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@ Determine correct scale and statistics to study zeros
of L-functions.

@ See similar behavior in different systems.

@ Discuss the tools and techniques needed to prove the
results.
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Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at
t, b, tg, ...

Question: What rules govern the spacings between the t;?

Examples:
@ Spacings b/w Energy Levels of Nuclei.
@ Spacings b/w Eigenvalues of Matrices.
@ Spacings b/w Primes.
@ Spacings b/w nka mod 1.
@ Spacings b/w Zeros of L-functions.
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Sketch of proofs

In studying many statistics, often three key steps:
© Determine correct scale for events.

@ Develop an explicit formula relating what we want to
study to something we understand.

© Use an averaging formula to analyze the quantities
above.

It is not always trivial to figure out what is the correct
statistic to study!
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Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.
Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into
nucleus, see what comes out.

Fundamental Equation:

H wn = Enz/fn

H : matrix, entries depend on system
E, : energy levels
1 . energy eigenfunctions

TS HHSHHH
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Origins of Random Matrix Theory

@ Statistical Mechanics: for each configuration,
calculate quantity (say pressure).

@ Average over all configurations — most configurations
close to system average.

@ Nuclear physics: choose matrix at random, calculate
eigenvalues, average over matrices (real Symmetric

A = AT, complex Hermitian A' = A).
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Random Matrix Ensembles

dj1 dip a3z -+ AN
djp dpp dpz -+ AN
A = ] . . . = AT> ajj = aji
aiNn don A3n cc AnN
Fix p, define
Prob(A) = H p(ay)-
1<i<j<N
This means
/6|J
Prob (A D Qi € [Ozij,ﬁij]) = H / Xu dXIj
1<i<j<N Y Xij =

Want to understand eigenvalues of A.
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Eigenvalue Distribution

d(X — Xp) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).
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Eigenvalue Distribution

d(X — Xp) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:

T DI )
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Eigenvalue Distribution

d(X — Xp) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:

pian(x) %Za(x—g(—fﬁ’)
/buA,N(x)dx AU L)
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Eigenvalue Distribution

d(X — Xp) is a unit point mass at Xo:
JE(x)d(x — Xo)dx = f(xo).

To each A, attach a probability measure:
1g A(A)
pan(X) = NZ(S (X - m)
7

/b pan(X)dx = {Ai o €l b]}

o SR Treceal)
kN 5+1 okN5+L
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Wigner's Semi-Circle Law

Wigner’s Semi-Circle Law

N x N real symmetric matrices, entries i.i.d.r.v. from a
fixed p(x) with mean 0, variance 1, and other moments
finite. Then for almost all A, as N — ~©

x) 2V/1-x2 if|x] <1
HAN 0 otherwise.
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SKETCH OF PROOF: Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but it is the
matrix elements that are chosen randomly and
independently.

Eigenvalue Trace Lemma
Let A be an N x N matrix with eigenvalues Aj(A). Then

Trace(A*) = > A(A)K,

where
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SKETCH OF PROOF: Correct Scale

N

Trace(A?) = > N(A).

i=1

By the Central Limit Theorem:

N N N N
Trace(A?) = ZZaijaji - ZZaﬁ ~ N2

N

Gives NAve( )\ (A)?) ~ NZ2or Ave()(A)) ~ vN.
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SKETCH OF PROOF: Averaging Formula

Recall k-th moment of pan(X) is Trace(Ak)/2XNk/2+1,

Average k-th moment is
Trace(A¥)
/ / kN K/2+1 Hp(a”)da”'

Proof by method of moments: Two steps

@ Show average of k-th moments converge to moments
of semi-circle as N — oo;

@ Control variance (show it tends to zero as N — o0).
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SKETCH OF PROOF: Averaging Formula for Second Moment

Substituting into expansion gives

22N2 / / 2| -p(az1)day; - - - p(ann )dann

Iljl

Integration factors as

[e.o]
/ arp(a;)da;
ajj=—00

Higher moments involve more advanced combinatorics
(Catalan numbers).

H / p(aw)day = 1.
a

k')#IJ) K=7—00
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SKETCH OF PROOF: Averaging Formula for Higher Moments

Higher moments involve more advanced combinatorics
(Catalan numbers).

W/ / Z E:a.l.2 -3, - | [ p(ay)day.

ii=1 k=1 i<j

Main contribution when the a;,;,,,’s matched in pairs, not
all matchings contribute equally (if did would get a
Gaussian and not a semi-circle; this is seen in Real
Symmetric Palindromic Toeplitz matrices).
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Numerical examples

Distribution of eigenvalues--Gaussian, N=400, 500 matrices
0.025 T T T

0.015

0.005

0
-15 -1 -0.5 0 0.5 1 15

500 Matrices: Gaussian 400 x 400
p(x) = e/
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Numerical examples

2500

The eigenvalues of the Cauchy
distribution are NOT semicirular.

0
-300 -200 -100 0 100 200 300

Cauchy Distribution: p(x) = rixq
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GOE Conjecture

GOE Conjecture:

As N — oo, the probability density of the spacing b/w
consecutive normalized eigenvalues approaches a limit
independent of p.

Only known if p is a Gaussian.

GOE(x) ~ Ixe ™/4,
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Numerical Experiment: Uniform Distribution

Let p(x) = 1 for x| < 1.

35

T T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 uniform matrices, normalized in batches
of 20.

0 L L L
0 0.5 1 15 2 25 3 35 4 45 5

5000: 300 x 300 uniform on [—1,1]
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Cauchy Distribution

Let p(X) = —+=

m(1+x2) "

12000

0 05

1

15

The |OCr":l\ spac\ngs‘; of the ce‘mra\ 3/5 o‘f the e\geHvaIues '
of 5000 100x100 Cauchy matrices, normalized in batches
of 20.

2 25 3 35 4 4.5

5000: 100 x 100 Cauchy

1 s
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Cauchy Distribution

Let p(x) = m

35

T T T T T T
The local spacings of the central 3/5 of the eigenvalues
of 5000 300x300 Cauchy matrices, normalized in batches
of 20.
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Random Graphs

, @

Degree of a vertex = number of edges leaving the vertex.
Adjacency matrix: a; = number edges b/w Vertex i and

Vertex j.
0011
0010
A=11102
1020

These are Real Symmetric Matrices.
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McKay'’s Law (Kesten Measure) with d =3

Density of Eigenvalues for d-regular graphs

fx) - {mﬁud—n—xz ¥ < 2Va =1

0 otherwise.
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McKay’s Law (Kesten Measure) with d =6

Fat Thin: fat enough to average, thin enough to get
something different than semi-circle (though as d — oo
recover semi-circle).
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3-Regular Graph with 2000 Vertices: Comparison with the GOE

Spacings between eigenvalues of 3-regular graphs and
the GOE:
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Riemann Zeta Function

n=1 p prime

Functional Equation:
S\ _s
§(s) = T(3)75c(s) = ¢ —s).
Riemann Hypothesis (RH):
- 1 : 1 .
All non-trivial zeros have Re(s) = > can write zeros as §+w.

Observation: Spacings b/w zeros appear same as b/w
eigenvalues of Complex Hermitian matrices A — A
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General L-functions

Functional Equation:
A(s,f) = Ax(s,f)L(s,f) = A1 —s,T).
Generalized Riemann Hypothesis (RH):

- 1 : 1 .
All non-trivial zeros have Re(s) = > can write zeros as §+w.

Observation: Spacings b/w zeros appear same as b/w
eigenvalues of Complex Hermitian matrices A=A
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Zeros of ((s) vs GUE

06

04 P

02

0.0

0.0 0.5 1.0 15 20 2.5 3.0

70 million spacings b/w adjacent zeros of ((s), starting at
the 10%°"" zero (from Odlyzko)
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Explicit Formula (Contour Integration)
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Explicit Formula (Contour Integration)

d -1
ol _C?—Slogg(s) = —£|091;[(1—p_s)

d s
— E;Iog(l—p )

logp - p~° log p
— Zl—ip—s = ZF + Good(s).
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Explicit Formula (Contour Integration)

Contour Integration:

[-@®

s [(5)
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Explicit Formula (Contour Integration)

Contour Integration:

~((s) s
/ ) #(s)ds vs ;Iogp/gb(s)p ds.
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Explicit Formula (Contour Integration)

Contour Integration (see Fourier Transform arising):

('(s) —ologp o—itlo
|-G otsids v > logp [ ots)errmvetomngs.

Knowledge of zeros gives info on coefficients.
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Explicit Formula: Examples

Riemann Zeta Function: Let }  denote the sum over the
zeros of ((s) in the critical strip, g an even Schwartz

function of compact support and ¢(r) f g(u)e™du.
Then
=.2lo
> () = 2¢( )—ZZ k/gng(klogp)
p k=1
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Explicit Formula: Examples

Dirichlet L-functions: Let h be an even Schwartz function
and L(s, x) = >_, x(n)/n® a Dirichlet L-function from a
non-trivial character y with conductor m and zeros

p = 3 +i7,; if the Generalized Riemann Hypothesis is
true then v € R. Then

Zh< Iogm/w)) 2/_Zh(y)dy

logp ~/ logp \ x(p)
22 Tog(m/m)" (fogtm=1) w7

logp ~ logp 1\ X*(p) 1
‘Z?og(m/w)h(zlog(m/w)) > O liogm):

A
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Explicit Formula: Examples

Cuspidal Newforms: Let F be a family of cupsidal
newforms (say weight k, prime level N and possibly split
by sign) L(s,f) =>_, A(n)/n®. Then

1 log R A 1 1 _
WZZ¢(2W %) — 3(0)+5900) ~ 7 S_P(0)

feF »

_ B ~(logp\ 2logp
P = S0 ook ) Sk

A
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Measures of Spacings: n-Level Correlations

{oy} increasing sequence, box B ¢ R"*.

n-level correlation

# <Ozj1 = Qfpy - Qg — O‘jn) € Baji 7£Jk

lim
N—oo N

(Instead of using a box, can use a smooth test function.)

A7
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Measures of Spacings: n-Level Correlations

{ay} increasing sequence, box B  R"*.

© Normalized spacings of ¢(s) starting at 10%°
(Odlyzko).

@ 2 and 3-correlations of ((s) (Montgomery, Hejhal).

© n-level correlations for all automorphic cupsidal
L-functions (Rudnick-Sarnak).

@ n-level correlations for the classical compact groups
(Katz-Sarnak).

@ Insensitive to any finite set of zeros.

A
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Measures of Spacings: n-Level Density and Families

o(x) =T ¢i(x), ¢i even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

Dnf(¢) = Z¢1<Lf7f01))...¢H<Lf,yf(jn))

il gecadn
distinct

A
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Measures of Spacings: n-Level Density and Families

o(x) =T ¢i(x), ¢i even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

Dnf(¢) = Z¢1<Lffyf(h))...¢H<Lf,yf(jn))

il gecadn
distinct

© Individual zeros contribute in limit.
@ Most of contribution is from low zeros.
© Average over similar curves (family).

A
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Measures of Spacings: n-Level Density and Families

o(x) =T ¢i(x), ¢i even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

Dnf(¢) = Z¢1<Lffyf(h))...¢H<Lf,yf(jn))

il gecadn
distinct

© Individual zeros contribute in limit.
@ Most of contribution is from low zeros.
© Average over similar curves (family).

Katz-Sarnak Conjecture

For a ‘nice’ family of L-functions, the n-level density
depends only on a symmetry group attached to the family.
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Normalization of Zeros

Local (hard, use Cs) vs Global (easier, use logC =
Vatlne > ter, 109 Ct). Hope: ¢ a good even test function
with compact support, as |F| — oo,

EPLTEEEPNE S

feFn feFn J1 77777 in

— / /cb Wh g(7)(X)dX.

Katz-Sarnak Conjecture

As C; — oo the behavior of zeros near 1/2 agrees with
N — oo limit of eigenvalues of a classical compact group.

A
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1-Level Densities

The Fourier Transforms for the 1-level densities are

W sormen(U) = 8o(u) + Zu(u)
Woso(u) = dofu) + 5

Wi sorin(u) = do(u) — zn(u) +1
Wosp(U) = do(u) — n(u)

W17u(U) = (50(U)
where do(u) is the Dirac Delta functional and

1 ifjuj<1
n(u) = { ; ifjul=1

2
0 iflu/>1

A
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Correspondences

Similarities between L-Functions and Nuclei:

Zeros <«+«— Energy Levels

Schwartz test function —— Neutron

Support of test function «— Neutron Energy.

AQ
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Some Number Theory Results

@ Orthogonal: Iwaniec-Luo-Sarnak, Ricotta-Royer:
1-level density for holomorphic even weight k
cuspidal newforms of square-free level N (SO(even)
and SO(odd) if split by sign).

@ Symplectic: Rubinstein, Gao: n-level densities for
twists L(s, yq) of the zeta-function.

@ Unitary: Miller, Hughes-Rudnick: Families of Primitive
Dirichlet Characters.

@ Orthogonal: Miller, Young: One and two-parameter
families of elliptic curves.




Intro to L-Functions
°

Main Tools

@ Control of conductors: Usually monotone, gives scale
to study low-lying zeros.

@ Explicit Formula: Relates sums over zeros to sums
over primes.

@ Averaging Formulas: Petersson formula in
lwaniec-Luo-Sarnak, Orthogonality of characters in
Rubinstein, Miller, Hughes-Rudnick.




Intro to L-Functions
°

Applications of n-level density

One application: bounding the order of vanishing at the
central point.
Averagerank - ¢(0) < [ ¢(x)Wg(z)(x)dx if ¢ non-negative.
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Applications of n-level density

One application: bounding the order of vanishing at the
central point.

Averagerank - ¢(0) < [ ¢(x)Wg(z)(x)dx if ¢ non-negative.
Can also use to bound the percentage that vanish to
order r forany r.

Theorem (Miller, Hughes-Miller)

Using n-level arguments, for the family of cuspidal
newforms of prime level N — oo (split or not split by sign),
for any r there is a ¢, such that probability of at least r
zeros at the central point is at most c,r —".

Better results using 2-level than lwaniec-Luo-Sarnak
using the 1-level forr > 5.

eSS




Dirichlet L-functions

Example:
Dirichlet L-functions
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Dirichlet Characters ( m prime)

(Z/mZ)* is cyclic of order m — 1 with generator g. Let
Cm_1 = €27/(m=1) The principal character g is given by

The m — 2 primitive characters are determined (by
multiplicativity) by action on g.

As each y : (Z/mZ)* — C*, for each x there exists an |
such that y(g) = ¢._,. Hence foreach|,1 <1 <m —2 we

have
_ B, k=g?m)
k) = {o (k,m) > 0
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Dirichlet L-Functions

Let x be a primitive character mod m. Let

m—1 _
— Z X(k)e2mk/m_
k=0

c(m, x) is a Gauss sum of modulus /m.

L(s,x) = JJ@—x(@p~)"
p

S
AS,y) = %S+6>r( ;6) miE+IL(s, y),

where

_JO ifx(-1)= 1
© T 1 (1) =1
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Explicit Formula

Let ¢ be an even Schwartz function with compact support
(—o,0), let x be a non-trivial primitive Dirichlet character
of conductor m.

o)

/_ o(y)dy

—Zlo"’gp 0 (gt ) Lx(p) + X(p)p

g(m/m)* \log(m/r)
logp -~/ logp 2 2 1
2 fog 759 (2iogim/ I R) + C(p)Ip
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Expansion

{xo0} U {xi1}1<1<m_2 are all the characters mod m.
Consider the family of primitive characters mod a prime m

(m — 2 characters):

/ oy

logp -~/ logp 1
P > fagim/m)" Uog(m/m) ) NP + KPP

XF#X0
1 logp ~/_ logp 2 2 1
- ﬁ¢; o 77 (Ziogim ) D) + @)
1
+ O(Iogm)'

Note can pass Character Sum through Test Function.
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Character Sums

m—-1 k=1(m)
Z x(k) = {O otherwise.




Dirichlet L-functions
°

Character Sums

o) m- 1 k=1(m)
Z x(k) = 0 otherwise.
For any prime p # m

S () - {—1+m—1 p=1(m)

-1 otherwise.
XFX0

GO
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Character Sums

) m—-1 k=1(m)
Z x(k) = {O otherwise.
For any prime p # m

> () = {j*m‘l P =1

otherwise.
XFX0

Substitute into

logp A logp _ _1
i, Z Z oa(m/=1° Liogrm 1) DX(P) + KPP~

¢
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First Sum: no contributionif o <2

2 & logp ~/ logp 1
m-—2 Z Iog(m/7r)¢<log(m/7r)>IO i

m-1 << logp ~; logp _
2m—2pz Iog(m/w)¢<log(m/w)>p

NI

R
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First Sum: no contributionif o <2

2 & logp ~/ logp 1
m-—2 Z Iog(m/7r)¢<log(m/7r)>IO i

m-1 << logp ~; logp _
2m—2pz Iog(m/w)¢<log(m/w)>p

< I¥pie Y e

p p=1(m)

NI

¢
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First Sum: no contributionif o <2

NI=

2 X logp 3 log p _
Zzlog (m/m) <Iog(m/7r)>p

™. logp 3 log p _
;)Iog (m/7) (Iog(m/ﬂ)p

j
1851 £ picifo Eo
p

pP= 1(m k >m+1

NI

¢
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First Sum: no contributionif o <2

NI=

2 X logp ~/ logp _
m-—2 Z Iog(m/7r)¢<log(m/7r)>IO

m-—1 logp )A( logp )>p

NI

+ 2——=
m-—2 o) log(m/7) " \log(m /=7
1 &
- -3 2 — k*E kf’
< mzp:p +pzl(;np < Z + Z
k>m+1

< —Zk‘ﬁ + —Zk <<ilmf’/2.

¢
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Second Sum

logp 5, 10gp_\x*(p) + ¥*(P)
2 Z ZIog (m/m) ( Iog(m/ﬂ)> p '

X#Xo P

> E(p) + JP(p)] = {Z(m ~2) p=4+1(m)

X#Xo -2 b7 il(m)
Upto O <|ogm> we find that
mo/2 me/2
2m 2
T Z > P
p==£1(m)
me/2 me/2 me/2

< = 22k1+ >kt Zkl

k=1(m) k=—1(m
¢
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Dirichlet Characters: m Square-free

Fix anr and let mq, ..., m, be distinct odd primes.

m = mumy---m,

My = (mg—1)(mz—1)---(m; — 1) = ¢(m)

M, = (my—2)(m;—2)---(m, —2).
M, is the number of primitive characters mod m, each of
conductor m. A general primitive character mod m is

given by x(u) = xi,(U)xi,(u) - - - xi, (u). Let
F={X:X=XuXb "X}

logp A logp 1
Mzzlog (m/x) (Iog (m/x) ) Z[X

logp 3 logp \ 1
M, Z log(m /) < log(m /) ) Z[X

¢
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Characters Sums

miZZXI-(D) _ {mi—l—l p=1(m)

-1 otherwise.

Define
1 p=1(m)
. 1) =
Om (P, 1) {O otherwise.
Then
my—2 my—2
> x(p) = < x(P) - xa(p)
XEF l,=1 =1
r m-—2 r

¢
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Expansion Preliminaries

k(s) is an s-tuple (kq,ka, ..., Ks) with k; < kp < -+ < K.
This is just a subset of (1,2,...,r), 2" possible choices for

K(s).
S
5k(5)(p7 l) = H 5mki (p7 1)
i=1
If s = 0 we define dyo)(p, 1) = 1 Vp.
Then

r

II(—l+Um—lﬁm@J»

E:}: 1) k) (p, 1) [ T(my — 2).

s=0 k(s) i=1

¢
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First Sum

< Zp (1+Zzéks) p.1 i—1)>-

s=1 k(s) i

As m/M, < 3', s = 0 sum contributes

hence negligible for ¢ < 2.

y
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First Sum

S

< Zp 2 (1+Zzéks) p,1 mki—1)>-

s=1 k(s) i:
Now we study

1 1
Sikis) = M, [T(mg = 1)>  p2dks)(p. 1)
i—1 b
1 S me
1
< M H(mki —1) Z n—2
2 i=1 nEl(mk(s))
1 1 & .
< M —1)—c—— > n~% < 3mio-
v L~ O 2

y
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First Sum

There are 2" choices, yielding

Sl < Grm%afl’

which is negligible as m goes to infinity for fixed r if o < 2.
Cannot let r go to infinity.

If m is the product of the first r primes,
r
logm = Zlog Pk
k=1
= ) logp ~r
p<r

Therefore

| 6r ~ mIog6 ~ ml.79.
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Second Sum Expansions and Bounds

-1 otherwise

S ) - {mi_l_l P = =im)

m;—2
PP = > Z Xi(p) -+ xP(p
x€F =1 lr=
r mi—2
= 1> xitp
i—1 =1

y
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Second Sum Expansions and Bounds

Handle similarly as before. Say
p = 1 mod my,,...,my,
p = —1mod My 1,...,My,
How small can p be?
+1 congruences imply p > my, - - -my, + 1.
—1 congruences imply p > my, ---my, — 1.
Since the product of these two lower bounds is greater
than []"_,(m — 1), at least one must be greater than

(ITs(m — 1)

There are 3" pairs, yielding

Second Sum = ZZZS“ ()i(s) < 9'mM~2.

s=0 k(s)

2

y
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Summary

Agrees with Unitary for o < 2 for square-free m € [N, 2N]
from:

@ m square-free odd integer with r = r(m) factors;
o m=[]_, m;
® Mz = [[i_;(mi - 2).

Then family F,, of primitive characters mod m has

: 1

First Sum <« = 2'mz°
M,
1

Second Sum < —3'm:.
M,

y
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Cuspidal
Newforms

TR
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Results from Iwaniec-Luo-Sarnak

@ Orthogonal: Iwaniec-Luo-Sarnak: 1-level density for
holomorphic even weight k cuspidal newforms of
square-free level N (SO(even) and SO(odd) if split by

sign).
@ Symplectic: lwaniec-Luo-Sarnak: 1-level density for

sym?(f), f holomorphic cuspidal newform.

Will review Orthogonal case and talk about extensions
(joint with Chris Hughes).

y
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Modular Form Preliminaries

ab) ad—-bc =1
) ={(85) “ecom S
f is a weight k holomorphic cuspform of level N if
Vy € To(N), f(72) = (cz +d)*f(2).
@ Fourier Expansion: f(z) = Y o2, a;(n)e®"Z,
L(s,f)=> ", an"s.
@ Petersson Norm: (f,g) = fro(N)\Hf(z)g(z)yk*dedy.
@ Normalized coefficients:

rk—1) 1
Pr(n) Wwaf(n)-

y
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Modular Form Preliminaries: Petersson Formula

Bk (N) an orthonormal basis for weight k level N. Define

Agn(m,n) = Z wr(m)d(n).

fEBk(N)

Petersson Formula

y
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Modular Form Preliminaries: Explicit Formula

Let F be a family of cupsidal newforms (say weight k,
prime level N and possibly split by sign)
L(s,f) = >, A(n)/n3. Then

1 logR A 1 1 _
WZZMZW vf) = 9(0) + 5000~ 7 >_P(fi0)

feF »

_ B ~(logp 2logp
P = S0 ook ) Sk
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Modular Form Preliminaries:Fourier Coefficient Review

A(n) = a(n)n2
M) = 3 (?)
d|(m,n)
(d,M)=1

For a newform of level N, A\¢(N) is trivially related to the
sign of the form:

e = i*u(N)A(N)VN.

The above will allow us to split into even and odd families:
1+ €f.
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Key Kloosterman-Bessel integral from ILS

Ramanujan sum:
R(n,q) = > e(an/q) = » p(q/d)d
amod q d|(n,q)

where x restricts the summation to be over all a relatively
prime to q.

Theorem (ILS)

Let W be an even Schwartz function with supp(¥) C (—2, 2). Then

1 R(m?,b)R(1,b) foo . <2|og(by\/ﬁ/47rm)> dy
— e i e i Ji_ v — ° )
mg\‘e m?2 (b N)=1 @(b) /y:o k-10Y) logR logR

B sm 27X k log log kN
= == / ST o — —w(0) +0 ,
log kN

where R = k2N and ¢ is Euler’s totient function.
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Limited Support ( ¢ < 1): Sketch of proof

@ Estimate Kloosterman-Bessel terms trivially.
o Kloosterman sum: dd = 1 mod q, 7(q) is the
number of divisors of q,

oy omd, nd
S(m,n;q) = Ze(q +q>

d mod q

S(m.ma)| < (m.n.q) \/min{ a_ 9 }T(q).

© Bessel function: integer k > 2,
Ji-1(x) < min (x, x*= x71/2),

@ Use Fourier Coefficients to split by sign: N fixed:

£ 3 (N # ().
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Increasing Support ( o < 2): Sketch of the proof

@ Using Dirichlet Characters, handle Kloosterman
terms.

@ Have terms like

[ a5 3 90) &
0

logR / Yy

with arithmetic factors to sum outside.

@ Works for support up to 2.
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Increasing Support ( o < 2): Kloosterman-Bessel details

Stating in greater generality for later use.

Gauss sum: x a character modulo q: |G,(n)| < /g with

G,(n) = > x(a)exp(2rian/q).

amod q
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Increasing Support ( o < 2): Kloosterman-Bessel details

Kloosterman expansion:
S(m?,p;---pnN; Nb)

=) X(mZOdb) X(N)G (m?) G, (1)x(Px - - - Pn).

Lemma: Assuming GRH for Dirichlet L-functions,
supp(¢) C (—ﬁ, ﬁ) non-principal characters negligible.

Proof: use Jx_1(X ) < X and see

< =Y oY iop X Gmew)

m<N¢e (b,N)=1 x(mod b)
b<N2006 X#XO

m 1 ~(logp
\/NH 2 X(p)logp- I09R¢(|09R) '

=1 |p#N
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2-Level Density

/ / log X1 ngS log X, ] 47T\/m2x1x2N dx1dx,
x1=2 J xp= logR logR k-1 C VX1 X2

Change of variables and Jacobean:

u
U = XX X2 = §

up = X1 X1 = U

Left with

// |OgU1 |Og (%i) 1 3 4 \/mZUZN dUldU;
logR logR VU2 k=1 57 C Up
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2-Level Density
Changing variables, u;-integral is

7 ~ ~ (log uy
/W logu27o¢(W1)¢ (logR —Wl) dWl.

1= TogR

Support conditions imply
logu,\ [~ ~ ~ (log u,
Vs (IOQR) = /Wl__oo¢(W1)¢ (IogR Wl) dws.
Substituting gives

/oo 5, <4ﬁ,/m2uZN> v, (Iog uz) %
u,=0

C
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3-Level Density

) ) )
X1:2 X2:2 X3:2 |Og R |Og R |Og R
( \/m2x1x2x3N> dx;dx,dxs
* \Jk—l 4r
C v X1X2X3

Change variables as below and get Jacobean:

Us = X1X2X3 X3 = 3
u
U = XX X2 = F
U = X1 X1 = U
0O O
OX _ U 1 0 1
I — U% up —
8u U3z 1 ulu2
o —= =
u; Uz
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n-Level Density: Determinant Expansions from RMT

o U(N), Uc(N): det (Ko(x,-,xk))

1<j,k<n

@ USp(N): det< 1(Xj, Xk

1<j,k<n

)
@ SO(even): det <K1 Xj, Xk )

1<j,k<n
® SO(odd): det (K_1(Xj,Xk))1<j <n +
S, 0(x,) det <K71(Xj ; Xk))

where

1<j k#v<n

sin (w(x — y)) sin (w(x + y))
Ax-y) T Ay

KE(X>Y) =
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n-Level Density: Sketch of proof

Expand Bessel-Kloosterman piece, use GRH to drop
non-principal characters, change variables, main term is

bVN [ A<2log(bx\/ﬁ/47rm)> dx

_ ()
2mm J, -1 (x)n logR logR

with &, (x) = &(x)".

Main ldea

Difficulty in comparison with classical RMT is that instead
of having an n-dimensional integral of ¢1(X1) - - - &n(Xn) We
have a 1-dimensional integral of a new test function. This
leads to harder combinatorics but allows us to appeal to
the result from ILS.
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Support for n-Level Density

Careful book-keeping gives (originally just had ﬁ)

1
n—1

on <

n-Level Density is trivial for o, < %, non-trivial up to L.

Expected % Obstruction from partial summation on
primes.
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Support Problems: 2-Level Density

Partial Summation on p; first, looks like

2lo ~/lo \/m?2 N
Z S(m?,p1p2N, c) 9P 45( gp1> Ji—1 <47T7p1p2

VvP1logR log R c )
p1#P2

Similar to ILS, obtain (c = bN):

logp _ 2u(N)
F;L S(m27plp2N7C) \/5 ¢(b)

p1tb

>, 10 [, error < b(bN)m/p,NN"2/?/bN, yields

1 b(bN)my/p,NN 7
WY S 2. e

m<N¢ b<N5 p <N<7

< N§+e+02+§+7—2 < N202 1+¢

R(m? b pz)xl +0O (b(bxyN)
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Support Problems: n-Level Density:

@ Ifno }_, , have above without the N which arose
from >_, , giving

@ Fine for o1 < 2. For 3-Level, have two sums over
primes giving N3, giving

< NZH+e+203+5+F -2 _ N 3os-1+¢

@ n-Level, have an additional (n — 1) prime sums, each
giving N, yields
< NIte+-Donti+P-2 _ N Eon—1+¢

QA
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Summary

@ More support for RMT Conjectures.
@ Control of Conductors.

@ Averaging Formulas.

Theorem (Hughes-Miller)

n-level densities of weight k cuspidal newforms of prime
level N, N — oo, agree with orthogonal in non-trivial
range (with or without splitting by sign).
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Open Questions

@ Generalize the non-determinantal expansion of
Hughes-Miller for the n'" centered moments beyond
o < =L to facilitate comparisons with random matrix
theory.

@ Obtain better estimates on vanishing at the central
point in families of cuspidal newforms by finding
optimal (or close to) test functions for the second and
higher moment expansions in Hughes-Miller.

@ Extend the support for families of Dirichlet characters
past (—2,2) by assuming (or even better proving')
reasonable conjectures about the distribution of
primes in congruence classes (currently working on
this with some students).
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