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Notation

We let Fd
q denote the d-dimensional vector space over the

finite field Fq.

We write ||x || = x21 + x22 ... ∈ Fq, where x = (x1, ..., xd) ∈ Fd
q .

For the remainder of the talk we let t be a fixed, nonzero
element of the finite field Fq (i.e. this is not a variable).
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VC-Dimension

Fix a set E and a collection of functions (hypothesis class) H from
E to {0, 1}.

Definition

Say H shatters a finite subset A ⊂ E if restricting functions in H
to A yields all 2|A| functions from A to {0, 1}.

In other words, functions in the collection H realize all possible
behaviors on the subset A ⊂ E .

Definition (Vapnik and Chervonenkis, 1968)

The Vapnik–Chervonenkis dimension (VCD) of H is the maximal
cardinality of sets A ⊂ E that are shattered by H.

Explicitly, VCD(H) = n if there exists A ⊂ E , |A| = n such that A
is shattered by H, but there is no such subset of size n + 1.
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Prior Work: Spheres in F2
q

Spheres in F2
q: Fix t ̸= 0. For E ⊂ F2

q, Fitzpatrick, Iosevich,
McDonald, and Wyman defined the class of functions
H2

t (E ) = {hy : y ∈ E}, where hy : E → {0, 1} is the indicator
function for the sphere of radius t centered at y :

hy (x) =

{
1 ||y − x || = t

0 ||y − x || ≠ t.

Theorem (Fitzpatrick, Iosevich, McDonald, and Wyman, 2021)

If |E | ≥ Cq15/8 for C large, then VCD
(
H2

t (E )
)
= 3, the largest

possible value.

One can define the analogous hypothesis class Hd
t for higher

dimensions. However no analogous theorem is known beyond
d = 2.
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Theorem (Fitzpatrick, Iosevich, McDonald, and Wyman, 2021)

If |E | ≥ Cq15/8 for C large, then VCD
(
H2

t (E )
)
= 3, the largest

possible value.

One can define the analogous hypothesis class Hd
t for higher

dimensions. However no analogous theorem is known beyond
d = 2.



Background Proof Strategy The Proof for d = 3 Extending to Higher Dimensions Conclusion

Prior Work: Spheres in F2
q

Spheres in F2
q: Fix t ̸= 0. For E ⊂ F2

q, Fitzpatrick, Iosevich,
McDonald, and Wyman defined the class of functions
H2

t (E ) = {hy : y ∈ E}, where hy : E → {0, 1} is the indicator
function for the sphere of radius t centered at y :

hy (x) =

{
1 ||y − x || = t

0 ||y − x || ≠ t.
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New Classifiers: Chains in Fd
q

2-Chains in Fd
q : Fix t ̸= 0, d ≥ 3, and E ⊂ Fd

q . Define the

collection of functions Hd
t (E ) = {hy ,z : y , z ∈ E , y ̸= z}, where

hy ,z : E → {0, 1} is the indicator function for the intersection of
spheres of radius t centered at y and z :

hy ,z(x) =

{
1 if ||y − x || = ||z − x || = t

0 otherwise.

Theorem (SMALL 2022)

If |E | ≥


Cq

7
4 d = 2

Cq
7
3 d = 3

Cqd−
1

d−1 d ≥ 4

Where C depends on d but not q, then VCD
(
Hd

t (E )
)
= d , the

largest possible value.
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Chains in Fd
q (cont.)

Theorem (SMALL 2022)

If |E | ≥


Cq

7
4 d = 2

Cq
7
3 d = 3

Cqd−
1

d−1 d ≥ 4

Where C depends on d but not q, then VCD
(
Hd

t (E )
)
= d

It can be shown that d + 1 points in Fd
q have at most one

point a common distance from all of them (essentially they
determine a “sphere”).

Thus each hy ,z takes on the value 1 at most d times, and so
VCD(Hd

t ) ≤ d . And so it only remains to establish the lower
bound.

Finally, we only consider the d ≥ 3 case here: the d = 2 case
follows immediately from the techniques in (Fitzpatrick, et al.,
2021)
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Definitions

Definition

Fix E ⊂ Fd
q , and let A ⊂ E . Call x ∈ E a pole of A if ||x − a|| = t

whenever a ∈ A, and let Pole(A) ⊂ E denote the set of poles of A.

Definition

The (d + 2)-tuple P = (y , z , x1, . . . , xd) ∈ (Fd
q)

d+2 is an d-prism

if y , z ⊂ Pole({x1, x2, ..., xd}). The superscripts here should be
read as indices.

The tail T (P) of P is the set {y , z}.
The center C(P) of P is the set {x1, x2, . . . , xd}.

We say a prism is non-degenerate if all of its points are distinct.
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Prisms: Distance Graph

y

z

x1 x2 x3 xd· · ·

Figure: A nondegenerate d-prism P = (y , z , x1, . . . , xd) with tail
T (P) = {y , z} and center C(P) = {x1, . . . , xd}.

Observation

Any set A ⊂ E with |A| = d shattered by Hd
t (E ) is necessarily the

center of some (nondegenerate) d-prism P.

Henceforth, the term prism refers to a nondegenerate d-prism.
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Using Prisms to Shatter

Observation

Let P be a prism, and z be one of its tails. Suppose that for every
subset A ⊂ C(P) we can find a point yA ∈ Pole(A) that isn’t a
pole of any point in C(P) \ A. Then by choosing the classifiers
{hyA,z} we can shatter C(P), a set of size d .
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Example of Shattering
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Bad Sets

Definition (SMALL 2022++)

Fix a prism P. A subset A ⊂ C(P) is P-bad if every x ∈ Pole(A) is
also in Pole(y) for some y ∈ C \ A. We say that a set is bad of if it
is P-bad for some P. We say that P admits a bad set if some
A ⊂ C is P-bad.

Observation

To shatter d points, it suffices to find a prism that admits no bad
sets.

Note that there are two ways for a set A ⊂ C(P) to be P-bad:

(a) Its only poles are the tails of P

(b) It has other poles, but each one is also a point of some point
in C(P) \ A

The latter case is impossible for pairs in d = 3, leading to a
simpler proof and a stronger bound.
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Proof Outline

Goal

Show that there exists a prism that does not admit a bad set.

Count the total number of prisms, denoted Nd(E ).

Count the number of prisms that can admit a bad set by
counting the number of prisms a set can be bad in.

Show that if |E | is large, there must be some prism for which
no subset of its center is bad.
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Prisms, Pairs, and 2-Paths

Definition

A 2-path in E is a set (x1, x2, x3) ∈ E 3 such that
||x1 − x2|| = ||x2 − x3|| = t.

Observation

Up to ordering a prism corresponds to a choice of pair (y , z) and a
choice of d 2-paths between them—(y , z) are the tails and the set
of midpoints of these paths is the center.

Theorem (Iosevich et al., 2018)

Let E ⊂ Fd
q with |E | > 4

ln(2)q
d+1
2 and let Γ2(E ) be the number of

2-paths in E . Then Γ2(E ) =
|E |3
q2

+D2(E ) where D2(E ) ≤ C |E |2
q .
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Lemma 1: Prism Count (Sketch)

Given a pair (x , y) ∈ E × E we let k(x ,y) be the number of
2-paths in E with x , y as endpoints.

Assume |E | > 4/ log(2)q
d+1
2 . Then

Nd(E ) = d!
∑

(x ,y)∈E×E

(
k(x ,y)
d

)

We also have ∑
(x ,y)∈E×E

k(x ,y) ≳
|E |3

q2
.

From here it is straightforward to apply Hölder’s Inequality

(proof omitted) to obtain Nd(E ) ≥ C |E |d+2

q2d
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(proof omitted) to obtain Nd(E ) ≥ C |E |d+2

q2d



Background Proof Strategy The Proof for d = 3 Extending to Higher Dimensions Conclusion

Counting Bad Sets for d = 3 (Sketch)

As stated previously any bad pair must have exactly two
poles: the tails of some prism it’s bad in.

This means that every prism a given pair is bad in must have
the same tails.

There are ≈ q choices for the last point of the prism since it
must be distance t away from both poles.

Now observe that there are only 1/2|E |2 pairs total, and so at
most C |E |2q prisms admit a P-bad pair. But we just showed
there are at least |E |5q−6 prisms total so if E > Cq7/3, one
must admit no bad pairs.

Finally, note that we can specify the singleton sets since
{x , y} ∩ {x , z} = {x}. Thus we obtain our result.
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must admit no bad pairs.

Finally, note that we can specify the singleton sets since
{x , y} ∩ {x , z} = {x}. Thus we obtain our result.
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Lemmas

Lemma 1

If |E | ≥ Cqd−
1

d−1 then a positive proportion of prisms have affinely
independent centers.

Lemma 2

Suppose the k points ai ∈ Fd
q , are affinely independent. Then

Pole({ai}) ≤ 2qd−k
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The Proof for Higher Dimensions (Sketch)

To determine how many prisms can admit a bad set, we count
how many prisms can admit a bad set of each possible size.
So let B be a bad set of size k .

All bad sets are the center of some prism, so by Lemma 1 we
can assume B is affinely independent. Thus by Lemma 2, B
has at most 2qd−k poles.

If B has qℓ poles then there are q2ℓ choices of tails for prisms
its bad in.

However, additional poles further constrain the choices of
center for prisms B is bad in. In particular, each order of
magnitude more poles means at least one order of magnitude
less choices of centers. This allows us to further show that B
is bad in at most qd

2−kd−d+k−1 prisms.

Since there are C |E |k sets of size k , this gives us the bound

|E | > Cqd−
2
3 . However this is weaker than the |E | ≥ Cq1−

1
d−1

bound required for Lemma 1.
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Proof of Lemma 1

Lemma 1

If |E | ≥ Cqd−
1

d−1 then a positive proportion of prisms have affinely
independent centers.

Sketch of Proof

We show the equivalent statement that the proportion of
prisms with affinely dependent centers is less than 1.

Given a pair (x , y) ∈ E × E , any such prism P with
T (P) = (x , y) can be chosen by choosing d − 1 center points,
arbitrarily, then choosing the last point to be in the affine
subspace generated by those points.

There are ≈ kd−1
(x ,y) ways to choose the first d − 1 points, and

≤ Cqd−3 ways to choose the last point.

From here, we can apply similar techniques as in our prism
count to obtain our result.
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Proof of Lemma 2

Lemma 2

Lemma 2: Suppose the k points ai ∈ Fd
q , are affinely independent.

Then Pole({ai}) ≤ 2qd−k

Sketch of Proof

The condition that y ∈ Pole({ai}) corresponds to the
conditions y ∈ E and ∀i : ||y − ai || = t.

Let x = y − a1 and a′i = ai − a1. Then ignoring the first
condition, this reduces to a linear system of equations in the
coordinates of x .

Affine independence means the linear system has full rank, so
its solution space has dimension d − k + 1. The restriction
||x || = t reduces this to ≈ qd−k solutions.
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