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L-functions

Riemann zeta function:

ζ(s) =

∞∑

n=1

1
ns =

∏

p

(
1 − 1

ps

)−1

.

Dirichlet L-functions:

L(s, χd) =

∞∑

n=1

χd(n)

ns =
∏

p

(
1 − χd(p)

ps

)−1

.

Elliptic curve L-functions: build up with data related to
number of solutions modulo p.
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Properties of zeros of L-functions

infinitude of primes, primes in arithmetic progression.

Chebyshev’s bias: π3,4(x) ≥ π1,4(x) ‘most’ of the time.

Birch and Swinnerton-Dyer conjecture.

Goldfeld, Gross-Zagier: bound for h(D) from
L-functions with many central point zeros.

Even better estimates for h(D) if a positive
percentage of zeros of ζ(s) are at most 1/2 − ε of the
average spacing to the next zero.
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Distribution of zeros

ζ(s) 6= 0 for Re(s) = 1: π(x), πa,q(x).

GRH: error terms.

GSH: Chebyshev’s bias.

Analytic rank, adjacent spacings: h(D).
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Measures of Spacings: n-Level Correlations
2 NICHOLAS M. KATZ AND PETER SARNAK

Figure 1. Nearest neighbor spacings among 70 million zeroes be-
yond the 1020-th zero of zeta, verses µ1(GUE).

RH (needless to say, in the numerical experiments reported on below all zeroes
found were on the line Re(s) = 1

2 ) and order the ordinates γ:

. . . . . . γ−1 ≤ 0 ≤ γ1 ≤ γ2 . . . .(4)

Then γj = −γ−j, j = 1, 2, . . . , and in fact γ1 is rather large, being equal to
14.1347 . . . . It is known (apparently already to Riemann) that

#{j : 0 ≤ γj ≤ T } ∼ T log T

2π
, as T → ∞.(5)

In particular, the mean spacing between the γ′
js tends to zero as j → ∞. In order

to examine the (statistical) law of the local spacings between these numbers we
re-normalize (or “unfold” as it is sometimes called) as follows:
Set

γ̂j =
γj log γj

2π
for j ≥ 1.(6)

The consecutive spacings δj are defined to be

δj = γ̂j+1 − γ̂j , j = 1, 2, . . . .(7)

More generally, the k − th consecutive spacings are

δ
(k)
j = γ̂j+k − γ̂j , j = 1, 2, . . . .(8)

What laws (i.e. distributions), if any, do these numbers obey?
During the years 1980-present, Odlyzko [OD] has made an extensive and pro-

found numerical study of the zeroes and in particular their local spacings. He
finds that they obey the laws for the (scaled) spacings between the eigenvalues of

n-level correlation: {αj} an increasing sequence of
numbers, B ⊂ Rn−1 a compact box:

lim
N→∞

#

{
(
αj1 − αj2, . . . , αjn−1 − αjn

)
∈ B, ji 6= jk ≤ N

}

N

Odlyzko: Normalized spacings of ζ(s) starting at 1020

Montgomery, Hejhal: Pair, triple correlations of ζ(s)
Rudnick-Sarnak: n-level correlations for all
automorphic cupsidal L-fns
Katz-Sarnak: n-level correlations for the classical
compact groups
insensitive to any finite set of zeros
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Measures of Spacings: n-Level Density and Families

Let gi be even Schwartz functions whose Fourier
Transform is compactly supported, L(s, f ) an L-function
with zeros 1

2 + iγf and conductor Qf :

Dn,f (g) =
∑

j1,...,jn
ji 6=±jk

g1

(
γf ,j1

log Qf

2π

)
· · ·gn

(
γf ,jn

log Qf

2π

)

Properties of n-level density:
� Individual zeros contribute in limit
� Most of contribution is from low zeros
� Average over similar L-functions (family)
To any geometric family, Katz-Sarnak predict the
n-level density depends only on a symmetry group (a
classical compact group) attached to the family.

6



Introduction Ratios Conjecture Main Results Proofs Conclusions Appendix Refs

n-Level Density

n-level density: F = ∪FN a family of L-functions ordered
by conductors, gk an even Schwartz function:

Dn,F(g) = lim
N→∞

1
|FN|

∑

f∈FN

∑

j1,...,jn
ji 6=±jk

g1

(
log Qf

2π
γj1;f

)
· · ·gn

(
log Qf

2π
γjn;f

)

As N → ∞, 1-level density converges to
∫

g(x)W1,G(F)(x)dx =

∫
ĝ(u)Ŵ1,G(F)(u)du.

Conjecture (Katz-Sarnak)
(In the limit) Distribution of zeros near central point agrees
with distribution of eigenvalues near 1 of a classical
compact group.
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1-Level Densities

Let G be one of the classical compact groups: Unitary,
Symplectic, Orthogonal (or SO(even), SO(odd)).
If supp(ĝ) ⊂ (−1, 1), 1-level density of G is

ĝ(0) − cG
g(0)

2
,

where

cG =





0 G is Unitary
1 G is Symplectic

−1 G is Orthogonal.
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Some Results

Orthogonal:
� Iwaniec-Luo-Sarnak: 1-level density for H±

k (N), N
square-free.
� Miller, Young: families of elliptic curves.
� Güloğlu: 1-level for {Symr f : f ∈ Hk(1)}, r odd.
Symplectic:
� Rubinstein: n-level densities for L(s, χd).
� Güloğlu: 1-level for {Symr f : f ∈ Hk(1)}, r even.
Unitary:
� Hughes-Rudnick, Miller: families of primitive
Dirichlet characters.
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Identifying the Symmetry Groups

Often an analysis of the monodromy group in the
function field case suggests the answer.
All simple families studied to date are built from GL1
or GL2 L-functions.
Tools: Explicit Formula, Orthogonality of Characters /
Petersson Formula.
How to identify symmetry group in general? One
possibility is by the signs of the functional equation:
Folklore Conjecture: If all signs are even and no
corresponding family with odd signs, Symplectic
symmetry; otherwise SO(even). (False!)
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Explicit Formula

π: cuspidal automorphic representation on GLn.
Qπ > 0: analytic conductor of L(s, π) =

∑
λπ(n)/ns.

By GRH the non-trivial zeros are 1
2 + iγπ,j.

Satake parameters {απ,i(p)}n
i=1;

λπ(pν) =
∑n

i=1 απ,i(p)ν.

L(s, π) =
∑

n
λπ(n)

ns =
∏

p

∏n
i=1 (1 − απ,i(p)p−s)

−1.

∑

j

g
(

γπ,j
log Qπ

2π

)
= ĝ(0)−2

∑

p,ν

ĝ
(

ν log p
log Qπ

)
λπ(pν) log p
pν/2 log Qπ
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Some Results: Rankin-Selberg Convolution of Families

Symmetry constant: cL = 0 (resp, 1 or -1) if family L has
unitary (resp, symplectic or orthogonal) symmetry.

Rankin-Selberg convolution: Satake parameters for
π1,p × π2,p are

{απ1×π2(k)}nm
k=1 = {απ1(i) · απ2(j)} 1≤i≤n

1≤j≤m
.

Theorem (Dueñez-Miller)
If F and G are nice families of L-functions, then
cF×G = cF · cG.
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Ratios Conjecture
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History

Farmer (1993): Considered
∫ T

0

ζ(s + α)ζ(1 − s + β)

ζ(s + γ)ζ(1 − s + δ)
dt ,

conjectured (for appropriate values)

T
(α + δ)(β + γ)

(α + β)(γ + δ)
− T 1−α−β (δ − β)(γ − α)

(α + β)(γ + δ)
.

Conrey-Farmer-Zirnbauer (2007): conjecture
formulas for averages of products of L-functions over
families:

RF =
∑

f∈F

ωf
L
(

1
2 + α, f

)

L
(1

2 + γ, f
) .
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Uses of the Ratios Conjecture

Applications:
� n-level correlations and densities;
� mollifiers;
� moments;
� vanishing at the central point;

Advantages:
� RMT models often add arithmetic ad hoc;
� predicts lower order terms, often to square-root
level.
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Inputs for 1-level density

Approximate Functional Equation:

L(s, f ) =
∑

m≤x

am

ms + εXL(s)
∑

n≤y

an

n1−s ;

� ε sign of the functional equation,
� XL(s) ratio of Γ-factors from functional equation.

Explicit Formula: g Schwartz test function,

∑

f∈F

ωf

∑

γ

g
(

γ
log Nf

2π

)
=

1
2πi

∫

(c)

−
∫

(1−c)

R′
F(· · · )g (· · · )

� R′
F(r) = ∂

∂α
RF (α, γ)

∣∣∣
α=γ=r

.
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Procedure

Use approximate functional equation to expand
numerator.
Expand denominator by generalized Mobius function:
cusp form

1
L(s, f )

=
∑

h

µf (h)

hs ,

where µf (h) is the multiplicative function equaling 1
for h = 1, −λf (p) if n = p, χ0(p) if h = p2 and 0
otherwise.
Execute the sum over F , keeping only main
(diagonal) terms.
Extend the m and n sums to infinity (complete the
products).
Differentiate with respect to the parameters.
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Main Results
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Symplectic Families

Fundamental discriminants: d square-free and 1
modulo 4, or d/4 square-free and 2 or 3 modulo 4.
Associated character χd :
� χd(−1) = 1 say d even;
� χd(−1) = −1 say d odd.
� even (resp., odd) if d > 0 (resp., d < 0).

Will study following families:
� even fundamental discriminants at most X ;
� {8d : 0 < d ≤ X , d an odd, positive square-free
fundamental discriminant}.
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Prediction from Ratios Conjecture

1

X∗

∑

d≤X

∑

γd

g
(

γd
log X

2π

)
=

1

X∗ log X

∫
∞

−∞
g(τ)

∑

d≤X

[
log

d

π
+

1

2

Γ′

Γ

(
1

4
±

iπτ

log X

)]
dτ

+
2

X∗ log X

∑

d≤X

∫
∞

−∞
g(τ)

[
ζ′

ζ

(
1 +

4πiτ

log X

)
+ A′

D

(
2πiτ

log X
;

2πiτ

log X

)

− e−2πiτ log(d/π)/ log X
Γ
(

1
4 − πiτ

log X

)

Γ
(

1
4 + πiτ

log X

) ζ

(
1 −

4πiτ

log X

)
AD

(
−

2πiτ

log X
;

2πiτ

log X

)]
dτ + O(X− 1

2 +ε
),

with

AD(−r , r) =
∏

p

(
1 − 1

(p + 1)p1−2r −
1

p + 1

)
·
(

1 − 1
p

)−1

A′
D(r ; r) =

∑

p

log p
(p + 1)(p1+2r − 1)

.
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Prediction from Ratios Conjecture

Main term is

1
X ∗

∑

d≤X

∑

γd

g
(

γd
log X

2π

)
=

∫ ∞

−∞

g(x)

(
1 − sin(2πx)

2πx

)
dx

+ O
(

1
log X

)
,

which is the 1-level density for the scaling limit of
USp(2N). If supp(ĝ) ⊂ (−1, 1), then the integral of g(x)
against − sin(2πx)/2πx is −g(0)/2.
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Prediction from Ratios Conjecture

Assuming RH for ζ(s), for supp(ĝ) ⊂ (−σ, σ) ⊂ (−1, 1):

−2

X∗ log X

∑

d≤X

∫
∞

−∞
g(τ) e

−2πiτ log(d/π)
log X

Γ
(

1
4 − πiτ

log X

)

Γ
(

1
4 + πiτ

log X

) ζ

(
1 −

4πiτ

log X

)
AD

(
−

2πiτ

log X
;

2πiτ

log X

)
dτ

= −g(0)

2
+ O(X− 3

4 (1−σ)+ε);

the error term may be absorbed into the O(X−1/2+ε) error
if σ < 1/3.
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Main Results

Theorem (M– ’07)

Let supp(ĝ) ⊂ (−σ, σ), assume RH for ζ(s). 1-Level
Density agrees with prediction from Ratios Conjecture

up to O(X−(1−σ)/2+ε) for the family of quadratic
Dirichlet characters with even fundamental
discriminants at most X;
up to O(X−1/2 + X−(1− 3

2 σ)+ε + X− 3
4 (1−σ)+ε) for our

sub-family. If σ < 1/3 then agrees up to O(X−1/2+ε).
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Numerics (J. Stopple): 1,003,083 negative fundamental
discriminants −d ∈ [1012, 1012 + 3.3 · 106]

Histogram of normalized zeros (γ ≤ 1, about 4 million).
� Red: main term. � Blue: includes O(1/ log X ) terms.

� Green: all lower order terms.
24
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Sketch of Proofs
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Ratios Calculation

Hardest piece to analyze is

R(g; X ) = − 2
X ∗ log X

∑

d≤X

∫ ∞

−∞

g(τ)e−2πiτ log(d/π)
log X

Γ
(

1
4 − πiτ

log X

)

Γ
(

1
4 + πiτ

log X

)

· ζ

(
1 − 4πiτ

log X

)
AD

(
− 2πiτ

log X
;

2πiτ
log X

)
dτ,

AD(−r , r) =
∏

p

(
1 − 1

(p + 1)p1−2r −
1

p + 1

)
·
(

1 − 1
p

)−1

.

Proof: shift contours, keep track of poles of ratios of Γ and
zeta functions.
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Ratios Calculation: Weaker result for supp(ĝ) ⊂ (−1, 1).

d -sum is X ∗e−2πi(1− log π
log X )τ

(
1 − 2πiτ

log X

)−1
+ O(X 1/2);

decay of g restricts τ -sum to |τ | ≤ log X , Taylor
expand everything but g: small error term and

∫

|τ |≤log X
g(τ)

N∑

n=−1

an

logn X
(2πiτ)ne−2πi(1− log π

log X )τdτ

=
N∑

n=−1

an

logn X

∫

|τ |≤log X
(2πiτ)ng(τ)e−2πi(1− log π

log X )τdτ ;

from decay of g can extend the τ -integral to R

(essential that N is fixed and finite!), for n ≥ 0 get the
Fourier transform of g(n) (the nth derivative of g) at
1 − π

log X , vanishes if supp(ĝ) ⊂ (−1, 1).
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Number Theory Sums

Seven = − 2
X ∗

∑

d≤X

∞∑

`=1

∑

p

χd(p)2 log p
p` log X

ĝ
(

2
log p`

log X

)

Sodd = − 2
X ∗

∑

d≤X

∞∑

`=0

∑

p

χd(p) log p
p(2`+1)/2 log X

ĝ
(

log p2`+1

log X

)
.
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Number Theory Sums

Lemma
Let supp(ĝ) ⊂ (−σ, σ) ⊂ (−1, 1). Then

Seven = −g(0)

2
+

2
log X

∫ ∞

−∞

g(τ)
ζ ′

ζ

(
1 +

4πiτ
log X

)
dτ

+
2

log X

∫ ∞

−∞

g(τ)A′
D

(
2πiτ
log X

;
2πiτ
log X

)
+ O(X− 1

2+ε)

Sodd = O(X− 1−σ
2 log6 X ).

If instead we consider the family of characters χ8d for odd,
positive square-free d ∈ (0, X ) (d a fundamental
discriminant), then

Sodd = O(X−1/2+ε + X−(1− 3
2 σ)+ε).
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Analysis of Seven

χd(p)2 = 1 except when p|d . Replace χd(p)2 with 1, and
subtract off the contribution from when p|d :

Seven = −2
∞∑

`=1

∑

p

log p
p` log X

ĝ
(

2
log p`

log X

)

+
2

X ∗

∑

d≤X

∞∑

`=1

∑

p|d

log p
p` log X

ĝ
(

2
log p`

log X

)

= Seven;1 + Seven;2.

Lemma (Perron’s Formula)

Seven;1 = −g(0)

2
+

2
log X

∫ ∞

−∞

g(τ)
ζ ′

ζ

(
1 +

4πiτ
log X

)
dτ.
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Analysis of Seven: Seven;2

This piece gives us
∫

g(τ)A′
D(− · · · , · · · ).

Main ideas:
� Restrict to p ≤ X 1/2.
� For p < X 1/2:

∑
d≤X ,p|d 1 = X∗

p+1 + O(X 1/2).
� Use Fourier Transform to expand ĝ.
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Analysis of Sodd

Sodd = − 2
X ∗

∞∑

`=0

∑

p

log p
p(2`+1)/2 log X

ĝ
(

log p2`+1

log X

)∑

d≤X

χd(p).

Jutila’s bound

∑

1<n≤N
n non−square

∣∣∣∣∣∣
∑

0<d≤X
d fund. disc.

χd(n)

∣∣∣∣∣∣

2

� NX log10 N.

Proof: Cauchy-Schwarz and Jutila: p2`+1 non-square:



∞∑

`=0

∑

p(2`+1)/2≤Xσ

∣∣∣∣∣
∑

d≤X

χd(p)

∣∣∣∣∣

2



1/2

� X
1+σ

2 log5 X .
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Analysis of Sodd: Extending Support

More technical, replace Jutila’s bound by applying
Poisson Summation to character sums.

Lemma
Let supp(ĝ) ⊂ (−σ, σ) ⊂ (−1, 1). For family
{8d : 0 < d ≤ X , d an odd, positive square-free
fundamental discriminant}, Sodd = O(X− 1

2+ε + X−(1− 3
2 σ)+ε).

In particular, if σ < 1/3 then Sodd = O(X−1/2+ε).
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Conclusions
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Conclusions

Ratios Conjecture gives detailed predictions (up to
X 1/2+ε).

Number Theory agrees with predictions for suitably
restricted test functions.

Numerics quite good.
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Appendix
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RH and the Prime Number Theorem

From ζ(s) =
∑

n−s =
∏

p (1 − p−s)
−1, logarithmic derivative is

−ζ ′(s)

ζ(s)
=
∑ Λ(n)

ns ,

where Λ(n) = log p if n = pk and is 0 otherwise.

Take Mellin transform, integrate and shift contour. Find
∑

n≤x

Λ(n) = x −
∑

ρ

xρ

ρ
,

where ρ = 1/2 + iγ runs over non-trivial zeros of ζ(s).

Partial summation gives Prime Number Theorem (to first order, there
are x/ log x primes at most x) if Reρ < 1.

The smaller max Re(ρ) is, the better the error term in the Prime
Number Theorem. The Riemann Hypothesis (RH) says Re(ρ) = 1/2.
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Primes in Arithmetic Progression

To study number primes p ≡ a mod q, use

L(s, χ) =
∑ χ(n)

ns =
∏

p

(
1 − χ(p)

ps

)−1

.

Key sum: 1
φ(q)

∑
χ mod q χ(n) is 1 if n ≡ 1 mod q and 0 otherwise.

Similar arguments give

∑

p≡a mod q

log p
ps = − 1

φ(q)

∑

χ mod q

L′(s, χ)

L(s, χ)
χ(a) + Good(s).

Note: To understand {p ≡ a mod q} need to understand all L(s, χ);
see benefit of studying a family.
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GSH and Chebyshev’s Bias

π3,4(x) ≥ π1,4(x) and π2,3(x) ≥ π1,3(x) ‘most’ of the time. Use
analytic density:

Denan(S) = lim sup
1

log T

∫

S∩[2,T ]

dt
t

.

Have π3,4(x) ≥ π1,4(x) with analytic density .9959 (first flip at 26861);
π2,3(x) ≥ π1,3(x) with analytic density .9990 (first flip ≈ 6 · 1011).

Non-residues beat residues. Key ingredient Generalized Simplicity
Hypothesis (GSH): the zeros of L(s, χ) are linearly independent over
Q.

Structure of zeros important: GSH used to show a flow on a torus is
full (becomes equidistributed).
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Class Number

Class number: measures failure of unique factorization (order of ideal
class group).

Imaginary quadratic field Q(
√

D), fundamental discriminant D < 0, I
group of non-zero fractional ideals, P subgroup of principal ideals,
H = I/P class group, h(D) = #H the class number. Dirichlet proved

L(1, χD) =
2πh(D)

wD
√

D
,

where χD the quadratic character and wD = 2 if D < −4, 4 if D = −4
and 6 if D = −3.

Theorem: h(D) = 1 ⇔ −D ∈ {3, 4, 7, 8, 11, 19, 43, 67, 163}.
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Class Number and Distribution of Zeros I

Expect
√

|D|

log log |D| � h(D) �
√
|D| log log |D|. Siegel proved

h(D) > c(ε)|D|1/2−ε (but ineffective).

Goldfeld, Gross-Zagier: f primitive cusp form of weight k , level N,
trivial central character, suppose m = ords=1/2L(s, f )L(s, χD) ≥ 3,
g = m − 1 or m − 2 so that (−1)g = ω(f )ω(fχD ) (signs of fnal eqs).
Then have effective bound

h(D) � (log |D|)g−1
∏

p|D

(
1 +

1
p

)−3(
1 +

λ(p)
√

p
p + 1

)−1

.

Good result from using an elliptic curve that vanishes to order 3 at
s = 1/2, application of many zeros at central point.
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Class Number and Distribution of Zeros II

Assume a positive percent of zeros (or cT log T/(log |D|)A) of zeros
with γ ≤ T ) of ζ(s) are at most 1/2 − ε of the average spacing from
the next zero ζ(s). Then h(D) �

√
|D|/(log |D|)B , all constants

computable.

See actual spacings between zeros are tied to number theory (have
positive percent are less than half the average spacing if GUE
Conjecture holds for adjacent spacings).

Instead of 1/2 − ε, under RH have: .68 (Montgomery), .5179
(Montgomery-Odlyzko), .5171 (Conrey-Ghosh-Gonek), .5169
(Conrey-Iwaniec) (Montgomery says led to pair correlation conjecture
by looking at gaps between zeros of ζ(s) and h(D)).
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