Intro M&M Game: I Hoops Game M&M Game: II COCOCO M&M Game: II COCOCOCO M&M Game: II COCOCOCO COCOCOCO COCOCO COCOCO

Why Cookies And M&Ms Are Good For You (Mathematically)

Steven J. Miller, Williams College

Steven.J.Miller@williams.edu

http://web.williams.edu/Mathematics/sjmiller/public_html/

Stuyvesant High School, May 9, 2014

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
●○○	000000		00000000000000000	0000000	oooooooooooooooo	00
Usir	ng in the C	lassroom				

This talk is a modification of the keynote address at the 2013 Spring Conference of ATMIM and research talks I've given over the past few years.

If you are interested in using any of these topics (or anything from my math riddles page, which is available online at http://mathriddles.williams.edu/) in your class, please email me at sjm1@williams.edu, and I am happy to talk with you about implementation.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
000						

Some Issues for the Future / Goals of the Talk

- World is rapidly changing powerful computing cheaply and readily available.
- What skills are we teaching? What skills should we be teaching?
- One of hardest skills: how to think / attack a new problem, how to see connections, what data to gather.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs			
○○●	000000		0000000000000000	0000000	০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	00			
Opp	Opportunities Everywhere!								

- Ask Questions! Often simple questions lead to good math.
- Gather data: observe, program and simulate.
- Use games to get to mathematics.
- Discuss implementation: Please interrupt!

Joint work with Cameron (age 7) and Kayla (age 5) Miller

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs

The M&M Game

000 0000000 000000 000000000 0000000 0000	Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
		00000					

Motivating Question

Cam (4 years): If you're born on the same day, do you die on the same day?

Intro M	&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
000 0						

M&M Game Rules

Cam (4 years): If you're born on the same day, do you die on the same day?

(1) Everyone starts off with *k* M&Ms (we did 5).(2) All toss fair coins, eat an M&M if and only if head.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
000	○●○○○○		00000000000000000	0000000	0000000000000000	00
Be a	ctive – as	k questio	ns!			

What are natural questions to ask?

What are natural questions to ask?

Question 1: How likely is a tie (as a function of *k*)?

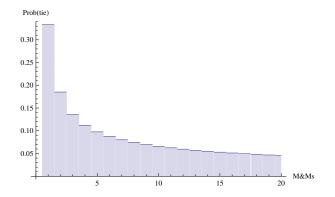
Question 2: How long until one dies?

Question 3: Generalize the game: More people? Biased coin?

Important to ask questions – curiousity is good and to be encouraged! Value to the journey and not knowing the answer.

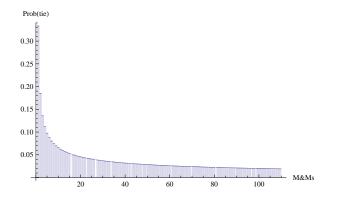
Let's gather some data!

Probability of a tie in the M&M game (2 players)



 $Prob(tie) \approx 33\%$ (1 M&M), 19% (2 M&Ms), 14% (3 M&Ms), 10% (4 M&Ms).

Probability of a tie in the M&M game (2 players)

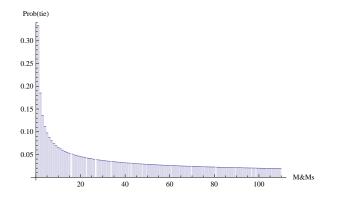


But we're celebrating 110 years of service, so....

11

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
	000000					

Probability of a tie in the M&M game (2 players)

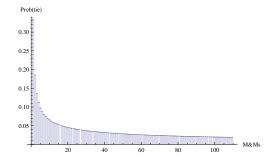


... where will the next 110 bring us? Never too early to lay foundations for future classes.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs				
000	○○○●○○		000000000000000000	0000000	০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	00				
Weld	Welcome to Statistics and Inference!									

- ♦ Goal: Gather data, see pattern, extrapolate.
- ♦ Methods: Simulation, analysis of special cases.
- Presentation: It matters how we show data, and which data we show.

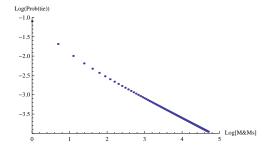
Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
000	○○○○●○		00000000000000000	0000000	০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	00
View	ving M&M	Plots				



Hard to predict what comes next.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
	000000					

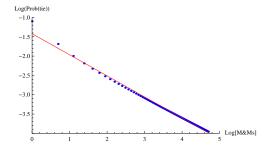
Viewing M&M Plots: Log-Log Plot



Not just sadistic teachers: logarithms useful!

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
	000000					

Viewing M&M Plots: Log-Log Plot

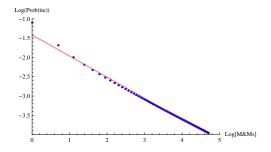


Best fit line:

 $\log (\text{Prob(tie)}) = -1.42022 - 0.545568 \log (\#\text{M\&Ms}) \text{ or } \text{Prob}(k) \approx 0.2412/k^{.5456}.$

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
	000000					

Viewing M&M Plots: Log-Log Plot



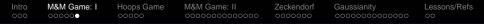
Best fit line:

 $\log (\text{Prob(tie)}) = -1.42022 - 0.545568 \log (\#\text{M\&Ms}) \text{ or } \text{Prob}(k) \approx 0.2412/k^{.5456}.$

Predicts probability of a tie when k = 220 is 0.01274, but answer is 0.0137. What gives?

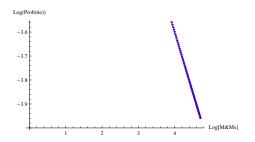
Statistical Inference: Too Much Data Is Bad!

Small values can mislead / distort. Let's go from k = 50 to 110.



Statistical Inference: Too Much Data Is Bad!

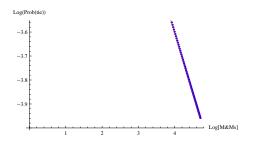
Small values can mislead / distort. Let's go from k = 50 to 110.



Best fit line: log (Prob(tie)) = $-1.58261 - 0.50553 \log (\#M\&Ms)$ or Prob(k) $\approx 0.205437/k^{.50553}$ (had $0.241662/k^{.5456}$).

Statistical Inference: Too Much Data Is Bad!

Small values can mislead / distort. Let's go from k = 50 to 110.



Best fit line:

 $\log (\text{Prob}(\text{tie})) = -1.58261 - 0.50553 \log (\#\text{M}\&\text{Ms}) \text{ or }$ $\operatorname{Prob}(k) \approx 0.205437/k^{.50553}$ (had $0.241662/k^{.5456}$).

Get 0.01344 for *k* = 220 (answer 0.01347); much better!

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs

From Shooting Hoops to the Geometric Series Formula

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
000	000000	●○○○○	00000000000000000000000000000000000	0000000	ooooooooooooooooo	00
Sim	pler Game	: Hoops				

Game of hoops: first basket wins, alternate shooting.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
		0000				

Simpler Game: Hoops: Mathematical Formulation

Bird and Magic (I'm old!) alternate shooting; first basket wins.

- Bird always gets basket with probability *p*.
- Magic always gets basket with probability q.

Let *x* be the probability **Bird** wins – what is *x*?

Intro 000	M&M Game: I 000000	Hoops Game ○○●○○	M&M Game: II ০০০০০০০০০০০০০০০০০	Zeckendorf	Gaussianity ০০০০০০০০০০০০০০০০	Lessons/Refs

Classic solution involves the geometric series.

Intro N	/I&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
	000000	00000				

Classic solution involves the geometric series.

Break into cases:

• **Bird** wins on 1st shot: *p*.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
000	000000	○○●○○	000000000000000		০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	00

Classic solution involves the geometric series.

- **Bird** wins on 1st shot: *p*.
- Bird wins on 2^{nd} shot: $(1 p)(1 q) \cdot p$.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
000	000000	00000	000000000000000	0000000	000000000000000000000000000000000000000	00

Classic solution involves the geometric series.

- **Bird** wins on 1st shot: *p*.
- Bird wins on 2^{nd} shot: $(1 p)(1 q) \cdot p$.
- Bird wins on 3^{rd} shot: $(1-p)(1-q) \cdot (1-p)(1-q) \cdot p$.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
000	000000	○○●○○	০০০০০০০০০০০০০০০০০		০০০০০০০০০০০০০০০০০	00

Classic solution involves the geometric series.

- **Bird** wins on 1st shot: *p*.
- Bird wins on 2^{nd} shot: $(1 p)(1 q) \cdot p$.
- Bird wins on 3^{rd} shot: $(1 p)(1 q) \cdot (1 p)(1 q) \cdot p$.
- Bird wins on nth shot:

$$(1-p)(1-q)\cdot(1-p)(1-q)\cdots(1-p)(1-q)\cdot p.$$

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
		00000				

Classic solution involves the geometric series.

Break into cases:

- **Bird** wins on 1st shot: *p*.
- Bird wins on 2^{nd} shot: $(1-p)(1-q) \cdot p$.
- Bird wins on 3^{rd} shot: $(1-p)(1-q) \cdot (1-p)(1-q) \cdot p$.

• Bird wins on nth shot:

$$(1-p)(1-q)\cdot(1-p)(1-q)\cdots(1-p)(1-q)\cdot p.$$

Let r = (1 - p)(1 - q). Then

$$= \operatorname{Prob}(\operatorname{Bird wins})$$

$$= \rho + r\rho + r^2\rho + r^3\rho + \cdots$$

$$= \rho \left(1 + r + r^2 + r^3 + \cdots\right),$$

the geometric series.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
		00000				

Showed

x = Prob(**Bird** wins) =
$$p(1 + r + r^2 + r^3 + \cdots)$$
;

will solve without the geometric series formula.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
		00000				

Showed

x = Prob(**Bird** wins) =
$$p(1 + r + r^2 + r^3 + \cdots)$$
;

will solve without the geometric series formula.

Have

 $\mathbf{x} = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins}) = \mathbf{p} + \mathbf{p}$

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
		00000				

Showed

x = Prob(**Bird** wins) =
$$p(1 + r + r^2 + r^3 + \cdots)$$
;

will solve without the geometric series formula.

Have

$$\mathbf{x} = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins}) = \mathbf{p} + (1 - \mathbf{p})(1 - q)$$

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
		00000				

Showed

x = Prob(**Bird** wins) =
$$p(1 + r + r^2 + r^3 + \cdots)$$
;

will solve without the geometric series formula.

Have

$$\mathbf{x} = \operatorname{Prob}(\operatorname{\mathsf{Bird}} \operatorname{wins}) = \mathbf{p} + (1 - \mathbf{p})(1 - q)\mathbf{x}$$

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
		00000				

Showed

x = Prob(**Bird** wins) =
$$p(1 + r + r^2 + r^3 + \cdots)$$
;

will solve without the geometric series formula.

Have

$$\mathbf{x} = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins}) = \mathbf{p} + (1 - \mathbf{p})(1 - q)\mathbf{x} = \mathbf{p} + r\mathbf{x}.$$

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
		00000				

Showed

x = Prob(**Bird** wins) =
$$p(1 + r + r^2 + r^3 + \cdots)$$
;

will solve without the geometric series formula.

Have

$$\mathbf{x} = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins}) = \mathbf{p} + (1 - \mathbf{p})(1 - q)\mathbf{x} = \mathbf{p} + r\mathbf{x}.$$

Thus

$$(1-r)\mathbf{x} = \mathbf{p}$$
 or $\mathbf{x} = \frac{\mathbf{p}}{1-r}$.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
		00000				

Showed

x = Prob(**Bird** wins) =
$$p(1 + r + r^2 + r^3 + \cdots)$$
;

will solve without the geometric series formula.

Have

$$\mathbf{x} = \operatorname{Prob}(\operatorname{Bird} \operatorname{wins}) = \mathbf{p} + (1 - \mathbf{p})(1 - q)\mathbf{x} = \mathbf{p} + r\mathbf{x}.$$

Thus

$$(1-r)\mathbf{x} = \mathbf{p}$$
 or $\mathbf{x} = \frac{\mathbf{p}}{1-r}$.

As
$$\mathbf{x} = p(1 + r + r^2 + r^3 + \cdots)$$
, find
 $1 + r + r^2 + r^3 + \cdots = \frac{1}{1 - r}$.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
		00000				

Lessons from Hoop Problem

- o Power of Perspective: Memoryless process.
- Can circumvent algebra with deeper understanding! (Hard)
- Output of a problem not always what expect.
- Importance of knowing more than the minimum: connections.
- ♦ Math is fun!

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs

The M&M Game

Intro M&N	I Game: I F	loops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
			000000000000000000000000000000000000000			

Solving the M&M Game

Overpower with algebra: Assume *k* M&Ms, two people, fair coins:

Prob(tie) =
$$\sum_{n=k}^{\infty} {\binom{n-1}{k-1} \left(\frac{1}{2}\right)^{n-1} \frac{1}{2}} \cdot {\binom{n-1}{k-1} \left(\frac{1}{2}\right)^{n-1} \frac{1}{2}},$$

where

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

is a binomial coefficient.

Intro 000	M&M Game: I 000000	Hoops Game	M&M Game: II ●○○○○○○○○○○○○○	Zeckendorf	Gaussianity ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	Lessons/Refs

Solving the M&M Game

Overpower with algebra: Assume *k* M&Ms, two people, fair coins:

Prob(tie) =
$$\sum_{n=k}^{\infty} {\binom{n-1}{k-1} \left(\frac{1}{2}\right)^{n-1} \frac{1}{2}} \cdot {\binom{n-1}{k-1} \left(\frac{1}{2}\right)^{n-1} \frac{1}{2}},$$

where

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

is a binomial coefficient.

"Simplifies" to $4^{-k} {}_2F_1(k, k, 1, 1/4)$, a special value of a hypergeometric function! (Look up / write report.)

Obviously way beyond the classroom - is there a better way?

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
			000000000000000000			

Where did formula come from? Each turn one of four equally likely events happens:

- Both eat an M&M.
- Cam eats an M&M but Kayla does not.
- Kayla eats an M&M but Cam does not.
- Neither eat.

Probability of each event is 1/4 or 25%.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
			00000000000000			

Where did formula come from? Each turn one of four equally likely events happens:

- Both eat an M&M.
- Cam eats an M&M but Kayla does not.
- Kayla eats an M&M but Cam does not.
- Neither eat.

Probability of each event is 1/4 or 25%.

Each person has exactly k - 1 heads in first n - 1 tosses, then ends with a head.

Prob(tie) =
$$\sum_{n=k}^{\infty} {\binom{n-1}{k-1} \left(\frac{1}{2}\right)^{n-1} \frac{1}{2}} \cdot {\binom{n-1}{k-1} \left(\frac{1}{2}\right)^{n-1} \frac{1}{2}}.$$

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
			000000000000000000000000000000000000000			

Use the lesson from the Hoops Game: Memoryless process!

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
			000000000000000000000000000000000000000			

Use the lesson from the Hoops Game: Memoryless process!

If neither eat, as if toss didn't happen. Now game is finite.

Use the lesson from the Hoops Game: Memoryless process!

If neither eat, as if toss didn't happen. Now game is finite.

Much better perspective: each "turn" one of three equally likely events happens:

- Both eat an M&M.
- Cam eats an M&M but Kayla does not.
- Kayla eats an M&M but Cam does not.

Probability of each event is 1/3 or about 33%

$$\sum_{n=0}^{k-1} \binom{2k-n-2}{n} \left(\frac{1}{3}\right)^n \binom{2k-2n-2}{k-n-1} \left(\frac{1}{3}\right)^{k-n-1} \left(\frac{1}{3}\right)^{k-n-1} \binom{1}{1} \frac{1}{3}^{\frac{1}{3}}.$$

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
			000000000000000000000000000000000000000			

Interpretation: Let Cam have c M&Ms and Kayla have k; write as (c, k).

Then each of the following happens 1/3 of the time after a 'turn':

•
$$(c,k) \longrightarrow (c-1,k-1).$$

• $(c,k) \longrightarrow (c-1,k).$

•
$$(c,k) \longrightarrow (c,k-1).$$

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
			000000000000000000000000000000000000000			

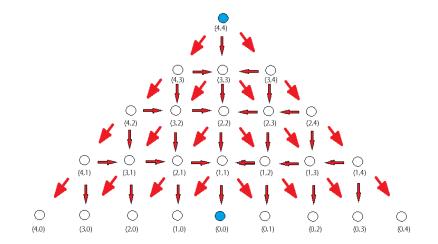


Figure: The M&M game when k = 4. Count the paths! Answer 1/3 of probability hit (1,1).

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
			000000000000000000000000000000000000000			

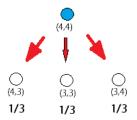


Figure: The M&M game when k = 4, going down one level.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
000	000000	00000	000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	00

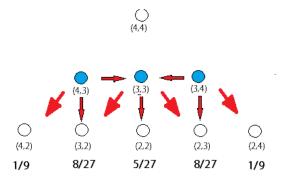


Figure: The M&M game when k = 4, removing probability from the second level.

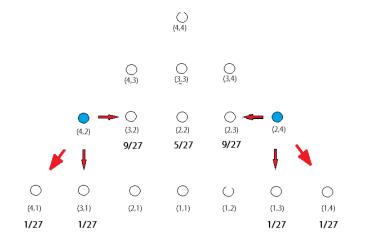


Figure: Removing probability from two outer on third level.

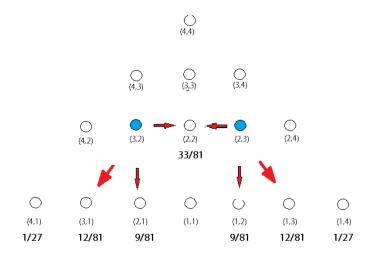


Figure: Removing probability from the (3,2) and (2,3) vertices.

51

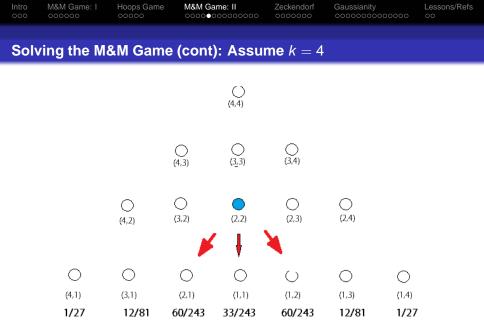


Figure: Removing probability from the (2,2) vertex.

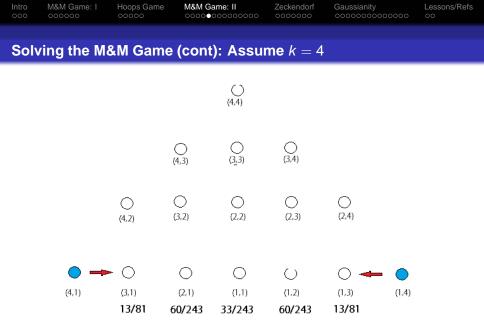


Figure: Removing probability from the (4,1) and (1,4) vertices.

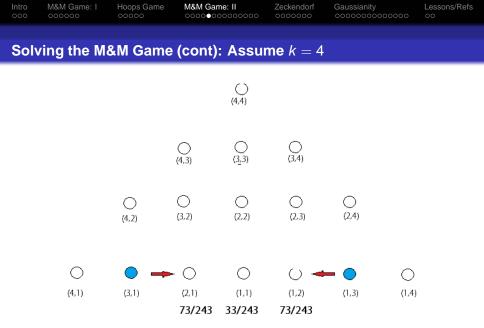


Figure: Removing probability from the (3,1) and (1,3) vertices.

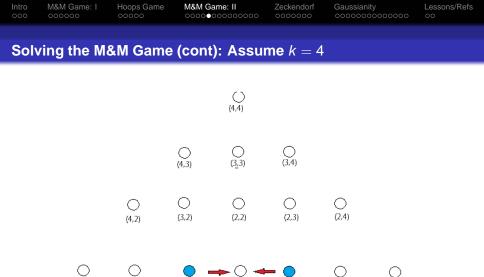


Figure: Removing probability from (2,1) and (1,2) vertices. Answer is 1/3 of (1,1) vertex, or 245/2187 (about 11%).

(1,1)

245/729

(1, 2)

(1,3)

(1,4)

55

(4, 1)

(3,1)

(2,1)

Interpreting Proof: Connections to the Fibonacci Numbers!

Fibonaccis:
$$F_{n+2} = F_{n+1} + F_n$$
 with $F_0 = 0, F_1 = 1$.

Starts 0, 1, 1, 2, 3, 5, 8, 13, 21, http://www.youtube.com/watch?v=kkGeOWYOFoA.

Binet's Formula (can prove via 'generating functions'):

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$$

 Intro
 M&M Game: I
 Hoops Game
 M&M Game: II
 Zeckendorf
 Gaussianity
 Lessons/Refs

 000
 000000
 000000
 0000000
 000000000000
 00

Interpreting Proof: Connections to the Fibonacci Numbers!

Fibonaccis:
$$F_{n+2} = F_{n+1} + F_n$$
 with $F_0 = 0, F_1 = 1$.

Starts 0, 1, 1, 2, 3, 5, 8, 13, 21, http://www.youtube.com/watch?v=kkGeOWYOFoA.

Binet's Formula (can prove via 'generating functions'):

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n.$$

M&Ms: For $c, k \ge 1$: $x_{c,0} = x_{0,k} = 0$; $x_{0,0} = 1$, and if $c, k \ge 1$:

$$x_{c,k} = \frac{1}{3}x_{c-1,k-1} + \frac{1}{3}x_{c-1,k} + \frac{1}{3}x_{c,k-1}$$

Reproduces the tree but a lot 'cleaner'.

57

 Intro
 M&M Game: I
 Hoops Game
 M&M Game: II
 Zeckendorf
 Gaussianity
 Lessons/Refs

 000
 000000
 000000
 0000000
 0000000
 00
 00

Interpreting Proof: Finding the Recurrence

What if we didn't see the 'simple' recurrence?

$$x_{c,k} = \frac{1}{3}x_{c-1,k-1} + \frac{1}{3}x_{c-1,k} + \frac{1}{3}x_{c,k-1}$$

 Intro
 M&M Game: I
 Hoops Game
 M&M Game: II
 Zeckendorf
 Gaussianity
 Lessons/Refs

 000
 000000
 000000
 0000000
 0000000
 0000000000000
 00

Interpreting Proof: Finding the Recurrence

What if we didn't see the 'simple' recurrence?

$$x_{c,k} = \frac{1}{3}x_{c-1,k-1} + \frac{1}{3}x_{c-1,k} + \frac{1}{3}x_{c,k-1}.$$

The following recurrence is 'natural':

$$x_{c,k} = \frac{1}{4}x_{c,k} + \frac{1}{4}x_{c-1,k-1} + \frac{1}{4}x_{c-1,k} + \frac{1}{4}x_{c,k-1}.$$

 Intro
 M&M Game: I
 Hoops Game
 M&M Game: II
 Zeckendorf
 Gaussianity
 Lessons/Refs

 000
 000000
 0000000
 0000000
 00000000
 00

Interpreting Proof: Finding the Recurrence

What if we didn't see the 'simple' recurrence?

$$x_{c,k} = \frac{1}{3}x_{c-1,k-1} + \frac{1}{3}x_{c-1,k} + \frac{1}{3}x_{c,k-1}.$$

The following recurrence is 'natural':

$$x_{c,k} = \frac{1}{4}x_{c,k} + \frac{1}{4}x_{c-1,k-1} + \frac{1}{4}x_{c-1,k} + \frac{1}{4}x_{c,k-1}.$$

Obtain 'simple' recurrence by algebra: subtract $\frac{1}{4}x_{c,k}$:

$$\frac{3}{4}x_{c,k} = \frac{1}{4}x_{c-1,k-1} + \frac{1}{4}x_{c-1,k} + \frac{1}{4}x_{c,k-1}$$

therefore $x_{c,k} = \frac{1}{3}x_{c-1,k-1} + \frac{1}{3}x_{c-1,k} + \frac{1}{3}x_{c,k-1}$.

Intro 000	M&M Game: I 000000	Hoops Game	M&M Game: II ○○○○○○●○○○○○○	Zeckendorf	Gaussianity ০০০০০০০০০০০০০০০০	Lessons/Refs

$$x_{c,k} = \frac{1}{3}x_{c-1,k-1} + \frac{1}{3}x_{c-1,k} + \frac{1}{3}x_{c,k-1}$$

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
			00000000000000			

$$x_{c,k} = \frac{1}{3}x_{c-1,k-1} + \frac{1}{3}x_{c-1,k} + \frac{1}{3}x_{c,k-1}$$

•
$$x_{0,0} = 1$$
.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
			000000000000000			

$$x_{c,k} = \frac{1}{3}x_{c-1,k-1} + \frac{1}{3}x_{c-1,k} + \frac{1}{3}x_{c,k-1}$$

• *x*_{0,0} = 1.

•
$$x_{1,0} = x_{0,1} = 0.$$

• $x_{1,1} = \frac{1}{3}x_{0,0} + \frac{1}{3}x_{0,1} + \frac{1}{3}x_{1,0} = \frac{1}{3} \approx 33.3\%.$

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
			000000000000000			

$$x_{c,k} = \frac{1}{3}x_{c-1,k-1} + \frac{1}{3}x_{c-1,k} + \frac{1}{3}x_{c,k-1}$$

• *x*_{0,0} = 1.

•
$$x_{1,0} = x_{0,1} = 0.$$

• $x_{1,1} = \frac{1}{3}x_{0,0} + \frac{1}{3}x_{0,1} + \frac{1}{3}x_{1,0} = \frac{1}{3} \approx 33.3\%.$

•
$$x_{2,0} = x_{0,2} = 0.$$

• $x_{2,1} = \frac{1}{3}x_{1,0} + \frac{1}{3}x_{1,1} + \frac{1}{3}x_{2,0} = \frac{1}{9} = x_{1,2}.$
• $x_{2,2} = \frac{1}{3}x_{1,1} + \frac{1}{3}x_{1,2} + \frac{1}{3}x_{2,1} = \frac{1}{9} + \frac{1}{27} + \frac{1}{27} = \frac{5}{27} \approx 18.5\%.$

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
000	000000		○○○○○○○●○○○○○	0000000	০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	00
Try	Simpler Ca	ases!!!				

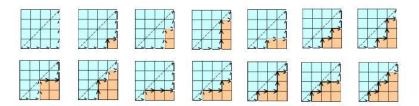
Walking from (0,0) to (k, k) with allowable steps (1,0), (0,1) and (1,1), hit (k, k) before hit top or right sides.

Walking from (0,0) to (k, k) with allowable steps (1,0), (0,1) and (1,1), hit (k, k) before hit top or right sides.

Generalization of the Catalan problem. There don't have (1,1) and stay on or below the main diagonal.

Walking from (0,0) to (k, k) with allowable steps (1,0), (0,1) and (1,1), hit (k, k) before hit top or right sides.

Generalization of the Catalan problem. There don't have (1,1) and stay on or below the main diagonal.



Interpretation: Catalan numbers are valid placings of (and).

 Intro
 M&M Game: I
 Hoops Game
 M&M Game: II
 Zeckendorf
 Gaussianity
 Lessons/Refs

 000
 000000
 00000
 000000
 000000
 000000
 00

Aside: Fun Riddle Related to Catalan Numbers

Young Saul, a budding mathematician and printer, is making himself a fake ID. He needs it to say he's 21. The problem is he's not using a computer, but rather he has some symbols he's bought from the store, and that's it. He has one 1, one 5, one 6, one 7, and an unlimited supply of + - * / (the operations addition, subtraction, multiplication and division). Using each number exactly once (but you can use any number of +, any number of -, ...) how, oh how, can he get 21 from 1,5, 6,7? Note: you can't do things like 15+6 = 21. You have to use the four operations as 'binary' operations: ((1+5)*6) + 7. Problem submitted by ohadbp@infolink.net.il, phrasing by yours truly.

Solution involves valid sentences: $((w + x) + y) + z, w + ((x + y) + z), \dots$

For more riddles see my riddles page: http://mathriddles.williams.edu/.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
			000000000000000000000000000000000000000			

Examining Probabilities of a Tie

When
$$k = 1$$
, Prob(tie) = 1/3.

```
When k = 2, Prob(tie) = 5/27.
```

```
When k = 3, Prob(tie) = 11/81.
```

When k = 4, Prob(tie) = 245/2187.

When k = 5, Prob(tie) = 1921/19683.

When k = 6, Prob(tie) = 575/6561.

When k = 7, Prob(tie) = 42635/531441.

When k = 8, Prob(tie) = 355975/4782969.

Examining Ties: Multiply by 3^{2k-1} to clear denominators.

When k = 1, get 1.

When k = 2, get 5.

When k = 3, get 33.

When k = 4, get 245.

When k = 5, get 1921.

When k = 6, get 15525.

When k = 7, get 127905.

When k = 8, get 1067925.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
000	000000		○○○○○○○○○○○●○	0000000	0000000000000000	00
OEIS	5					

Get sequence of integers: 1, 5, 33, 245, 1921, 15525,

Intro 000	M&M Game: I 000000	Hoops Game	M&M Game: II ○○○○○○○○○○○●○	Zeckendorf	Gaussianity ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	Lessons/Refs 00
OEI	S					

Get sequence of integers: 1, 5, 33, 245, 1921, 15525,

```
OEIS: http://oeis.org/.
```

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
000	000000		○○○○○○○○○○●○	0000000	০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	00
OEIS	;					

```
Get sequence of integers: 1, 5, 33, 245, 1921, 15525, ....
```

```
OEIS: http://oeis.org/.
```

Our sequence: http://oeis.org/A084771.

The web exists! Use it to build conjectures, suggest proofs....

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
			0000000000000000			

OEIS (continued)

A084771	Coefficients of 1/sqrt(1-10*x+9*x^2); also, a(n) is the central coefficient of (1+5*x+4*x^2)^n.
484164545	245, 1921, 15525, 127905, 1067925, 9004545, 76499525, 653808673, 5614995765, 29, 41895174855, 3634723102113, 31616937184725, 27562110202945, 1640325, 2106138725455905, 194550106298094725 (dst:rangh:refs:listen.tistory:text:internal
<u>format</u>)	1090325, 21001050/25955905, 109550106290009/25(<u>051, graph, Tets, mstory, text, methal</u>
OFFSET	0,2
COMMENTS	Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the U steps come in four colors and the H steps come in five colors. <u>NET_Rabsi</u> , Mar 30 2008 Number of lattice paths from (0,0) to (n,n) using steps (1,0), (0,1), and three kinds of steps (1,1). Joera Arndt. Jul 01 2011
	the f squares of steps (1,1), (0.64) And() of 0.1 0.1 1, 10. Sums of squares of coefficients of $(1+2^{2}x)^{n}$. [Joerg Arndt, Jul 06 2011] The Hankel transform of this sequence gives <u>A103488</u> <u>Philippe DELEHAM</u> , Dec 02 2007
REFERENCES	Paul Barry and Aoife Hennessy, Generalized Narayana Folynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8 From <u>N. J. A. Sloame</u> , Oct 08 2012 Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
LINKS	Table of n. a(n) for n=019. Tony D. Noe, <u>On the Divisibility of Generalized Central Trinomial</u> <u>Coefficients</u> , Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
FORMULA	<pre>G.f.: 1/sqrt(1-10*x+9*x^2). Binomial transform of <u>4559304</u>. G.f.: Sum_{k>=0} binomial(2*k, k)* (2*x)*k/(1-x)*(k+1). E.g.f.: exp(5*x)*BesselI(0, 4*x) Vladeta Jovovic (vladeta(AT)eunet.rs), Aug 20 2003 a(n) = sum(k=0n, sum(j=0n-k, C(n,j)*C(n-j,k)*C(2*n-2*j,n-j))) Paul Barry, May 19 2006 a(n) = sum(k=0n, 4^*k*(C(n,k))^2) [From herunedollar (herunedollar(AT)gmali.com), Mar 20 2010] Asymptotic: a(n) ~ 3^(2*n+1)/(2*sqrt(2*Pi*n)). [<u>Vaclav Kotesovac</u>, Sep 11</pre>
	2012] Conjecture: n*a(n) +5*(-2*n+1)*a(n-1) +9*(n-1)*a(n-2)=0 R. J. Mathar,
	$conjecture: n^a(n) + 5^a(-2^{-n+1})^a(n-1) + 5^a(n-1)^{-a}(n-2) - 6$ <u>R. 0. Mathar</u> ,

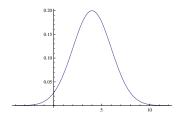
Intro 000	M&M Game: I 000000	Hoops Game	M&M Game: II ০০০০০০০০০০০০০০০০	Zeckendorf	Gaussianity ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	Lessons/Refs

Introduction to Zeckendorf Decompositions

- Seek the 'right' perspective.
- Techniques: generating fns, partial fractions.
- Utility of asking questions.
- You can join in lots of other problems to study.

Joint with Olivia Beckwith, Amanda Bower, Louis Gaudet, Rachel Insoft, Shiyu Li, Philip Tosteson.

000	000000	00000	000000000000000	000000	000000000000000000000000000000000000000	00			
Pre-	Pre-requisites: Probability Review								



Let X be random variable with density p(x):
◊ p(x) ≥ 0; ∫[∞]_{-∞} p(x)dx = 1;
◊ Prob (a ≤ X ≤ b) = ∫^b_a p(x)dx.
Mean: μ = ∫[∞]_{-∞} xp(x)dx.
Variance: σ² = ∫[∞]_{-∞} (x - μ)²p(x)dx.

• Gaussian: Density $(2\pi\sigma^2)^{-1/2} \exp(-(x-\mu)^2/2\sigma^2)$.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
000	000000		0000000000000000	○○●○○○○	০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	oo
Pre-r	equisites	: Combina	atorics Reviev	N		

- *n*!: number of ways to order *n* people, order matters.
- $\frac{n!}{k!(n-k)!} = nCk = \binom{n}{k}$: number of ways to choose *k* from *n*, order doesn't matter.
- Stirling's Formula: $n! \approx n^n e^{-n} \sqrt{2\pi n}$.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
000	000000		0000000000000000	○○○●○○○	000000000000000	00
Prev	vious Resu	ults				

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$;

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
000	000000	೦೦೦೦೦	00000000000000000	○○○●○○○	০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	00
Prev	vious Resu	ults				

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, \dots$

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
000	000000		000000000000000000	○○○●○○○	০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	00
Prev	∕ious Resเ	ults				

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
;
 $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, \dots$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
000	000000		000000000000000000	○○○●○○○	ooooooooooooooooo	00
Prev	vious Resi	ilts				

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, \dots$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $2014 = 1597 + 377 + 34 + 5 + 1 = F_{16} + F_{13} + F_8 + F_4 + F_1$.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
000	000000		00000000000000000	○○○●○○○	oooooooooooooooo	00
Prev	vious Resi	ilts				

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, \dots$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:

 $2014 = 1597 + 377 + 34 + 5 + 1 = F_{16} + F_{13} + F_8 + F_4 + F_1.$

Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ tends to $\frac{n}{\varphi^2+1} \approx .276n$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
000	000000	೦೦೦೦೦	00000000000000000	○○○○●○○	০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	00
Old	Results					

Central Limit Type Theorem

As $n \to \infty$ distribution of number of summands in Zeckendorf decomposition for $m \in [F_n, F_{n+1})$ is Gaussian (normal).

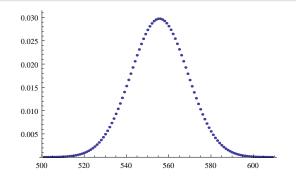


Figure: Number of summands in $[F_{2010}, F_{2011})$; $F_{2010} \approx 10^{420}$.

New Results: Bulk Gaps: $m \in [F_n, F_{n+1})$ and $\phi = rac{1+\sqrt{5}}{2}$

$$m = \sum_{j=1}^{k(m)=n} F_{i_j}, \quad \nu_{m;n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta\left(x - (i_j - i_{j-1})\right).$$

Theorem (Zeckendorf Gap Distribution)

Gap measures $\nu_{m;n}$ converge almost surely to average gap measure where $P(k) = 1/\phi^k$ for $k \ge 2$.

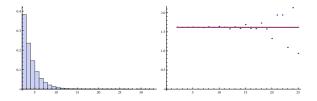


Figure: Distribution of gaps in $[F_{1000}, F_{1001})$; $F_{1000} \approx 10^{208}$.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
				0000000		

New Results: Longest Gap

Theorem (Longest Gap)

As $n \to \infty$, the probability that $m \in [F_n, F_{n+1})$ has longest gap less than or equal to f(n) converges to

$$\operatorname{Prob}\left(L_n(m) \leq f(n)\right) \approx e^{-e^{\log n - f(n)/\log \phi}}$$

Immediate Corollary: If f(n) grows **slower** or **faster** than $\log n / \log \phi$, then $\operatorname{Prob}(L_n(m) \le f(n))$ goes to **0** or **1**, respectively.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
				0000000		

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets.

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets. **Example**: 8 cookies and 5 people (C = 8, P = 5):

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets.

Example: 8 cookies and 5 people (C = 8, P = 5):

Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets. **Example**: 8 cookies and 5 people (C = 8, P = 5):

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

For $N \in [F_n, F_{n+1})$, the largest summand is F_n . $N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n$, $1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n$, $i_j - i_{j-1} \ge 2$.

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

For $N \in [F_n, F_{n+1})$, the largest summand is F_n .

$$N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n,$$

$$1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_j - i_{j-1} \ge 2.$$

$$d_1 := i_1 - 1, d_j := i_j - i_{j-1} - 2 (j > 1).$$

$$d_1 + d_2 + \dots + d_k = n - 2k + 1, d_j \ge 0.$$

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

For $N \in [F_n, F_{n+1})$, the largest summand is F_n . $N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n$, $1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_j - i_{j-1} \ge 2$. $d_1 := i_1 - 1, d_j := i_j - i_{j-1} - 2 (j > 1)$. $d_1 + d_2 + \dots + d_k = n - 2k + 1, d_j \ge 0$. Cookie counting $\Rightarrow p_{n,k} = \binom{n-2k+1+k-1}{k-1} = \binom{n-k}{k-1}$.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs

Gaussian Behavior

 Intro
 M&M Game: I
 Hoops Game
 M&M Game: II
 Zeckendorf
 Gaussianity
 Lessons/Refs

 000
 00000
 00000
 000000
 000000
 000000
 00

Generalizing Lekkerkerker: Erdos-Kac type result

Theorem (KKMW 2010)

As $n \to \infty$, the distribution of the number of summands in Zeckendorf's Theorem is a Gaussian.

Sketch of proof: Use Stirling's formula,

$$n! \approx n^n e^{-n} \sqrt{2\pi n}$$

to approximates binomial coefficients, after a few pages of algebra find the probabilities are approximately Gaussian.

 Intro
 M&M Game: I
 Hoops Game
 M&M Game: II
 Zeckendorf
 Gaussianity
 Lessons/Refs

 000
 000000
 000000
 0000000
 0000000
 00
 00

(Sketch of the) Proof of Gaussianity

The probability density for the number of Fibonacci numbers that add up to an integer in $[F_n, F_{n+1})$ is $f_n(k) = \binom{n-1-k}{k}/F_{n-1}$. Consider the density for the n+1 case. Then we have, by Stirling

$$f_{n+1}(k) = \binom{n-k}{k} \frac{1}{F_n}$$
$$= \frac{(n-k)!}{(n-2k)!k!} \frac{1}{F_n} = \frac{1}{\sqrt{2\pi}} \frac{(n-k)^{n-k+\frac{1}{2}}}{k^{(k+\frac{1}{2})}(n-2k)^{n-2k+\frac{1}{2}}} \frac{1}{F_n}$$

plus a lower order correction term.

Also we can write $F_n = \frac{1}{\sqrt{5}} \phi^{n+1} = \frac{\phi}{\sqrt{5}} \phi^n$ for large *n*, where ϕ is the golden ratio (we are using relabeled Fibonacci numbers where $1 = F_1$ occurs once to help dealing with uniqueness and $F_2 = 2$). We can now split the terms that exponentially depend on *n*.

$$f_{n+1}(k) = \left(\frac{1}{\sqrt{2\pi}}\sqrt{\frac{(n-k)}{k(n-2k)}}\frac{\sqrt{5}}{\phi}\right) \left(\phi^{-n}\frac{(n-k)^{n-k}}{k^k(n-2k)^{n-2k}}\right).$$

Define

$$N_n = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{(n-k)}{k(n-2k)}} \frac{\sqrt{5}}{\phi}, \quad S_n = \phi^{-n} \frac{(n-k)^{n-k}}{k^k (n-2k)^{n-2k}}.$$

Thus, write the density function as

$$f_{n+1}(k) = N_n S_n$$

where N_n is the first term that is of order $n^{-1/2}$ and S_n is the second term with exponential dependence on n.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
					000000000000000000000000000000000000000	

Model the distribution as centered around the mean by the change of variable $k = \mu + x\sigma$ where μ and σ are the mean and the standard deviation, and depend on *n*. The discrete weights of $f_n(k)$ will become continuous. This requires us to use the change of variable formula to compensate for the change of scales:

$$f_n(k)dk = f_n(\mu + \sigma x)\sigma dx$$

Using the change of variable, we can write N_n as

$$\begin{split} N_n &= \frac{1}{\sqrt{2\pi}} \sqrt{\frac{n-k}{k(n-2k)}} \frac{\phi}{\sqrt{5}} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-k/n}{(k/n)(1-2k/n)}} \frac{\sqrt{5}}{\phi} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-(\mu+\sigma x)/n}{((\mu+\sigma x)/n)(1-2(\mu+\sigma x)/n)}} \frac{\sqrt{5}}{\phi} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-C-y}{(C+y)(1-2C-2y)}} \frac{\sqrt{5}}{\phi} \end{split}$$

where $C = \mu/n \approx 1/(\phi + 2)$ (note that $\phi^2 = \phi + 1$) and $y = \sigma x/n$. But for large *n*, the *y* term vanishes since $\sigma \sim \sqrt{n}$ and thus $y \sim n^{-1/2}$. Thus

$$N_n \approx \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-C}{C(1-2C)}} \frac{\sqrt{5}}{\phi} = \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{(\phi+1)(\phi+2)}{\phi}} \frac{\sqrt{5}}{\phi} = \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{5(\phi+2)}{\phi}} = \frac{1}{\sqrt{2\pi\sigma^2}} \sqrt{\frac{1-C}{2}} \sqrt{\frac{1-C}{2}}$$

since $\sigma^2 = n \frac{\phi}{5(\phi+2)}$.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
					000000000000000000000000000000000000000	

For the second term S_n , take the logarithm and once again change variables by $k = \mu + x\sigma$,

$$\begin{split} \log(S_n) &= & \log\left(\phi^{-n}\frac{(n-k)^{(n-k)}}{k^k(n-2k)^{(n-2k)}}\right) \\ &= & -n\log(\phi) + (n-k)\log(n-k) - (k)\log(k) \\ &- (n-2k)\log(n-2k) \\ &= & -n\log(\phi) + (n-(\mu+x\sigma))\log(n-(\mu+x\sigma)) \\ &- (\mu+x\sigma)\log(\mu+x\sigma) \\ &- (n-2(\mu+x\sigma))\log(n-2(\mu+x\sigma)) \\ &= & -n\log(\phi) \\ &+ (n-(\mu+x\sigma))\left(\log(n-\mu) + \log\left(1-\frac{x\sigma}{n-\mu}\right)\right) \\ &- (\mu+x\sigma)\left(\log(\mu) + \log\left(1+\frac{x\sigma}{\mu}\right)\right) \\ &- (n-2(\mu+x\sigma))\left(\log(n-2\mu) + \log\left(1-\frac{x\sigma}{n-2\mu}\right)\right) \\ &= & -n\log(\phi) \\ &+ (n-(\mu+x\sigma))\left(\log\left(\frac{n}{\mu}-1\right) + \log\left(1-\frac{x\sigma}{n-\mu}\right)\right) \\ &- (\mu+x\sigma)\log\left(1+\frac{x\sigma}{\mu}\right) \\ &- (n-2(\mu+x\sigma))\left(\log\left(\frac{n}{\mu}-2\right) + \log\left(1-\frac{x\sigma}{n-2\mu}\right)\right) \end{split}$$

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
					000000000000000000000000000000000000000	

Note that, since $n/\mu = \phi + 2$ for large *n*, the constant terms vanish. We have log(S_n)

$$= -n\log(\phi) + (n-k)\log\left(\frac{n}{\mu} - 1\right) - (n-2k)\log\left(\frac{n}{\mu} - 2\right) + (n-(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right) \\ - (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-2\mu}\right) \\ = -n\log(\phi) + (n-k)\log(\phi+1) - (n-2k)\log(\phi) + (n-(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right) \\ - (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-2\mu}\right) \\ = n(-\log(\phi) + \log(\phi^2) - \log(\phi)) + k(\log(\phi^2) + 2\log(\phi)) + (n-(\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right) \\ - (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1 - 2\frac{x\sigma}{n-2\mu}\right) \\ = (n - (\mu+x\sigma))\log\left(1 - \frac{x\sigma}{n-\mu}\right) - (\mu+x\sigma)\log\left(1 + \frac{x\sigma}{\mu}\right) \\ - (n-2(\mu+x\sigma))\log\left(1 - 2\frac{x\sigma}{n-2\mu}\right).$$

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
					000000000000000000000000000000000000000	

Finally, we expand the logarithms and collect powers of $x\sigma/n$.

$$\begin{split} \log(S_n) &= (n - (\mu + x\sigma)) \left(-\frac{x\sigma}{n - \mu} - \frac{1}{2} \left(\frac{x\sigma}{n - \mu} \right)^2 + \dots \right) \\ &- (\mu + x\sigma) \left(\frac{x\sigma}{\mu} - \frac{1}{2} \left(\frac{x\sigma}{\mu} \right)^2 + \dots \right) \\ &- (n - 2(\mu + x\sigma)) \left(-2 \frac{x\sigma}{n - 2\mu} - \frac{1}{2} \left(2 \frac{x\sigma}{n - 2\mu} \right)^2 + \dots \right) \\ &= (n - (\mu + x\sigma)) \left(-\frac{x\sigma}{n \frac{(\phi + 1)}{(\phi + 2)}} - \frac{1}{2} \left(\frac{x\sigma}{n \frac{(\phi + 1)}{(\phi + 2)}} \right)^2 + \dots \right) \\ &- (\mu + x\sigma) \left(\frac{x\sigma}{\frac{\phi}{\phi + 2}} - \frac{1}{2} \left(\frac{x\sigma}{\frac{\phi}{\phi + 2}} \right)^2 + \dots \right) \\ &- (n - 2(\mu + x\sigma)) \left(-\frac{2x\sigma}{n \frac{\phi}{\phi + 2}} - \frac{1}{2} \left(\frac{2x\sigma}{n \frac{\phi}{\phi + 2}} \right)^2 + \dots \right) \\ &= \frac{x\sigma}{n} n \left(- \left(1 - \frac{1}{\phi + 2} \right) \frac{(\phi + 2)}{(\phi + 1)} - 1 + 2 \left(1 - \frac{2}{\phi + 2} \right) \frac{\phi + 2}{\phi} \right) \\ &- \frac{1}{2} \left(\frac{x\sigma}{n} \right)^2 n \left(-2 \frac{\phi + 2}{\phi + 1} + \frac{\phi + 2}{\phi + 1} + 2(\phi + 2) - (\phi + 2) + 4 \frac{\phi + 2}{\phi} \right) \\ &+ O \left(n(x\sigma/n)^3 \right) \end{split}$$

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
					000000000000000000000000000000000000000	

$$\begin{split} \log(S_n) &= \frac{x\sigma}{n} n \left(-\frac{\phi+1}{\phi+2} \frac{\phi+2}{\phi+1} - 1 + 2 \frac{\phi}{\phi+2} \frac{\phi+2}{\phi} \right) \\ &- \frac{1}{2} \left(\frac{x\sigma}{n} \right)^2 n(\phi+2) \left(-\frac{1}{\phi+1} + 1 + \frac{4}{\phi} \right) \\ &+ O \left(n \left(\frac{x\sigma}{n} \right)^3 \right) \\ &= -\frac{1}{2} \frac{(x\sigma)^2}{n} (\phi+2) \left(\frac{3\phi+4}{\phi(\phi+1)} + 1 \right) + O \left(n \left(\frac{x\sigma}{n} \right)^3 \right) \\ &= -\frac{1}{2} \frac{(x\sigma)^2}{n} (\phi+2) \left(\frac{3\phi+4+2\phi+1}{\phi(\phi+1)} \right) + O \left(n \left(\frac{x\sigma}{n} \right)^3 \right) \\ &= -\frac{1}{2} x^2 \sigma^2 \left(\frac{5(\phi+2)}{\phi n} \right) + O \left(n (x\sigma/n)^3 \right). \end{split}$$

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
					000000000000000000000000000000000000000	

But recall that

$$\sigma^2 = \frac{\phi n}{5(\phi+2)}.$$

Also, since $\sigma \sim n^{-1/2}$, $n\left(\frac{x\sigma}{n}\right)^3 \sim n^{-1/2}$. So for large *n*, the $O\left(n\left(\frac{x\sigma}{n}\right)^3\right)$ term vanishes. Thus we are left with

$$\log S_n = -\frac{1}{2}x^2$$
$$S_n = e^{-\frac{1}{2}x^2}$$

Hence, as n gets large, the density converges to the normal distribution:

$$f_n(k)dk = N_n S_n dk$$

= $\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}x^2} \sigma dx$
= $\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx.$

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L$$

with $H_1 = 1$, $H_{n+1} = c_1H_n + c_2H_{n-1} + \cdots + c_nH_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

- Zeckendorf: Every positive integer can be written uniquely as ∑ a_iH_i with natural constraints on the a_i's (e.g. cannot use the recurrence relation to remove any summand).
- Lekkerkerker
- Central Limit Type Theorem

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
					000000000000000000000000000000000000000	

Generalizing Lekkerkerker

Generalized Lekkerkerker's Theorem

The average number of summands in the generalized Zeckendorf decomposition for integers in $[H_n, H_{n+1})$ tends to Cn + d as $n \to \infty$, where C > 0 and d are computable constants determined by the c_i 's.

$$C = -\frac{y'(1)}{y(1)} = \frac{\sum_{m=0}^{L-1} (s_m + s_{m+1} - 1)(s_{m+1} - s_m)y^m(1)}{2\sum_{m=0}^{L-1} (m+1)(s_{m+1} - s_m)y^m(1)}$$

$$s_0 = 0, s_m = c_1 + c_2 + \dots + c_m.$$

$$y(x) \text{ is the root of } 1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1}.$$

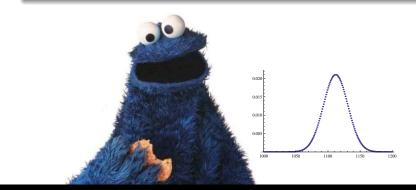
$$y(1) \text{ is the root of } 1 - c_1 y - c_2 y^2 - \dots - c_L y^L.$$

Intro M&M Game: I H	loops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
	00000			000000000000000000000000000000000000000	

Central Limit Type Theorem

Central Limit Type Theorem

As $n \to \infty$, the distribution of the number of summands, i.e., $a_1 + a_2 + \cdots + a_m$ in the generalized Zeckendorf decomposition $\sum_{i=1}^{m} a_i H_i$ for integers in $[H_n, H_{n+1})$ is Gaussian.



 Intro
 M&M Game: I
 Hoops Game
 M&M Game: II
 Zeckendorf
 Gaussianity
 Lessons/Refs

 000
 00000
 00000
 000000
 000000
 000000
 00

Example: the Special Case of L = 1, $c_1 = 10$

$$H_{n+1} = 10H_n, H_1 = 1, H_n = 10^{n-1}.$$

• Legal decomposition is decimal expansion: $\sum_{i=1}^{m} a_i H_i$:

$$\mathbf{a}_i \in \{0, 1, \dots, 9\} \ (1 \leq i < m), \ \mathbf{a}_m \in \{1, \dots, 9\}.$$

- For $N \in [H_n, H_{n+1})$, m = n, i.e., first term is $a_n H_n = a_n 10^{n-1}$.
- *A_i*: the corresponding random variable of *a_i*. The *A_i*'s are independent.
- For large *n*, the contribution of *A_n* is immaterial.
 A_i (1 ≤ *i* < *n*) are identically distributed random variables
 with mean 4.5 and variance 8.25.
- Central Limit Theorem: $A_2 + A_3 + \cdots + A_n \rightarrow$ Gaussian with mean 4.5n + O(1) and variance 8.25n + O(1).

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
					000000000000000000000000000000000000000	

Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the $\pm F_n$'s, such that every two terms of the same (opposite) sign differ in index by at least 4 (3).

Example:
$$1900 = F_{17} - F_{14} - F_{10} + F_6 + F_2$$
.

K: # of positive terms, L: # of negative terms.

Generalized Lekkerkerker's Theorem

As
$$n \to \infty$$
, $E[K]$ and $E[L] \to n/10$.
 $E[K] - E[L] = \varphi/2 \approx .809$.

Central Limit Type Theorem

As $n \to \infty$, *K* and *L* converges to a bivariate Gaussian.

• corr(*K*, *L*) =
$$-(21 - 2\varphi)/(29 + 2\varphi) \approx -.551$$
,

 Intro
 M&M Game: I
 Hoops Game
 M&M Game: II
 Zeckendorf
 Gaussianity
 Lessons/Refs

 000
 000000
 000000
 000000
 000000
 000000
 00

Generating Function (Example: Binet's Formula)

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

 Intro
 M&M Game: I
 Hoops Game
 M&M Game: II
 Zeckendorf
 Gaussianity
 Lessons/Refs

 000
 000000
 000000
 000000
 000000
 000000
 00

Generating Function (Example: Binet's Formula)

Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

(1)

• Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$

 Intro
 M&M Game: I
 Hoops Game
 M&M Game: II
 Zeckendorf
 Gaussianity
 Lessons/Refs

 000
 000000
 000000
 0000000
 0000000
 000000
 00

Generating Function (Example: Binet's Formula)

Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

(1)

• Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$

• Generating function: $g(x) = \sum_{n>0} F_n x^n$.

Generating Function (Example: Binet's Formula)

Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

(1)

- Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$
- Generating function: $g(x) = \sum_{n>0} F_n x^n$.

(1)
$$\Rightarrow \sum_{n\geq 2} \boldsymbol{F}_{n+1} \boldsymbol{x}^{n+1} = \sum_{n\geq 2} \boldsymbol{F}_n \boldsymbol{x}^{n+1} + \sum_{n\geq 2} \boldsymbol{F}_{n-1} \boldsymbol{x}^{n+1}$$

Generating Function (Example: Binet's Formula)

Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

Lessons/Refs

(1)

- Recurrence relation: $F_{n+1} = F_n + F_{n-1}$
- Generating function: $g(x) = \sum_{n>0} F_n x^n$.

(1)
$$\Rightarrow \sum_{n\geq 2} \boldsymbol{F}_{n+1} \boldsymbol{x}^{n+1} = \sum_{n\geq 2} \boldsymbol{F}_n \boldsymbol{x}^{n+1} + \sum_{n\geq 2} \boldsymbol{F}_{n-1} \boldsymbol{x}^{n+1}$$
$$\Rightarrow \sum_{n\geq 3} \boldsymbol{F}_n \boldsymbol{x}^n = \sum_{n\geq 2} \boldsymbol{F}_n \boldsymbol{x}^{n+1} + \sum_{n\geq 1} \boldsymbol{F}_n \boldsymbol{x}^{n+2}$$

M&M Game: I Hoops Game M&M Game: II Zeckendorf Gaussianity

Lessons/Refs

(1)

Generating Function (Example: Binet's Formula)

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$
- Generating function: $g(x) = \sum_{n>0} F_n x^n$.

$$(1) \Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} \mathbf{x}^{n+1} = \sum_{n\geq 2} \mathbf{F}_n \mathbf{x}^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} \mathbf{x}^{n+1}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n \mathbf{x}^n = \sum_{n\geq 2} \mathbf{F}_n \mathbf{x}^{n+1} + \sum_{n\geq 1} \mathbf{F}_n \mathbf{x}^{n+2}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n \mathbf{x}^n = \mathbf{x} \sum_{n\geq 2} \mathbf{F}_n \mathbf{x}^n + \mathbf{x}^2 \sum_{n\geq 1} \mathbf{F}_n \mathbf{x}^n$$

M&M Game: I Hoops Game M&M Game: II Zeckendorf Gaussianity

Lessons/Refs

(1)

Generating Function (Example: Binet's Formula)

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$
- Generating function: $g(x) = \sum_{n>0} F_n x^n$.

$$(1) \Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} x^{n+1} = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} x^{n+1}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 1} \mathbf{F}_n x^{n+2}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = x \sum_{n\geq 2} \mathbf{F}_n x^n + x^2 \sum_{n\geq 1} \mathbf{F}_n x^n$$
$$\Rightarrow g(x) - \mathbf{F}_1 x - \mathbf{F}_2 x^2 = x(g(x) - \mathbf{F}_1 x) + x^2 g(x)$$

M&M Game: I Hoops Game M&M Game: II Zeckendorf Gaussianity

Lessons/Refs

(1)

Generating Function (Example: Binet's Formula)

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$
- Generating function: $g(x) = \sum_{n>0} F_n x^n$.

$$(1) \Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} x^{n+1} = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} x^{n+1}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 1} \mathbf{F}_n x^{n+2}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = x \sum_{n\geq 2} \mathbf{F}_n x^n + x^2 \sum_{n\geq 1} \mathbf{F}_n x^n$$
$$\Rightarrow g(x) - \mathbf{F}_1 x - \mathbf{F}_2 x^2 = x(g(x) - \mathbf{F}_1 x) + x^2 g(x)$$
$$\Rightarrow g(x) = x/(1 - x - x^2).$$

Partial Fraction Expansion (Example: Binet's Formula)

• Generating function:
$$g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$$

 Intro
 M&M Game: I
 Hoops Game
 M&M Game: II
 Zeckendorf
 Gaussianity
 Lessons/Refs

 000
 000000
 0000000
 0000000
 0000000
 0000000
 00

Partial Fraction Expansion (Example: Binet's Formula)

- Generating function: $g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$.
- Partial fraction expansion:

 Intro
 M&M Game: I
 Hoops Game
 M&M Game: II
 Zeckendorf
 Gaussianity
 Lessons/Refs

 000
 000000
 000000
 000000
 0000000
 0000000
 00

Partial Fraction Expansion (Example: Binet's Formula)

• Generating function:
$$g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$$
.

• Partial fraction expansion:

$$\Rightarrow g(x) = \frac{x}{1-x-x^2} = \frac{1}{\sqrt{5}} \left(\frac{\frac{1+\sqrt{5}}{2}x}{1-\frac{1+\sqrt{5}}{2}x} - \frac{\frac{-1+\sqrt{5}}{2}x}{1-\frac{-1+\sqrt{5}}{2}x} \right)$$

 Intro
 M&M Game: I
 Hoops Game
 M&M Game: II
 Zeckendorf
 Gaussianity
 Lessons/Refs

 000
 000000
 000000
 0000000
 0000000
 0000000
 00

Partial Fraction Expansion (Example: Binet's Formula)

• Generating function:
$$g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$$

• Partial fraction expansion:

$$\Rightarrow g(x) = \frac{x}{1-x-x^2} = \frac{1}{\sqrt{5}} \left(\frac{\frac{1+\sqrt{5}}{2}x}{1-\frac{1+\sqrt{5}}{2}x} - \frac{\frac{-1+\sqrt{5}}{2}x}{1-\frac{-1+\sqrt{5}}{2}x} \right)$$

Coefficient of *x*^{*n*} (power series expansion):

$$\boldsymbol{F}_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right] \text{ - Binet's Formula!}$$
(using geometric series: $\frac{1}{1-r} = 1 + r + r^2 + r^3 + \cdots$).

Differentiating Identities and Method of Moments

Differentiating identities

Example: Given a random variable X such that

 $Pr(X = 1) = \frac{1}{2}, Pr(X = 2) = \frac{1}{4}, Pr(X = 3) = \frac{1}{8}, \dots$ then what's the mean of X (i.e., E[X])? Solution: Let $f(x) = \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \dots = \frac{1}{1-x/2} - 1$. $f'(x) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4}x + 3 \cdot \frac{1}{8}x^2 + \dots$. $f'(1) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + \dots = E[X]$.

Method of moments: Random variables X₁, X₂,
 If lth moments E[X_n^l] converges those of standard normal then X_n converges to a Gaussian.

Standard normal distribution:

 $2m^{\text{th}}$ moment: $(2m - 1)!! = (2m - 1)(2m - 3) \cdots 1$, $(2m - 1)^{\text{th}}$ moment: 0.

New Approach: Case of Fibonacci Numbers

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

• Recurrence relation:

$$N \in [F_{n+1}, F_{n+2})$$
: $N = F_{n+1} + F_t + \cdots, t \le n-1$.
 $p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$

New Approach: Case of Fibonacci Numbers

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

• Recurrence relation:

$$N \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \le n-1.$$

$$p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$$

$$p_{n,k+1} = p_{n-2,k} + p_{n-3,k} + \cdots$$

New Approach: Case of Fibonacci Numbers

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

• Recurrence relation:

$$N \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \le n-1.$$

$$p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$$

$$p_{n,k+1} = p_{n-2,k} + p_{n-3,k} + \cdots$$

$$\Rightarrow p_{n+1,k+1} = p_{n,k+1} + p_{n-1,k}.$$

New Approach: Case of Fibonacci Numbers

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

• Recurrence relation:

Λ

$$V \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \le n-1.$$

$$p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$$

$$p_{n,k+1} = p_{n-2,k} + p_{n-3,k} + \cdots$$

$$\Rightarrow p_{n+1,k+1} = p_{n,k+1} + p_{n-1,k}.$$

• Generating function: $\sum_{n,k>0} p_{n,k} x^k y^n = \frac{y}{1-y-xy^2}$. • Partial fraction expansion:

$$\frac{y}{1 - y - xy^2} = -\frac{y}{y_1(x) - y_2(x)} \left(\frac{1}{y - y_1(x)} - \frac{1}{y - y_2(x)}\right)$$

where $y_1(x)$ and $y_2(x)$ are the roots of $1 - y - xy^2 = 0$.

Coefficient of y^n : $g(x) = \sum_{k>0} p_{n,k} x^k$.

New Approach: Case of Fibonacci Numbers (Continued)

 K_n : the corresponding random variable associated with k. $g(x) = \sum_{k>0} p_{n,k} x^k$.

• Differentiating identities:

$$\begin{split} g(1) &= \sum_{k>0} p_{n,k} = F_{n+1} - F_n, \\ g'(x) &= \sum_{k>0} k p_{n,k} x^{k-1}, \ g'(1) = g(1) E[K_n] \\ (xg'(x))' &= \sum_{k>0} k^2 p_{n,k} x^{k-1}, \\ (xg'(x))' &|_{x=1} = g(1) E[K_n^2], \\ (x (xg'(x))')' &|_{x=1} = g(1) E[K_n^3], \dots \end{split}$$

Similar results hold for the centralized K_n : $K'_n = K_n - E[K_n].$

• Method of moments (for normalized K'_n): $E[(K'_n)^{2m}]/(SD(K'_n))^{2m} \rightarrow (2m-1)!!,$ $E[(K'_n)^{2m-1}]/(SD(K'_n))^{2m-1} \rightarrow 0. \Rightarrow K_n \rightarrow \text{Gaussian}.$

New Approach: General Case

Let $p_{n,k} = \# \{ N \in [H_n, H_{n+1}) \}$: the generalized Zeckendorf decomposition of *N* has exactly *k* summands $\}$.

• Recurrence relation:

Fibonacci: $p_{n+1,k+1} = p_{n,k+1} + p_{n,k}$. General: $p_{n+1,k} = \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} p_{n-m,k-j}$. where $s_0 = 0$, $s_m = c_1 + c_2 + \dots + c_m$.

• Generating function:

Fibonacci:
$$\frac{y}{1-y-xy^2}$$
.
General:

$$\frac{\sum_{n \le L} p_{n,k} x^k y^n - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} \sum_{n < L-m} p_{n,k} x^k y^n}{1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1}}$$

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
					00000000000000	

New Approach: General Case (Continued)

• Partial fraction expansion:

Fibonacci:
$$-\frac{y}{y_1(x)-y_2(x)} \left(\frac{1}{y-y_1(x)} - \frac{1}{y-y_2(x)}\right)$$
.
General:
 $-\frac{1}{\sum_{j=s_{L-1}}^{s_{L}-1} x^j} \sum_{i=1}^{L} \frac{B(x, y)}{(y - y_i(x)) \prod_{j \neq i} (y_j(x) - y_i(x))}$.
 $B(x, y) = \sum_{n \leq L} p_{n,k} x^k y^n - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} \sum_{n < L-m} p_{n,k} x^k y^n$,
 $y_i(x)$: root of $1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} = 0$.

Coefficient of y^n : $g(x) = \sum_{n,k>0} p_{n,k} x^k$.

- Differentiating identities
- Method of moments: implies $K_n \rightarrow$ Gaussian.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs

Takeaways

Intro 000	M&M Game: I 000000	Hoops Game	M&M Game: II 000000000000000000	Zeckendorf 0000000	Gaussianity ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	Lessons/Refs ●○
Les	sons					

- Always ask questions.
- Many ways to solve a problem.
- Experience is useful and a great guide.
- Need to look at the data the right way.
- Often don't know where the math will take you.
- Value of continuing education: more math is better.

Connections: My favorite quote: If all you have is a hammer, pretty soon every problem looks like a nail.

Intro	M&M Game: I	Hoops Game	M&M Game: II	Zeckendorf	Gaussianity	Lessons/Refs
000	000000		000000000000000000	0000000	০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	○●
Refe	erences					

References

 Beckwith, Bower, Gaudet, Insoft, Li, Miller and Tosteson: The Average Gap Distribution for Generalized Zeckendorf Decompositions. The Fibonacci Quarterly 51 (2013), 13–27.

http://arxiv.org/abs/1208.5820.

 Bower, Insoft, Li, Miller and Tosteson: Distribution of gaps in generalized Zeckendorf decompositions, preprint 2014. http://arxiv.org/abs/1402.3912.

 Kologlu, Kopp, Miller and Wang: On the number of summands in Zeckendorf decompositions, Fibonacci Quarterly 49 (2011), no. 2, 116–130.

http://arxiv.org/pdf/1008.3204.

 Miller and Wang: Gaussian Behavior in Generalized Zeckendorf Decompositions, to appear in the conference proceedings of the 2011 Combinatorial and Additive Number Theory Conference. http://arxiv.org/pdf/1107.2718.pdf.