VC Dimension and Distance Chains in \mathbb{F}_{q}^{d}

Wyatt Milgrim

Joint work with Ruben Ascoli, Livia Betti, Justin Cheigh, Ryan Jeong, Xuyan Liu, Brian McDonald, Francisco Romero, and Santiago Velazquez;

Advisors: Alex losevich and Steven J. Miller

SMALL REU 2022, Williams College

AMS Special Session on Distance Problems in Continuous, Discrete, and Finite Field Settings

Joint Math Meetings 2023
January 7

Notation

- We let \mathbb{F}_{q}^{d} denote the d-dimensional vector space over the finite field \mathbb{F}_{q}.
- We write $\|x\|=x_{1}^{2}+x_{2}^{2} \ldots \in \mathbb{F}_{q}$, where $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{F}_{q}^{d}$.
- For the remainder of the talk we let t be a fixed, nonzero element of the finite field \mathbb{F}_{q} (i.e. this is not a variable).

VC-Dimension

Fix a set E and a collection of functions (hypothesis class) \mathcal{H} from E to $\{0,1\}$.

Definition

Say \mathcal{H} shatters a finite subset $A \subset E$ if restricting functions in \mathcal{H} to A yields all $2^{|A|}$ functions from A to $\{0,1\}$.

In other words, functions in the collection \mathcal{H} realize all possible behaviors on the subset $A \subset E$.

VC-Dimension

Fix a set E and a collection of functions (hypothesis class) \mathcal{H} from E to $\{0,1\}$.

Definition

Say \mathcal{H} shatters a finite subset $A \subset E$ if restricting functions in \mathcal{H} to A yields all $2^{|A|}$ functions from A to $\{0,1\}$.

In other words, functions in the collection \mathcal{H} realize all possible behaviors on the subset $A \subset E$.

Definition (Vapnik and Chervonenkis, 1968)

The Vapnik-Chervonenkis dimension (VCD) of \mathcal{H} is the maximal cardinality of sets $A \subset E$ that are shattered by \mathcal{H}.

Explicitly, $V C D(\mathcal{H})=n$ if there exists $A \subset E,|A|=n$ such that A is shattered by \mathcal{H}, but there is no such subset of size $n+1$.

Prior Work: Spheres in \mathbb{F}_{q}^{2}

Spheres in \mathbb{F}_{q}^{2} : Fix $t \neq 0$. For $E \subset \mathbb{F}_{q}^{2}$, Fitzpatrick, losevich, McDonald, and Wyman defined the class of functions $\mathcal{H}_{t}^{2}(E)=\left\{h_{y}: y \in E\right\}$, where $h_{y}: E \rightarrow\{0,1\}$ is the indicator function for the sphere of radius t centered at y :

$$
h_{y}(x)= \begin{cases}1 & \|y-x\|=t \\ 0 & \|y-x\| \neq t .\end{cases}
$$

Prior Work: Spheres in \mathbb{F}_{q}^{2}

Spheres in \mathbb{F}_{q}^{2} : Fix $t \neq 0$. For $E \subset \mathbb{F}_{q}^{2}$, Fitzpatrick, losevich, McDonald, and Wyman defined the class of functions $\mathcal{H}_{t}^{2}(E)=\left\{h_{y}: y \in E\right\}$, where $h_{y}: E \rightarrow\{0,1\}$ is the indicator function for the sphere of radius t centered at y :

$$
h_{y}(x)= \begin{cases}1 & \|y-x\|=t \\ 0 & \|y-x\| \neq t .\end{cases}
$$

Theorem (Fitzpatrick, losevich, McDonald, and Wyman, 2021)
If $|E| \geq C q^{15 / 8}$ for C large, then $\operatorname{VCD}\left(\mathcal{H}_{t}^{2}(E)\right)=3$, the largest possible value.

Prior Work: Spheres in \mathbb{F}_{q}^{2}

Spheres in \mathbb{F}_{q}^{2} : Fix $t \neq 0$. For $E \subset \mathbb{F}_{q}^{2}$, Fitzpatrick, losevich, McDonald, and Wyman defined the class of functions $\mathcal{H}_{t}^{2}(E)=\left\{h_{y}: y \in E\right\}$, where $h_{y}: E \rightarrow\{0,1\}$ is the indicator function for the sphere of radius t centered at y :

$$
h_{y}(x)= \begin{cases}1 & \|y-x\|=t \\ 0 & \|y-x\| \neq t .\end{cases}
$$

Theorem (Fitzpatrick, losevich, McDonald, and Wyman, 2021)
If $|E| \geq C q^{15 / 8}$ for C large, then $\operatorname{VCD}\left(\mathcal{H}_{t}^{2}(E)\right)=3$, the largest possible value.

One can define the analogous hypothesis class \mathcal{H}_{t}^{d} for higher dimensions. However no analogous theorem is known beyond $d=2$.

New Classifiers: Chains in \mathbb{F}_{q}^{d}

2-Chains in \mathbb{F}_{q}^{d} : Fix $t \neq 0, d \geq 3$, and $E \subset \mathbb{F}_{q}^{d}$. Define the collection of functions $\mathcal{H}_{t}^{d}(E)=\left\{h_{y, z}: y, z \in E, y \neq z\right\}$, where $h_{y, z}: E \rightarrow\{0,1\}$ is the indicator function for the intersection of spheres of radius t centered at y and z :

$$
h_{y, z}(x)= \begin{cases}1 & \text { if }\|y-x\|=\|z-x\|=t \\ 0 & \text { otherwise }\end{cases}
$$

New Classifiers: Chains in \mathbb{F}_{q}^{d}

2-Chains in \mathbb{F}_{q}^{d} : Fix $t \neq 0, d \geq 3$, and $E \subset \mathbb{F}_{q}^{d}$. Define the collection of functions $\mathcal{H}_{t}^{d}(E)=\left\{h_{y, z}: y, z \in E, y \neq z\right\}$, where $h_{y, z}: E \rightarrow\{0,1\}$ is the indicator function for the intersection of spheres of radius t centered at y and z :

$$
h_{y, z}(x)= \begin{cases}1 & \text { if }\|y-x\|=\|z-x\|=t \\ 0 & \text { otherwise }\end{cases}
$$

Theorem (SMALL 2022)

$|f| E \left\lvert\, \geq \begin{cases}C q^{\frac{7}{4}} & d=2 \\ C q^{\frac{7}{3}} & d=3 \\ C q^{d-\frac{1}{d-1}} & d \geq 4\end{cases}\right.$
Where C depends on d but not q, then $\operatorname{VCD}\left(\mathcal{H}_{t}^{d}(E)\right)=d$, the largest possible value.

Chains in \mathbb{F}_{q}^{d} (cont.)

```
Theorem (SMALL 2022)
If \(|E| \geq \begin{cases}C q^{\frac{7}{4}} & d=2 \\ C q^{\frac{7}{3}} & d=3 \\ C q^{d-\frac{1}{d-1}} & d \geq 4\end{cases}\)
Where \(C\) depends on \(d\) but not \(q\), then \(\operatorname{VCD}\left(\mathcal{H}_{t}^{d}(E)\right)=d\)
```

- It can be shown that $d+1$ points in \mathbb{F}_{q}^{d} have at most one point a common distance from all of them (essentially they determine a "sphere").

Chains in \mathbb{F}_{q}^{d} (cont.)

Theorem (SMALL 2022)

If $|E| \geq \begin{cases}C q^{\frac{7}{4}} & d=2 \\ C q^{\frac{7}{3}} & d=3 \\ C q^{d-\frac{1}{d-1}} & d \geq 4\end{cases}$
Where C depends on d but not q, then $\operatorname{VCD}\left(\mathcal{H}_{t}^{d}(E)\right)=d$

- It can be shown that $d+1$ points in \mathbb{F}_{q}^{d} have at most one point a common distance from all of them (essentially they determine a "sphere").
- Thus each $h_{y, z}$ takes on the value 1 at most d times, and so $V C D\left(\mathcal{H}_{t}^{d}\right) \leq d$. And so it only remains to establish the lower bound.

Chains in \mathbb{F}_{q}^{d} (cont.)

Theorem (SMALL 2022)

If $|E| \geq \begin{cases}C q^{\frac{7}{4}} & d=2 \\ C q^{\frac{7}{3}} & d=3 \\ C q^{d-\frac{1}{d-1}} & d \geq 4\end{cases}$
Where C depends on d but not q, then $\operatorname{VCD}\left(\mathcal{H}_{t}^{d}(E)\right)=d$

- It can be shown that $d+1$ points in \mathbb{F}_{q}^{d} have at most one point a common distance from all of them (essentially they determine a "sphere").
- Thus each $h_{y, z}$ takes on the value 1 at most d times, and so $V C D\left(\mathcal{H}_{t}^{d}\right) \leq d$. And so it only remains to establish the lower bound.
- Finally, we only consider the $d \geq 3$ case here: the $d=2$ case follows immediately from the techniques in (Fitzpatrick, et al., 2021)

Definitions

Definition

Fix $E \subset \mathbb{F}_{q}^{d}$, and let $A \subset E$. Call $x \in E$ a pole of A if $\|x-a\|=t$ whenever $a \in A$, and let $\operatorname{Pole}(A) \subset E$ denote the set of poles of A.

Definitions

Definition

Fix $E \subset \mathbb{F}_{q}^{d}$, and let $A \subset E$. Call $x \in E$ a pole of A if $\|x-a\|=t$ whenever $a \in A$, and let $\operatorname{Pole}(A) \subset E$ denote the set of poles of A.

Definition

The $(d+2)$-tuple $P=\left(y, z, x^{1}, \ldots, x^{d}\right) \in\left(\mathbb{F}_{q}^{d}\right)^{d+2}$ is an d-prism if $y, z \subset \operatorname{Pole}\left(\left\{x^{1}, x^{2}, \ldots, x^{d}\right\}\right)$. The superscripts here should be read as indices.

Definitions

Definition

Fix $E \subset \mathbb{F}_{q}^{d}$, and let $A \subset E$. Call $x \in E$ a pole of A if $\|x-a\|=t$ whenever $a \in A$, and let $\operatorname{Pole}(A) \subset E$ denote the set of poles of A.

Definition

The $(d+2)$-tuple $P=\left(y, z, x^{1}, \ldots, x^{d}\right) \in\left(\mathbb{F}_{q}^{d}\right)^{d+2}$ is an d-prism if $y, z \subset \operatorname{Pole}\left(\left\{x^{1}, x^{2}, \ldots, x^{d}\right\}\right)$. The superscripts here should be read as indices.

- The tail $\mathcal{T}(P)$ of P is the set $\{y, z\}$.

Definitions

Definition

Fix $E \subset \mathbb{F}_{q}^{d}$, and let $A \subset E$. Call $x \in E$ a pole of A if $\|x-a\|=t$ whenever $a \in A$, and let $\operatorname{Pole}(A) \subset E$ denote the set of poles of A.

Definition

The $(d+2)$-tuple $P=\left(y, z, x^{1}, \ldots, x^{d}\right) \in\left(\mathbb{F}_{q}^{d}\right)^{d+2}$ is an d-prism if $y, z \subset \operatorname{Pole}\left(\left\{x^{1}, x^{2}, \ldots, x^{d}\right\}\right)$. The superscripts here should be read as indices.

- The tail $\mathcal{T}(P)$ of P is the set $\{y, z\}$.
- The center $\mathcal{C}(P)$ of P is the set $\left\{x^{1}, x^{2}, \ldots, x^{d}\right\}$.

Definitions

Definition

Fix $E \subset \mathbb{F}_{q}^{d}$, and let $A \subset E$. Call $x \in E$ a pole of A if $\|x-a\|=t$ whenever $a \in A$, and let $\operatorname{Pole}(A) \subset E$ denote the set of poles of A.

Definition

The $(d+2)$-tuple $P=\left(y, z, x^{1}, \ldots, x^{d}\right) \in\left(\mathbb{F}_{q}^{d}\right)^{d+2}$ is an d-prism if $y, z \subset \operatorname{Pole}\left(\left\{x^{1}, x^{2}, \ldots, x^{d}\right\}\right)$. The superscripts here should be read as indices.

- The tail $\mathcal{T}(P)$ of P is the set $\{y, z\}$.
- The center $\mathcal{C}(P)$ of P is the set $\left\{x^{1}, x^{2}, \ldots, x^{d}\right\}$.

We say a prism is non-degenerate if all of its points are distinct.

Definitions

Definition

Fix $E \subset \mathbb{F}_{q}^{d}$, and let $A \subset E$. Call $x \in E$ a pole of A if $\|x-a\|=t$ whenever $a \in A$, and let $\operatorname{Pole}(A) \subset E$ denote the set of poles of A.

Definition

The $(d+2)$-tuple $P=\left(y, z, x^{1}, \ldots, x^{d}\right) \in\left(\mathbb{F}_{q}^{d}\right)^{d+2}$ is an d-prism if $y, z \subset \operatorname{Pole}\left(\left\{x^{1}, x^{2}, \ldots, x^{d}\right\}\right)$. The superscripts here should be read as indices.

- The tail $\mathcal{T}(P)$ of P is the set $\{y, z\}$.
- The center $\mathcal{C}(P)$ of P is the set $\left\{x^{1}, x^{2}, \ldots, x^{d}\right\}$.

We say a prism is non-degenerate if all of its points are distinct.

Prisms: Distance Graph

Figure: A nondegenerate d-prism $P=\left(y, z, x^{1}, \ldots, x^{d}\right)$ with tail $\mathcal{T}(P)=\{y, z\}$ and center $\mathcal{C}(P)=\left\{x^{1}, \ldots, x^{d}\right\}$.

Prisms: Distance Graph

Figure: A nondegenerate d-prism $P=\left(y, z, x^{1}, \ldots, x^{d}\right)$ with tail $\mathcal{T}(P)=\{y, z\}$ and center $\mathcal{C}(P)=\left\{x^{1}, \ldots, x^{d}\right\}$.

Observation

Any set $A \subset E$ with $|A|=d$ shattered by $\mathcal{H}_{t}^{d}(E)$ is necessarily the center of some (nondegenerate) d-prism P.

Prisms: Distance Graph

Figure: A nondegenerate d-prism $P=\left(y, z, x^{1}, \ldots, x^{d}\right)$ with tail $\mathcal{T}(P)=\{y, z\}$ and center $\mathcal{C}(P)=\left\{x^{1}, \ldots, x^{d}\right\}$.

Observation

Any set $A \subset E$ with $|A|=d$ shattered by $\mathcal{H}_{t}^{d}(E)$ is necessarily the center of some (nondegenerate) d-prism P.

Henceforth, the term prism refers to a nondegenerate d-prism.

Using Prisms to Shatter

Observation

Let P be a prism, and z be one of its tails. Suppose that for every subset $A \subset \mathcal{C}(P)$ we can find a point $y_{A} \in \operatorname{Pole}(A)$ that isn't a pole of any point in $\mathcal{C}(P) \backslash A$. Then by choosing the classifiers $\left\{h_{y_{A}, z}\right\}$ we can shatter $\mathcal{C}(P)$, a set of size d.

Example of Shattering

Bad Sets

Definition (SMALL 2022++)

Fix a prism P. A subset $A \subset \mathcal{C}(P)$ is P-bad if every $x \in \operatorname{Pole}(A)$ is also in Pole (y) for some $y \in \mathcal{C} \backslash A$. We say that a set is bad of if it is P-bad for some P. We say that P admits a bad set if some $A \subset \mathcal{C}$ is P-bad.

Bad Sets

Definition (SMALL 2022++)

Fix a prism P. A subset $A \subset \mathcal{C}(P)$ is P-bad if every $x \in \operatorname{Pole}(A)$ is also in $\operatorname{Pole}(y)$ for some $y \in \mathcal{C} \backslash A$. We say that a set is bad of if it is P-bad for some P. We say that P admits a bad set if some $A \subset \mathcal{C}$ is P-bad.

Observation

To shatter d points, it suffices to find a prism that admits no bad sets.

Bad Sets

Definition (SMALL 2022++)

Fix a prism P. A subset $A \subset \mathcal{C}(P)$ is P-bad if every $x \in \operatorname{Pole}(A)$ is also in $\operatorname{Pole}(y)$ for some $y \in \mathcal{C} \backslash A$. We say that a set is bad of if it is P-bad for some P. We say that P admits a bad set if some $A \subset \mathcal{C}$ is P-bad.

Observation

To shatter d points, it suffices to find a prism that admits no bad sets.

Note that there are two ways for a set $A \subset \mathcal{C}(P)$ to be P-bad:
(a) Its only poles are the tails of P
(b) It has other poles, but each one is also a point of some point in $\mathcal{C}(P) \backslash A$

Bad Sets

Definition (SMALL 2022++)

Fix a prism P. A subset $A \subset \mathcal{C}(P)$ is P-bad if every $x \in \operatorname{Pole}(A)$ is also in Pole (y) for some $y \in \mathcal{C} \backslash A$. We say that a set is bad of if it is P-bad for some P. We say that P admits a bad set if some $A \subset \mathcal{C}$ is P-bad.

Observation

To shatter d points, it suffices to find a prism that admits no bad sets.

Note that there are two ways for a set $A \subset \mathcal{C}(P)$ to be P-bad:
(a) Its only poles are the tails of P
(b) It has other poles, but each one is also a point of some point in $\mathcal{C}(P) \backslash A$
The latter case is impossible for pairs in $d=3$, leading to a simpler proof and a stronger bound.

Proof Outline

Goal

Show that there exists a prism that does not admit a bad set.

Proof Outline

Goal

Show that there exists a prism that does not admit a bad set.

- Count the total number of prisms, denoted $N_{d}(E)$.

Proof Outline

Goal

Show that there exists a prism that does not admit a bad set.

- Count the total number of prisms, denoted $N_{d}(E)$.
- Count the number of prisms that can admit a bad set by counting the number of prisms a set can be bad in.

Proof Outline

Goal

Show that there exists a prism that does not admit a bad set.

- Count the total number of prisms, denoted $N_{d}(E)$.
- Count the number of prisms that can admit a bad set by counting the number of prisms a set can be bad in.
- Show that if $|E|$ is large, there must be some prism for which no subset of its center is bad.

Prisms, Pairs, and 2-Paths

Definition

A 2-path in E is a set $\left(x_{1}, x_{2}, x_{3}\right) \in E^{3}$ such that $\left\|x_{1}-x_{2}\right\|=\left\|x_{2}-x_{3}\right\|=t$.

Prisms, Pairs, and 2-Paths

Definition

A 2-path in E is a set $\left(x_{1}, x_{2}, x_{3}\right) \in E^{3}$ such that $\left\|x_{1}-x_{2}\right\|=\left\|x_{2}-x_{3}\right\|=t$.

Observation

Up to ordering a prism corresponds to a choice of pair (y, z) and a choice of d 2-paths between them- (y, z) are the tails and the set of midpoints of these paths is the center.

Prisms, Pairs, and 2-Paths

Definition

A 2-path in E is a set $\left(x_{1}, x_{2}, x_{3}\right) \in E^{3}$ such that $\left\|x_{1}-x_{2}\right\|=\left\|x_{2}-x_{3}\right\|=t$.

Observation

Up to ordering a prism corresponds to a choice of pair (y, z) and a choice of d 2-paths between them- (y, z) are the tails and the set of midpoints of these paths is the center.

Theorem (losevich et al., 2018)

Let $E \subset \mathbb{F}_{q}^{d}$ with $|E|>\frac{4}{\ln (2)} q^{\frac{d+1}{2}}$ and let $\Gamma_{2}(E)$ be the number of 2-paths in E. Then $\Gamma_{2}(E)=\frac{|E|^{3}}{q^{2}}+\mathcal{D}_{2}(E)$ where $\mathcal{D}_{2}(E) \leq C \frac{|E|^{2}}{q}$.

Lemma 1: Prism Count (Sketch)

- Given a pair $(x, y) \in E \times E$ we let $k_{(x, y)}$ be the number of 2-paths in E with x, y as endpoints.

Lemma 1: Prism Count (Sketch)

- Given a pair $(x, y) \in E \times E$ we let $k_{(x, y)}$ be the number of 2-paths in E with x, y as endpoints.
- Assume $|E|>4 / \log (2) q^{\frac{d+1}{2}}$. Then

$$
N_{d}(E)=d!\sum_{(x, y) \in E \times E}\binom{k_{(x, y)}}{d}
$$

We also have

$$
\sum_{(x, y) \in E \times E} k_{(x, y)} \gtrsim \frac{|E|^{3}}{q^{2}} .
$$

Lemma 1: Prism Count (Sketch)

- Given a pair $(x, y) \in E \times E$ we let $k_{(x, y)}$ be the number of 2-paths in E with x, y as endpoints.
- Assume $|E|>4 / \log (2) q^{\frac{d+1}{2}}$. Then

$$
N_{d}(E)=d!\sum_{(x, y) \in E \times E}\binom{k_{(x, y)}}{d}
$$

We also have

$$
\sum_{(x, y) \in E \times E} k_{(x, y)} \gtrsim \frac{|E|^{3}}{q^{2}} .
$$

- From here it is straightforward to apply Hölder's Inequality (proof omitted) to obtain $N_{d}(E) \geq C \frac{|E|^{d+2}}{q^{2 d}}$

Counting Bad Sets for $d=3$ (Sketch)

- As stated previously any bad pair must have exactly two poles: the tails of some prism it's bad in.

Counting Bad Sets for $d=3$ (Sketch)

- As stated previously any bad pair must have exactly two poles: the tails of some prism it's bad in.
- This means that every prism a given pair is bad in must have the same tails.

Counting Bad Sets for $d=3$ (Sketch)

- As stated previously any bad pair must have exactly two poles: the tails of some prism it's bad in.
- This means that every prism a given pair is bad in must have the same tails.
- There are $\approx q$ choices for the last point of the prism since it must be distance t away from both poles.

Counting Bad Sets for $d=3$ (Sketch)

- As stated previously any bad pair must have exactly two poles: the tails of some prism it's bad in.
- This means that every prism a given pair is bad in must have the same tails.
- There are $\approx q$ choices for the last point of the prism since it must be distance t away from both poles.
- Now observe that there are only $1 / 2|E|^{2}$ pairs total, and so at most $C|E|^{2} q$ prisms admit a P-bad pair. But we just showed there are at least $|E|^{5} q^{-6}$ prisms total so if $E>C q^{7 / 3}$, one must admit no bad pairs.

Counting Bad Sets for $d=3$ (Sketch)

- As stated previously any bad pair must have exactly two poles: the tails of some prism it's bad in.
- This means that every prism a given pair is bad in must have the same tails.
- There are $\approx q$ choices for the last point of the prism since it must be distance t away from both poles.
- Now observe that there are only $1 / 2|E|^{2}$ pairs total, and so at most $C|E|^{2} q$ prisms admit a P-bad pair. But we just showed there are at least $|E|^{5} q^{-6}$ prisms total so if $E>C q^{7 / 3}$, one must admit no bad pairs.
- Finally, note that we can specify the singleton sets since $\{x, y\} \cap\{x, z\}=\{x\}$. Thus we obtain our result.

Lemmas

Lemma 1

If $|E| \geq C q^{d-\frac{1}{d-1}}$ then a positive proportion of prisms have affinely independent centers.

Lemma 2

Suppose the k points $a_{i} \in \mathbb{F}_{q}^{d}$, are affinely independent. Then Pole $\left(\left\{a_{i}\right\}\right) \leq 2 q^{d-k}$

The Proof for Higher Dimensions (Sketch)

- To determine how many prisms can admit a bad set, we count how many prisms can admit a bad set of each possible size. So let B be a bad set of size k.

The Proof for Higher Dimensions (Sketch)

- To determine how many prisms can admit a bad set, we count how many prisms can admit a bad set of each possible size. So let B be a bad set of size k.
- All bad sets are the center of some prism, so by Lemma 1 we can assume B is affinely independent. Thus by Lemma 2, B has at most $2 q^{d-k}$ poles.

The Proof for Higher Dimensions (Sketch)

- To determine how many prisms can admit a bad set, we count how many prisms can admit a bad set of each possible size. So let B be a bad set of size k.
- All bad sets are the center of some prism, so by Lemma 1 we can assume B is affinely independent. Thus by Lemma 2, B has at most $2 q^{d-k}$ poles.
- If B has q^{ℓ} poles then there are $q^{2 \ell}$ choices of tails for prisms its bad in.

The Proof for Higher Dimensions (Sketch)

- To determine how many prisms can admit a bad set, we count how many prisms can admit a bad set of each possible size. So let B be a bad set of size k.
- All bad sets are the center of some prism, so by Lemma 1 we can assume B is affinely independent. Thus by Lemma $2, B$ has at most $2 q^{d-k}$ poles.
- If B has q^{ℓ} poles then there are $q^{2 \ell}$ choices of tails for prisms its bad in.
- However, additional poles further constrain the choices of center for prisms B is bad in. In particular, each order of magnitude more poles means at least one order of magnitude less choices of centers. This allows us to further show that B is bad in at most $q^{d^{2}-k d-d+k-1}$ prisms.

The Proof for Higher Dimensions (Sketch)

- To determine how many prisms can admit a bad set, we count how many prisms can admit a bad set of each possible size. So let B be a bad set of size k.
- All bad sets are the center of some prism, so by Lemma 1 we can assume B is affinely independent. Thus by Lemma 2, B has at most $2 q^{d-k}$ poles.
- If B has q^{ℓ} poles then there are $q^{2 \ell}$ choices of tails for prisms its bad in.
- However, additional poles further constrain the choices of center for prisms B is bad in. In particular, each order of magnitude more poles means at least one order of magnitude less choices of centers. This allows us to further show that B is bad in at most $q^{d^{2}-k d-d+k-1}$ prisms.
- Since there are $C|E|^{k}$ sets of size k, this gives us the bound $|E|>C q^{d-\frac{2}{3}}$. However this is weaker than the $|E| \geq C q^{1-\frac{1}{d-1}}$ bound required for Lemma 1 .

Proof of Lemma 1

Lemma 1

If $|E| \geq C q^{d-\frac{1}{d-1}}$ then a positive proportion of prisms have affinely independent centers.

Sketch of Proof

Proof of Lemma 1

Lemma 1

If $|E| \geq C q^{d-\frac{1}{d-1}}$ then a positive proportion of prisms have affinely independent centers.

Sketch of Proof

- We show the equivalent statement that the proportion of prisms with affinely dependent centers is less than 1.

Proof of Lemma 1

Lemma 1

If $|E| \geq C q^{d-\frac{1}{d-1}}$ then a positive proportion of prisms have affinely independent centers.

Sketch of Proof

- We show the equivalent statement that the proportion of prisms with affinely dependent centers is less than 1 .
- Given a pair $(x, y) \in E \times E$, any such prism P with $\mathcal{T}(P)=(x, y)$ can be chosen by choosing $d-1$ center points, arbitrarily, then choosing the last point to be in the affine subspace generated by those points.

Proof of Lemma 1

Lemma 1

If $|E| \geq C q^{d-\frac{1}{d-1}}$ then a positive proportion of prisms have affinely independent centers.

Sketch of Proof

- We show the equivalent statement that the proportion of prisms with affinely dependent centers is less than 1 .
- Given a pair $(x, y) \in E \times E$, any such prism P with $\mathcal{T}(P)=(x, y)$ can be chosen by choosing $d-1$ center points, arbitrarily, then choosing the last point to be in the affine subspace generated by those points.
- There are $\approx k_{(x, y)}^{d-1}$ ways to choose the first $d-1$ points, and $\leq C q^{d-3}$ ways to choose the last point.

Proof of Lemma 1

Lemma 1

If $|E| \geq C q^{d-\frac{1}{d-1}}$ then a positive proportion of prisms have affinely independent centers.

Sketch of Proof

- We show the equivalent statement that the proportion of prisms with affinely dependent centers is less than 1.
- Given a pair $(x, y) \in E \times E$, any such prism P with $\mathcal{T}(P)=(x, y)$ can be chosen by choosing $d-1$ center points, arbitrarily, then choosing the last point to be in the affine subspace generated by those points.
- There are $\approx k_{(x, y)}^{d-1}$ ways to choose the first $d-1$ points, and $\leq C q^{d-3}$ ways to choose the last point.
- From here, we can apply similar techniques as in our prism count to obtain our result.

Proof of Lemma 2

Lemma 2

Lemma 2: Suppose the k points $a_{i} \in \mathbb{F}_{q}^{d}$, are affinely independent. Then Pole $\left(\left\{a_{i}\right\}\right) \leq 2 q^{d-k}$

Sketch of Proof

Proof of Lemma 2

Lemma 2

Lemma 2: Suppose the k points $a_{i} \in \mathbb{F}_{q}^{d}$, are affinely independent. Then Pole $\left(\left\{a_{i}\right\}\right) \leq 2 q^{d-k}$

Sketch of Proof

- The condition that $y \in \operatorname{Pole}\left(\left\{a_{i}\right\}\right)$ corresponds to the conditions $y \in E$ and $\forall i:\left\|y-a_{i}\right\|=t$.

Proof of Lemma 2

Lemma 2

Lemma 2: Suppose the k points $a_{i} \in \mathbb{F}_{q}^{d}$, are affinely independent. Then Pole $\left(\left\{a_{i}\right\}\right) \leq 2 q^{d-k}$

Sketch of Proof

- The condition that $y \in \operatorname{Pole}\left(\left\{a_{i}\right\}\right)$ corresponds to the conditions $y \in E$ and $\forall i:\left\|y-a_{i}\right\|=t$.
- Let $x=y-a_{1}$ and $a_{i}^{\prime}=a_{i}-a_{1}$. Then ignoring the first condition, this reduces to a linear system of equations in the coordinates of x.

Proof of Lemma 2

Lemma 2

Lemma 2: Suppose the k points $a_{i} \in \mathbb{F}_{q}^{d}$, are affinely independent. Then Pole $\left(\left\{a_{i}\right\}\right) \leq 2 q^{d-k}$

Sketch of Proof

- The condition that $y \in \operatorname{Pole}\left(\left\{a_{i}\right\}\right)$ corresponds to the conditions $y \in E$ and $\forall i:\left\|y-a_{i}\right\|=t$.
- Let $x=y-a_{1}$ and $a_{i}^{\prime}=a_{i}-a_{1}$. Then ignoring the first condition, this reduces to a linear system of equations in the coordinates of x.
- Affine independence means the linear system has full rank, so its solution space has dimension $d-k+1$. The restriction $\|x\|=t$ reduces this to $\approx q^{d-k}$ solutions.

Acknowledgments

Thank you!

This research was conducted as part of the 2022 SMALL REU program at Williams College, and was funded by NSF Grant DMS1947438, Harvey Mudd College, and Williams College funds. We thank Steven J. Miller, Alex losevich, and our colleagues from the 2022 SMALL REU program for many helpful conversations.

Bibliography I

(1) M. Bennett, J. Chapman, D. Covert, D. Hart, A. losevich, J. Pakianathan, Long paths in the distance graph over large subsets of vector spaces over finite fields, Korean Math. Soc. 53 (2016), 115-126.

R M. Bennett, D. Hart, A. losevich, J. Pakianathan, M. Rudnev, Group actions and geometric combinatorics in \mathbb{F}_{q}^{d}, Forum Math. 29 (2017), 91-110.

囦 D. Fitzpatrick, A. losevich, B. McDonald, E. Wyman, The VC-dimension and point configurations in \mathbb{F}_{q}^{2}, 2021, https://arxiv.org/abs/2108.13231.

雷 D. Hart, A. losevich, D. Koh, S. Senger, I. Uriarte-Tuero, Distance graphs in vector spaces over finite fields, Recent advances in harmonic analysis and applications (2013), 139-160.

Bibliography II

(A. Iosevich, G. Jardine, B. McDonald, Cycles of arbitrary length in distance graphs on \mathbb{F}_{q}^{d}, Tr. Mat. Inst. Steklova 314 (2021), no. 1, 27-43
A. losevich, B. McDonald, M. Sun, Dot products in \mathbb{F}_{q}^{3} and the Vapnik-Chervonenkis dimension, Discrete Math. 346 (2023), Paper No. 113096.
(R) A. losevich, H. Parshall, Embedding distance graphs in finite field vector spaces, J. Korean Math. Soc. 56 (2019), no. 6, 1515-1528
睩 A. Iosevich, M. Rudnev, Erdos distance problem in vector spaces over finite fields, Trans. Amer. Math. Soc 359 (2007), 6127-6142.

目
M. Kearns, U. Vazirani, An introduction to computational learning theory, MIT press, 1994.

Bibliography III

擂
H. Minkowski, Grundlagen für eine Theorie quadratischen Formen mit ganzahligen Koeffizienten, Gesammelte Abhandlungen (1911), 3-145.S. Shalev-Shwartz, S. Ben-David, Understanding machine learning: From theory to algorithms, Cambridge university press, 2014.

