family ofL-functions ordered by conductors,gk an even Schwartz function:
Dn,F (g) =

lim
N→∞

1

|FN |
∑

f∈FN

∑

j1,...,jn
ji 6=±jk

g1

(
logQf
2π

γj1;f

)
· · · gn

(
logQf
2π

γjn;f

)

AsN →∞, n-level density converges to
∫
g(−→x )ρn,G(F)(

−→x )d−→x =

∫
ĝ(−→u )ρ̂n,G(F)(

−→u )d−→u .

Conjecture (Katz-Sarnak) (In the limit) Scaled distribution of zeros near central point agrees with scaled
distribution of eigenvalues near 1 of a classical compact group.
Results / Applications

• Results:
⋄ Agreement:Many families, small support.

⋄ Extending support:Related to arithmetic.

• Applications:
⋄ Class number:Bounds on growth rate.
⋄ Average rank:Vanishing at central point.

Techniques

• Explicit Formula:Convert sums over zeros to sums over Satake parameter moments.

• Averaging:Dirichlet, Petersson, Kuznetsov, ....

• Combinatorics:Showing agreement b/w NT and RMT.

26.2. Problem 1: Lower Order Terms. Explicit Formula

• π: cuspidal automorphic representation onGLn.

• Qπ > 0: analytic conductor ofL(s, π) =
∑
λπ(n)/n

s.

• By GRH the non-trivial zeros are12 + iγπ,j.

• Satake params{απ,i(p)}ni=1; λπ(pν) =
∑n

i=1 απ,i(p)
ν .

• L(s, π) =∑n
λπ(n)
ns =

∏
p

∏n
i=1 (1− απ,i(p)p−s)

−1.

∑

j

g

(
γπ,j

logQπ

2π

)
= ĝ(0)− 2

∑

p,ν

ĝ

(
ν log p

logQπ

)
λπ(p

ν) log p

pν/2 logQπ
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1-Level Density
Assuming conductors constant in familyF , have to study

λf (p
ν) = αf,1(p)

ν + · · ·+ αf,n(p)
ν

S1(F) = −2
∑

p

ĝ

(
log p

logR

)
log p√
p logR


 1

|F|
∑

f∈F

λf (p)




S2(F) = −2
∑

p

ĝ

(
2
log p

logR

)
log p

p logR


 1

|F|
∑

f∈F

λf (p
2)




Corresponding classical compact group is determined by

1

|F|
∑

f∈F

λf (p
2) = cF =





0 Unitary

1 Symplectic

−1 Orthogonal.

Open Problem: Lower order terms
Very similar to Central Limit Theorem.

• Universal behavior: main term controlled by first two moments of Satake parameters, agrees with
RMT.

• First moment zero save for families of elliptic curves.

• Higher moments control convergence and can depend on arithmetic of family.

Open Problem: Develop a theory of lower order terms to split the universality and see the arithmetic.

26.3. Problem 2: Repulsion at the Central Point. Behavior of zerosnear central point
For oneL-function: good theory high up critical line.

For afamily of L-functions: good theory as conductors tend to infinity.

Goal is to understand behaviorat central point for finite conductors.
Questions (Elliptic Curve Families)
Excess rank:Expected vanishing at central point.

Repulsion:First zero above central point.

Open ProblemModel the observed behavior here (done) and extend to other families (in progress).
Modeling lowest zero ofLE11(s, χd) with 0 < d < 400, 000
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Lowest zero forLE11(s, χd) (bar chart), lowest eigenvalue of SO(2N) withNeff (solid), standardN0

(dashed).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  0.5  1  1.5  2

Lowest zero forLE11(s, χd) (bar chart); lowest eigenvalue of SO(2N):Neff = 2 (solid) with discretisation,
andNeff = 2.32 (dashed) without discretisation.

26.4. Problem 3: Combinatorics. Background
Different techniques to compute Number Theory and Random Matrix Theory.

Challenge is showing the two quantities are the same.

n-Level Density: Determinant Expansions from RMT

• U(N), Uk(N): det
(
K0(xj , xk)

)
16j,k6n

• USp(N): det
(
K−1(xj , xk)

)
16j,k6n

• SO(even): det
(
K1(xj , xk)

)
16j,k6n

• SO(odd): det (K−1(xj , xk))16j,k6n +
∑n

ν=1 δ(xν) det
(
K−1(xj , xk)

)
16j,k 6=ν6n

46



where

Kǫ(x, y) =
sin
(
π(x− y)

)

π(x− y) + ǫ
sin
(
π(x+ y)

)

π(x+ y)
.

Alternative to Determinant Expansion
Expand Bessel-Kloosterman piece, use GRH to drop non-principal characters, change variables, main term
is

b
√
N

2πm

∫ ∞

0
Jk−1(x)Φ̂n

(
2 log(bx

√
N/4πm)

logR

)
x.

logR

with Φn(x) = φ(x)n.

Main Idea Difficulty in comparison with classical RMT is that instead of having ann-dimensional inte-
gral of φ1(x1) · · · φn(xn) we have a 1-dimensional integral of a new test function. Thisleads to harder
combinatorics but allows us to appeal to the result from Iwaniec-Luo-Sarnak.
Problems
Open Problem: Further develop alternatives to the Katz-Sarnak determinant expansions.

Open Problem: Directly prove agreement for quadratic Dirichlet families(compare with Entin, Roddity-
Gershon and Rudnick).

26.5. References. References to my work on these problems
• Investigations of zeros near the central point of elliptic curveL-functions, Experimental Mathematics15

(2006), no. 3, 257–279.http://arxiv.org/pdf/math/0508150

• Low lying zeros ofL–functions with orthogonal symmetry(with Christopher Hughes), Duke Mathematical
Journal136(2007), no. 1, 115–172.http://arxiv.org/abs/math/0507450

• Lower order terms in the 1-level density for families of holomorphic cuspidal newforms, Acta Arithmetica
137(2009), 51–98.http://arxiv.org/pdf/0704.0924.pdf

• The effect of convolving families ofL-functions on the underlying group symmetries(with Eduardo Dueñez),
Proceedings of the London Mathematical Society, 2009; doi:10.1112/plms/pdp018.
http://arxiv.org/pdf/math/0607688.pdf

• The lowest eigenvalue of Jacobi Random Matrix Ensembles andPainlevé VI, (with Eduardo Dueñez, Duc
Khiem Huynh, Jon Keating and Nina Snaith), Journal of Physics A: Mathematical and Theoretical43 (2010)
405204 (27pp).http://arxiv.org/pdf/1005.1298

• Models for zeros at the central point in families of ellipticcurves(with Eduardo Dueñez, Duc Khiem Huynh,
Jon Keating and Nina Snaith), J. Phys. A: Math. Theor.45 (2012) 115207 (32pp).
http://arxiv.org/pdf/1107.4426

• Then-level density of zeros of quadratic DirichletL-functions(with Jake Levinson), Acta Arithmetica161
(2013), 145–182.http://arxiv.org/abs/1208.0930

• Moment Formulas for Ensembles of Classical Compact Groups(with Alan Chang, Geoffrey Iyer, Kyle Pratt,
Nicholas Triantafillou and Minh-Tam Trinh), preprint.
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27. PROBLEM SESSION: II (H IDA )

Slides available online.

E-mail address: sjm1@williams.edu, Steven.Miller.MC.96@aya.yale.edu

DEPARTMENT OFMATHEMATICS AND STATISTICS, WILLIAMS COLLEGE, WILLIAMSTOWN , MA 01267
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