Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Represer

From Fibonacci Numbers to Central Limit Type Theorems

Yinghui Wang, MIT Advisor: Steven J. Miller, Williams College

2010 Young Mathematicians Conference The Ohio State University, August 27–29, 2010

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
●	000	0000	0000000	
Previc	ous Results			

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$;

Intro •	Central Limit Type THM	Generalizations	Approach 0000000	Far-difference Representation
Previo	us Results			

Intro ●	Central Limit Type THM	Generalizations	Approach 0000000	Far-difference Representation
Previo	ous Results			

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Intro ●	Central Limit Type THM	Generalizations	Approach 0000000	Far-difference Representation
Previo	us Results			

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $2010 = 1597 + 377 + 34 + 2 = F_{16} + F_{13} + F_8 + F_2$.

Intro ●	Central Limit Type THM 000	Generalizations	Approach 0000000	Far-difference Representation
Previo	ous Results			

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $2010 = 1597 + 377 + 34 + 2 = F_{16} + F_{13} + F_8 + F_2$.

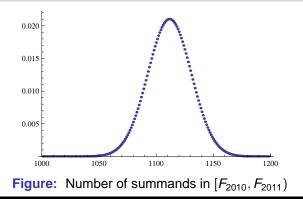
Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ tends to $\frac{n}{\varphi^2+1} \approx .276n$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

Intro O	Central Limit Type THM ●○○	Generalizations	Approach 0000000	Far-difference Representation
New Re	esults			

Central Limit Type Theorem

As $n \to \infty$, the distribution of the number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ is Gaussian (normal).



Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
	000			

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
	000			

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
	000			

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. Cookie Monster eats P - 1 cookies:

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
	000	0000	0000000	

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. Cookie Monster eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
	000			

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
	000	0000	0000000	

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets.

Example: 8 cookies and 5 people (C = 8, P = 5):

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
	000			

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets. **Example**: 8 cookies and 5 people (C = 8, P = 5):

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
	000			

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets.

Example: 8 cookies and 5 people (C = 8, P = 5):

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
	000			

The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies: $\binom{C+P-1}{P-1}$ ways to do. Divides the cookies into P sets. **Example**: 8 cookies and 5 people (C = 8, P = 5):

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
	000			

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
	000			

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
	000			

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

For $N \in [F_n, F_{n+1})$, the largest summand is F_n .

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
	000			

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

For $N \in [F_n, F_{n+1})$, the largest summand is F_n . $N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n,$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
	000			

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

For $N \in [F_n, F_{n+1})$, the largest summand is F_n . $N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n$, $1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n$,

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
	000			

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

For $N \in [F_n, F_{n+1})$, the largest summand is F_n . $N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n$, $1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n$, $i_j - i_{j-1} \ge 2$.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
	000			

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

For $N \in [F_n, F_{n+1})$, the largest summand is F_n . $N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n$, $1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n$, $i_j - i_{j-1} \ge 2$. $d_1 := i_1 - 1$,

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
	000			

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

For $N \in [F_n, F_{n+1})$, the largest summand is F_n . $N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n$, $1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n$, $i_j - i_{j-1} \ge 2$. $d_1 := i_1 - 1$, $d_i := i_j - i_{j-1} - 2$ (j > 1).

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
	000			

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

For $N \in [F_n, F_{n+1})$, the largest summand is F_n .

$$N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n,$$

$$1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_j - i_{j-1} \ge 2.$$

$$d_1 := i_1 - 1, d_j := i_j - i_{j-1} - 2 (j > 1).$$

$$d_1 + d_2 + \dots + d_k = n - 2k + 1, d_j \ge 0.$$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
	000			

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

For $N \in [F_n, F_{n+1})$, the largest summand is F_n . $N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n$, $1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_j - i_{j-1} \ge 2$. $d_1 := i_1 - 1, d_j := i_j - i_{j-1} - 2 (j > 1)$. $d_1 + d_2 + \dots + d_k = n - 2k + 1, d_j \ge 0$.

Cookie counting $\Rightarrow p_{n,k} = \binom{n-k}{k-1}$.

Intro o	Central Limit Type THM	Generalizations ●○○○	Approach 0000000	Far-difference Representation
Gener	alizations			

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L.$$

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L.$$

with $H_1 = 1$, $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_n H_1 + 1$, n < L,

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L.$$

with $H_1 = 1$, $H_{n+1} = c_1H_n + c_2H_{n-1} + \dots + c_nH_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L.$$

with $H_1 = 1$, $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \dots + c_n H_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

• Zeckendorf: Every positive integer can be written uniquely as $\sum a_i H_i$ with natural constraints on the a_i 's

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L.$$

with $H_1 = 1$, $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \dots + c_n H_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

 Zeckendorf: Every positive integer can be written uniquely as ∑ a_iH_i with natural constraints on the a_i's (e.g. cannot use the recurrence relation to remove any summand).

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L.$$

with $H_1 = 1$, $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \dots + c_n H_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

- Zeckendorf: Every positive integer can be written uniquely as ∑ a_iH_i with natural constraints on the a_i's (e.g. cannot use the recurrence relation to remove any summand).
- Lekkerkerker

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L.$$

with $H_1 = 1$, $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \dots + c_n H_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

- Zeckendorf: Every positive integer can be written uniquely as ∑ a_iH_i with natural constraints on the a_i's (e.g. cannot use the recurrence relation to remove any summand).
- Lekkerkerker
- Central Limit Type Theorem

Intro o	Central Limit Type THM	Generalizations ○●○○	Approach 0000000	Far-difference Representation

Generalizing Lekkerkerker

Generalized Lekkerkerker's Theorem

The average number of summands in the generalized Zeckendorf decomposition for integers in $[H_n, H_{n+1})$ tends to Cn + d as $n \to \infty$, where C > 0 and d are computable constants determined by the c_i 's.

Intro o	Central Limit Type THM	Generalizations	Approach 0000000	Far-difference Representation

Generalizing Lekkerkerker

Generalized Lekkerkerker's Theorem

The average number of summands in the generalized Zeckendorf decomposition for integers in $[H_n, H_{n+1})$ tends to Cn + d as $n \to \infty$, where C > 0 and d are computable constants determined by the c_i 's.

$$C = -\frac{y'(1)}{y(1)} = \frac{\sum_{m=0}^{L-1}(s_m + s_{m+1} - 1)(s_{m+1} - s_m)y^m(1)}{2\sum_{m=0}^{L-1}(m+1)(s_{m+1} - s_m)y^m(1)}$$

Intro o	Central Limit Type THM	Generalizations	Approach 0000000	Far-difference Representation

Generalizing Lekkerkerker

Generalized Lekkerkerker's Theorem

The average number of summands in the generalized Zeckendorf decomposition for integers in $[H_n, H_{n+1})$ tends to Cn + d as $n \to \infty$, where C > 0 and d are computable constants determined by the c_i 's.

$$C = -\frac{y'(1)}{y(1)} = \frac{\sum_{m=0}^{L-1} (s_m + s_{m+1} - 1)(s_{m+1} - s_m)y^m(1)}{2\sum_{m=0}^{L-1} (m+1)(s_{m+1} - s_m)y^m(1)}$$

$$s_0 = 0, s_m = c_1 + c_2 + \dots + c_m.$$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
	000	0000	0000000	

Generalizing Lekkerkerker

Generalized Lekkerkerker's Theorem

The average number of summands in the generalized Zeckendorf decomposition for integers in $[H_n, H_{n+1})$ tends to Cn + d as $n \to \infty$, where C > 0 and d are computable constants determined by the c_i 's.

$$C = -\frac{y'(1)}{y(1)} = \frac{\sum_{m=0}^{L-1}(s_m + s_{m+1} - 1)(s_{m+1} - s_m)y^m(1)}{2\sum_{m=0}^{L-1}(m+1)(s_{m+1} - s_m)y^m(1)}$$

$$s_0=0, s_m=c_1+c_2+\cdots+c_m$$

y(x) is the root of $1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1}$.

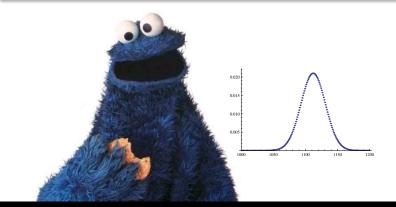
$$y(1)$$
 is the root of $1 - c_1 y - c_2 y^2 - \cdots - c_L y^L$.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
		0000		

Central Limit Type Theorem

Central Limit Type Theorem

As $n \to \infty$, the distribution of the number of summands, i.e., $a_1 + a_2 + \cdots + a_m$ in the generalized Zeckendorf decomposition $\sum_{i=1}^{m} a_i H_i$ for integers in $[H_n, H_{n+1})$ is Gaussian.



Intro o	Central Limit Type THM	Generalizations ○○○●	Approach 0000000	Far-difference Representation
Exam	ple: the Special C	ase of $L = 1$		

Intro o	Central Limit Type THM	Generalizations ○○○●	Approach 0000000	Far-difference Representation
Exam	ple: the Special C	ase of <i>L</i> = 1		
H	$H_{n+1} = c_1 H_n, H_1 = 1$	$. H_n = c_1^{n-1}.$		

Intro o	Central Limit Type THM	Generalizations ○○○●	Approach 0000000	Far-difference Representation

 $H_{n+1} = c_1 H_n, H_1 = 1. H_n = c_1^{n-1}.$ • Legal decomposition $\sum_{i=1}^{m} a_i H_i$:

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
		0000		

$$H_{n+1} = c_1 H_n, H_1 = 1. H_n = c_1^{n-1}.$$

• Legal decomposition $\sum_{i=1}^{m} a_i H_i$:

$$a_i \in \{0, 1, \dots, c_1 - 1\} \ (1 \le i < m),$$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
		0000		

$$H_{n+1} = c_1 H_n, H_1 = 1. H_n = c_1^{n-1}.$$

• Legal decomposition $\sum_{i=1}^{m} a_i H_i$:

$$a_i \in \{0, 1, \dots, c_1 - 1\} \ (1 \le i < m), \ a_m \in \{1, \dots, c_1 - 1\},$$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
		0000		

$$H_{n+1} = c_1 H_n, H_1 = 1. H_n = c_1^{n-1}.$$

- Legal decomposition $\sum_{i=1}^{m} a_i H_i$:
 - $a_i \in \{0, 1, \dots, c_1 1\}$ $(1 \le i < m), a_m \in \{1, \dots, c_1 1\},$ equivalent to the c_1 -base expansion.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
		0000		

$$H_{n+1} = c_1 H_n, H_1 = 1. H_n = c_1^{n-1}.$$

- Legal decomposition $\sum_{i=1}^{m} a_i H_i$:
 - $a_i \in \{0, 1, \dots, c_1 1\}$ $(1 \le i < m), a_m \in \{1, \dots, c_1 1\},$ equivalent to the c_1 -base expansion.
- For $N \in [H_n, H_{n+1})$, m = n, i.e., the first term is $a_n H_n$.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
		0000		

$$H_{n+1} = c_1 H_n, H_1 = 1. H_n = c_1^{n-1}.$$

• Legal decomposition $\sum_{i=1}^{m} a_i H_i$:

- For $N \in [H_n, H_{n+1})$, m = n, i.e., the first term is $a_n H_n$.
- A_i: the corresponding random variable of a_i.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
		0000		

$$H_{n+1} = c_1 H_n, H_1 = 1. H_n = c_1^{n-1}.$$

• Legal decomposition $\sum_{i=1}^{m} a_i H_i$:

- For $N \in [H_n, H_{n+1})$, m = n, i.e., the first term is $a_n H_n$.
- *A_i*: the corresponding random variable of *a_i*.
 The *A_i*'s are independent.

Intro Central Limit Type THM Generalizations Approach Far-d	ifference Representation
o ooo ooo ooo oooo	

$$H_{n+1} = c_1 H_n, H_1 = 1. H_n = c_1^{n-1}.$$

• Legal decomposition $\sum_{i=1}^{m} a_i H_i$:

- For $N \in [H_n, H_{n+1})$, m = n, i.e., the first term is $a_n H_n$.
- *A_i*: the corresponding random variable of *a_i*.
 The *A_i*'s are independent.
- For large n, the contribution of A_n is immaterial.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
		0000		

$$H_{n+1} = c_1 H_n, H_1 = 1. H_n = c_1^{n-1}.$$

• Legal decomposition $\sum_{i=1}^{m} a_i H_i$:

- For $N \in [H_n, H_{n+1})$, m = n, i.e., the first term is $a_n H_n$.
- *A_i*: the corresponding random variable of *a_i*.
 The *A_i*'s are independent.
- For large *n*, the contribution of *A_n* is immaterial.
 A_i (1 ≤ *i* < *n*) are identically distributed random variables

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
		0000		

$$H_{n+1} = c_1 H_n, H_1 = 1. H_n = c_1^{n-1}.$$

• Legal decomposition $\sum_{i=1}^{m} a_i H_i$:

- For $N \in [H_n, H_{n+1})$, m = n, i.e., the first term is $a_n H_n$.
- *A_i*: the corresponding random variable of *a_i*.
 The *A_i*'s are independent.
- For large *n*, the contribution of *A_n* is immaterial.
 A_i (1 ≤ *i* < *n*) are identically distributed random variables with mean (*c*₁ − 1)/2

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
		0000		

$$H_{n+1} = c_1 H_n, H_1 = 1. H_n = c_1^{n-1}.$$

• Legal decomposition $\sum_{i=1}^{m} a_i H_i$:

- For $N \in [H_n, H_{n+1})$, m = n, i.e., the first term is $a_n H_n$.
- *A_i*: the corresponding random variable of *a_i*.
 The *A_i*'s are independent.
- For large *n*, the contribution of *A_n* is immaterial.
 A_i (1 ≤ *i* < *n*) are identically distributed random variables with mean (*c*₁ − 1)/2 and variance (*c*₁² − 1)/12.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
		0000		

$$H_{n+1} = c_1 H_n, H_1 = 1. H_n = c_1^{n-1}.$$

• Legal decomposition $\sum_{i=1}^{m} a_i H_i$:

- For $N \in [H_n, H_{n+1})$, m = n, i.e., the first term is $a_n H_n$.
- *A_i*: the corresponding random variable of *a_i*.
 The *A_i*'s are independent.
- For large *n*, the contribution of *A_n* is immaterial.
 A_i (1 ≤ *i* < *n*) are identically distributed random variables with mean (*c*₁ − 1)/2 and variance (*c*₁² − 1)/12.
- Central Limit Theorem: $A_2 + A_3 + \cdots + A_n \rightarrow Gaussian$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
		0000		

$$H_{n+1} = c_1 H_n, H_1 = 1. H_n = c_1^{n-1}.$$

• Legal decomposition $\sum_{i=1}^{m} a_i H_i$:

- For $N \in [H_n, H_{n+1})$, m = n, i.e., the first term is $a_n H_n$.
- *A_i*: the corresponding random variable of *a_i*.
 The *A_i*'s are independent.
- For large *n*, the contribution of *A_n* is immaterial.
 A_i (1 ≤ *i* < *n*) are identically distributed random variables with mean (*c*₁ − 1)/2 and variance (*c*₁² − 1)/12.
- Central Limit Theorem: $A_2 + A_3 + \cdots + A_n \rightarrow$ Gaussian with mean $n(c_1 1)/2 + O(1)$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
		0000		

$$H_{n+1} = c_1 H_n, H_1 = 1. H_n = c_1^{n-1}.$$

• Legal decomposition $\sum_{i=1}^{m} a_i H_i$:

- For $N \in [H_n, H_{n+1})$, m = n, i.e., the first term is $a_n H_n$.
- *A_i*: the corresponding random variable of *a_i*.
 The *A_i*'s are independent.
- For large *n*, the contribution of *A_n* is immaterial.
 A_i (1 ≤ *i* < *n*) are identically distributed random variables with mean (*c*₁ − 1)/2 and variance (*c*₁² − 1)/12.
- Central Limit Theorem: $A_2 + A_3 + \cdots + A_n \rightarrow \text{Gaussian}$ with mean $n(c_1 - 1)/2 + O(1)$ and variance $n(c_1^2 - 1)/12 + O(1)$.

Intro o	Central Limit Type THM	Generalizations	Approach ●○○○○○○	Far-difference Representation
Preliminarie	s			
Gener	ating Function (E	xample: Binet	's Formula)	

Binet's Formula

$$F_1 = F_2 = 1;$$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Rep
			000000	

Generating Function (Example: Binet's Formula)

Binet's Formula

$$\boldsymbol{F}_1 = \boldsymbol{F}_2 = 1; \ \boldsymbol{F}_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representa
			000000	

Generating Function (Example: Binet's Formula)

Binet's Formula

$$\boldsymbol{F}_1 = \boldsymbol{F}_2 = 1; \ \boldsymbol{F}_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

• Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$

(1)

Intro	Central Limit Type THM	Generalizations	Approach	Far-differ
			000000	

Far-difference Representation

(1)

Preliminaries

Generating Function (Example: Binet's Formula)

Binet's Formula

$$\boldsymbol{F}_1 = \boldsymbol{F}_2 = 1; \ \boldsymbol{F}_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation: $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$
- Generating function: $g(x) = \sum_{n>0} F_n x^n$.

Intro	Central Limit Type THM	Generalizations	Ap
			•C

Far-difference Representation

(1)

Preliminaries

Generating Function (Example: Binet's Formula)

Binet's Formula

$$\boldsymbol{F}_1 = \boldsymbol{F}_2 = 1; \ \boldsymbol{F}_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

• Recurrence relation:
$$\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$$

(1)
$$\Rightarrow \sum_{n\geq 2} \boldsymbol{F}_{n+1} \boldsymbol{x}^{n+1} = \sum_{n\geq 2} \boldsymbol{F}_n \boldsymbol{x}^{n+1} + \sum_{n\geq 2} \boldsymbol{F}_{n-1} \boldsymbol{x}^{n+1}$$

Intro	Central Limit Type THM	Generalizations

Far-difference Representation

(1)

Preliminaries

Generating Function (Example: Binet's Formula)

Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

• Recurrence relation:
$$\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$$

(1)
$$\Rightarrow \sum_{n \ge 2} \mathbf{F}_{n+1} \mathbf{x}^{n+1} = \sum_{n \ge 2} \mathbf{F}_n \mathbf{x}^{n+1} + \sum_{n \ge 2} \mathbf{F}_{n-1} \mathbf{x}^{n+1}$$
$$\Rightarrow \sum_{n \ge 3} \mathbf{F}_n \mathbf{x}^n = \sum_{n \ge 2} \mathbf{F}_n \mathbf{x}^{n+1} + \sum_{n \ge 1} \mathbf{F}_n \mathbf{x}^{n+2}$$

Intro	Central Limit Type THM	Generalizations

Far-difference Representation

(1)

Preliminaries

Generating Function (Example: Binet's Formula)

Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

• Recurrence relation:
$$\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$$

$$(1) \Rightarrow \sum_{n \ge 2} \mathbf{F}_{n+1} \mathbf{x}^{n+1} = \sum_{n \ge 2} \mathbf{F}_n \mathbf{x}^{n+1} + \sum_{n \ge 2} \mathbf{F}_{n-1} \mathbf{x}^{n+1}$$
$$\Rightarrow \sum_{n \ge 3} \mathbf{F}_n \mathbf{x}^n = \sum_{n \ge 2} \mathbf{F}_n \mathbf{x}^{n+1} + \sum_{n \ge 1} \mathbf{F}_n \mathbf{x}^{n+2}$$
$$\Rightarrow \sum_{n \ge 3} \mathbf{F}_n \mathbf{x}^n = \mathbf{x} \sum_{n \ge 2} \mathbf{F}_n \mathbf{x}^n + \mathbf{x}^2 \sum_{n \ge 1} \mathbf{F}_n \mathbf{x}^n$$

Intro	Central Limit Type THM	Generalizations

Far-difference Representation

(1)

Preliminaries

Generating Function (Example: Binet's Formula)

Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

• Recurrence relation:
$$\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$$

$$(1) \Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} x^{n+1} = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} x^{n+1}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 1} \mathbf{F}_n x^{n+2}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = x \sum_{n\geq 2} \mathbf{F}_n x^n + x^2 \sum_{n\geq 1} \mathbf{F}_n x^n$$
$$\Rightarrow g(x) - \mathbf{F}_1 x - \mathbf{F}_2 x^2 = x(g(x) - \mathbf{F}_1 x) + x^2 g(x)$$

Intro	Central Limit Type THM	Generalizations

Far-difference Representation

(1)

Preliminaries

Generating Function (Example: Binet's Formula)

Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right].$$

• Recurrence relation:
$$\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$$

$$(1) \Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} \mathbf{x}^{n+1} = \sum_{n\geq 2} \mathbf{F}_n \mathbf{x}^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} \mathbf{x}^{n+1}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n \mathbf{x}^n = \sum_{n\geq 2} \mathbf{F}_n \mathbf{x}^{n+1} + \sum_{n\geq 1} \mathbf{F}_n \mathbf{x}^{n+2}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n \mathbf{x}^n = \mathbf{x} \sum_{n\geq 2} \mathbf{F}_n \mathbf{x}^n + \mathbf{x}^2 \sum_{n\geq 1} \mathbf{F}_n \mathbf{x}^n$$
$$\Rightarrow g(\mathbf{x}) - \mathbf{F}_1 \mathbf{x} - \mathbf{F}_2 \mathbf{x}^2 = \mathbf{x} (g(\mathbf{x}) - \mathbf{F}_1 \mathbf{x}) + \mathbf{x}^2 g(\mathbf{x})$$
$$\Rightarrow g(\mathbf{x}) = \mathbf{x} / (1 - \mathbf{x} - \mathbf{x}^2).$$

Intro o	Central Limit Type THM	Generalizations	Approach ○●○○○○○	Far-difference Representation
Preliminarie	s			

Partial Fraction Expansion (Example: Binet's Formula)

• Generating function: $g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$.

Intro o	Central Limit Type THM	Generalizations	Approach ••••••	Far-difference Representation
Dualizationaria				

Partial Fraction Expansion (Example: Binet's Formula)

- Generating function: $g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$.
- Partial fraction expansion:

Intro o	Central Limit Type THM	Generalizations	Approach ••••••	Far-difference Representation

.

Partial Fraction Expansion (Example: Binet's Formula)

- Generating function: $g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$.
- Partial fraction expansion:

$$\frac{1}{1-x-x^2} = -\frac{1}{\sqrt{5}} \left(\frac{1}{x-\frac{-1+\sqrt{5}}{2}} - \frac{1}{x-\frac{-1-\sqrt{5}}{2}} \right)$$

Intro o	Central Limit Type THM	Generalizations	Approach ○●○○○○○	Far-difference Representation

Partial Fraction Expansion (Example: Binet's Formula)

• Generating function: $g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$.

• Partial fraction expansion:

$$\frac{1}{1-x-x^2} = -\frac{1}{\sqrt{5}} \left(\frac{1}{x-\frac{-1+\sqrt{5}}{2}} - \frac{1}{x-\frac{-1-\sqrt{5}}{2}} \right)$$

$$g(x) = \frac{x}{1-x-x^2} = \frac{-1}{\sqrt{5}} \left(\frac{x}{x-\frac{-1+\sqrt{5}}{2}} - \frac{x}{x-\frac{-1-\sqrt{5}}{2}} \right)$$

Intro o	Central Limit Type THM	Generalizations	Approach ○●○○○○○	Far-difference Representation

Partial Fraction Expansion (Example: Binet's Formula)

• Generating function: $g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$.

• Partial fraction expansion:

$$\frac{1}{1-x-x^2} = -\frac{1}{\sqrt{5}} \left(\frac{1}{x-\frac{-1+\sqrt{5}}{2}} - \frac{1}{x-\frac{-1-\sqrt{5}}{2}} \right)$$

$$\vdots g(x) = \frac{x}{1-x-x^2} = \frac{-1}{\sqrt{5}} \left(\frac{x}{x-\frac{-1+\sqrt{5}}{2}} - \frac{x}{x-\frac{-1-\sqrt{5}}{2}} \right)$$

$$= \frac{1}{\sqrt{5}} \left(\frac{\frac{1+\sqrt{5}}{2}x}{1-\frac{1+\sqrt{5}}{2}x} - \frac{\frac{-1+\sqrt{5}}{2}x}{1-\frac{-1+\sqrt{5}}{2}x} \right)$$

Intro o	Central Limit Type THM	Generalizations	Approach ○●○○○○○	Far-difference Representation

Partial Fraction Expansion (Example: Binet's Formula)

• Generating function: $g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$.

Partial fraction expansion:

$$\frac{1}{1-x-x^2} = -\frac{1}{\sqrt{5}} \left(\frac{1}{x-\frac{-1+\sqrt{5}}{2}} - \frac{1}{x-\frac{-1-\sqrt{5}}{2}} \right)$$

$$\vdots \quad g(x) = \frac{x}{1-x-x^2} = \frac{-1}{\sqrt{5}} \left(\frac{x}{x-\frac{-1+\sqrt{5}}{2}} - \frac{x}{x-\frac{-1-\sqrt{5}}{2}} \right)$$

$$= \frac{1}{\sqrt{5}} \left(\frac{\frac{1+\sqrt{5}}{2}x}{1-\frac{1+\sqrt{5}}{2}x} - \frac{\frac{-1+\sqrt{5}}{2}x}{1-\frac{-1+\sqrt{5}}{2}x} \right)$$

Coefficient of *x*^{*n*} (power series expansion):

Intro o	Central Limit Type THM	Generalizations	Approach ○●○○○○○	Far-difference Representation

Partial Fraction Expansion (Example: Binet's Formula)

• Generating function: $g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$.

Partial fraction expansion:

$$\frac{1}{1-x-x^2} = -\frac{1}{\sqrt{5}} \left(\frac{1}{x-\frac{-1+\sqrt{5}}{2}} - \frac{1}{x-\frac{-1-\sqrt{5}}{2}} \right)$$

$$\vdots \quad g(x) = \frac{x}{1-x-x^2} = \frac{-1}{\sqrt{5}} \left(\frac{x}{x-\frac{-1+\sqrt{5}}{2}} - \frac{x}{x-\frac{-1-\sqrt{5}}{2}} \right)$$

$$= \frac{1}{\sqrt{5}} \left(\frac{\frac{1+\sqrt{5}}{2}x}{1-\frac{1+\sqrt{5}}{2}x} - \frac{\frac{-1+\sqrt{5}}{2}x}{1-\frac{-1+\sqrt{5}}{2}x} \right).$$

Coefficient of *x*^{*n*} (power series expansion):

$$\boldsymbol{F}_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{-1+\sqrt{5}}{2} \right)^n \right]$$
 - Binet's Formula!

Intro o	Central Limit Type THM	Generalizations	Approach ○○●○○○○	Far-difference Representation
Preliminaries				

Differentiating Identities and Method of Moments

• Differentiating identities

Intro O	Central Limit Type THM	Generalizations	Approach ○○●○○○○	Far-difference Representation
Prelimina	rice			

Differentiating identities

Example: Given a random variable X such that

$$Prob(X = 1) = \frac{1}{2}$$
, $Prob(X = 2) = \frac{1}{4}$, $Prob(X = 3) = \frac{1}{8}$, ...,

then what's the mean of X (i.e., E[X])?

Intro o	Central Limit Type THM	Approach 000000	Far-difference Representation
Declimination			

Differentiating identities

Example: Given a random variable *X* such that

 $Prob(X = 1) = \frac{1}{2}$, $Prob(X = 2) = \frac{1}{4}$, $Prob(X = 3) = \frac{1}{8}$, ...,

then what's the mean of X (i.e., E[X])?

Solution: Let
$$f(x) = \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \cdots = \frac{1}{1-x/2} - 1$$
.

Intro o	Central Limit Type THM	Approach 000000	Far-difference Representation
Declimination			

Preliminaries

Differentiating Identities and Method of Moments

Differentiating identities

Example: Given a random variable X such that

 $Prob(X = 1) = \frac{1}{2}$, $Prob(X = 2) = \frac{1}{4}$, $Prob(X = 3) = \frac{1}{8}$, ..., then what's the mean of X (i.e., E[X])?

Solution: Let
$$f(x) = \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \dots = \frac{1}{1-x/2} - 1$$
.
 $f'(x) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4}x + 3 \cdot \frac{1}{8}x^2 + \dots$.

Intro o	Central Limit Type THM	Approach 000000	Far-difference Representation
Declimination			

Differentiating identities

Example: Given a random variable *X* such that

 $Prob(X = 1) = \frac{1}{2}$, $Prob(X = 2) = \frac{1}{4}$, $Prob(X = 3) = \frac{1}{8}$, ..., then what's the mean of X (i.e., E[X])?

Solution: Let
$$f(x) = \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \dots = \frac{1}{1-x/2} - 1$$
.
 $f'(x) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4}x + 3 \cdot \frac{1}{8}x^2 + \dots$.
 $f'(1) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + \dots = E[X].$

Intro o	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
Proliminario	0			

Differentiating identities

Example: Given a random variable *X* such that

 $Prob(X = 1) = \frac{1}{2}$, $Prob(X = 2) = \frac{1}{4}$, $Prob(X = 3) = \frac{1}{8}$, ..., then what's the mean of X (i.e., E[X])?

Solution: Let
$$f(x) = \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \dots = \frac{1}{1-x/2} - 1$$
.
 $f'(x) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4}x + 3 \cdot \frac{1}{8}x^2 + \dots$.
 $f'(1) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + \dots = E[X]$.

Method of moments:

Intro o	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
Proliminar	ioo			

Differentiating identities

Example: Given a random variable X such that

 $Prob(X = 1) = \frac{1}{2}$, $Prob(X = 2) = \frac{1}{4}$, $Prob(X = 3) = \frac{1}{8}$, ..., then what's the mean of X (i.e., E[X])?

Solution: Let
$$f(x) = \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \dots = \frac{1}{1-x/2} - 1$$
.
 $f'(x) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4}x + 3 \cdot \frac{1}{8}x^2 + \dots$.
 $f'(1) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + \dots = E[X]$.

• Method of moments: Random variables X₁, X₂,

Intro o	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
Proliminar	ioo			

Differentiating identities

Example: Given a random variable X such that

Prob $(X = 1) = \frac{1}{2}$, Prob $(X = 2) = \frac{1}{4}$, Prob $(X = 3) = \frac{1}{8}$, ..., then what's the mean of X (i.e., E[X])? Solution: Let $f(x) = \frac{1}{2}x + \frac{1}{2}x^2 + \frac{1}{2}x^3 + \dots = \frac{1}{2}x - 1$.

$$f'(x) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4}x + 3 \cdot \frac{1}{8}x^2 + \cdots$$
$$f'(1) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4}x + 3 \cdot \frac{1}{8}x^2 + \cdots$$

Method of moments: Random variables X₁, X₂,
 If the ℓth moment E[X_n^ℓ] converges to that of the standard normal distribution (∀ℓ), then X_n converges to a Gaussian.

Intro o	Central Limit Type THM	Generalizations	Approach 000000	Far-difference Representation
Droliminariaa				

Differentiating identities

Example: Given a random variable X such that

Prob $(X = 1) = \frac{1}{2}$, Prob $(X = 2) = \frac{1}{4}$, Prob $(X = 3) = \frac{1}{8}$, ..., then what's the mean of X (i.e., E[X])? Solution: Let $f(x) = \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \dots = \frac{1}{1-x/2} - 1$.

$$f'(x) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4}x + 3 \cdot \frac{1}{8}x^2 + \cdots$$

$$f'(1) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + \cdots = E[X].$$

Method of moments: Random variables X₁, X₂,
 If the ℓth moment E[X_n^ℓ] converges to that of the standard normal distribution (∀ℓ), then X_n converges to a Gaussian.
 Standard normal distribution:

Intro o	Central Limit Type THM	Generalizations	Approach 000000	Far-difference Representation
Droliminariaa				

Differentiating identities

Example: Given a random variable X such that

Prob $(X = 1) = \frac{1}{2}$, Prob $(X = 2) = \frac{1}{4}$, Prob $(X = 3) = \frac{1}{8}$, ..., then what's the mean of X (i.e., E[X])? Solution: Let $f(x) = \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \cdots = \frac{1}{1-x^{1/2}} - 1$.

$$f'(x) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4}x + 3 \cdot \frac{1}{8}x^2 + \cdots$$

$$f'(1) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + \cdots = E[X].$$

Method of moments: Random variables X₁, X₂,
 If the ℓth moment E[X_n^ℓ] converges to that of the standard normal distribution (∀ℓ), then X_n converges to a Gaussian.

Standard normal distribution:

 $2m^{\text{th}}$ moment: $(2m-1)!! = (2m-1)(2m-3)\cdots 1$,

Intro o	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
Droliminorioo				

Differentiating identities

Example: Given a random variable X such that

Prob $(X = 1) = \frac{1}{2}$, Prob $(X = 2) = \frac{1}{4}$, Prob $(X = 3) = \frac{1}{8}$, ..., then what's the mean of X (i.e., E[X])? Solution: Let $f(x) = \frac{1}{2}x + \frac{1}{2}x^2 + \frac{1}{2}x^3 + \dots = \frac{1}{2}x - 1$.

Solution: Let
$$f(x) = \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \dots = \frac{1}{1-x/2} - 1$$
.
 $f'(x) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4}x + 3 \cdot \frac{1}{8}x^2 + \dots$.
 $f'(1) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + \dots = E[X]$.

Method of moments: Random variables X₁, X₂,
 If the ℓth moment E[X_n^ℓ] converges to that of the standard normal distribution (∀ℓ), then X_n converges to a Gaussian.

Standard normal distribution:

 $2m^{\text{th}}$ moment: $(2m-1)!! = (2m-1)(2m-3)\cdots 1$, $(2m-1)^{\text{th}}$ moment: 0.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			0000000	

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			0000000	

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$ the Zeckendorf decomposition of N has exactly k summands $\}$.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			0000000	

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{the Zeckendorf decomposition of } N \text{ has exactly } k \text{ summands} \}.$

• Recurrence relation:

 $N \in [F_{n+1}, F_{n+2})$:

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Repres
			0000000	

sentation

New Approach: Case of Fibonacci Numbers

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{the Zeckendorf decomposition of } N \text{ has exactly } k \text{ summands} \}.$

$$N \in [F_{n+1}, F_{n+2})$$
: $N = F_{n+1} + F_t + \cdots, t \le n-1$.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Re
			0000000	

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{the Zeckendorf decomposition of } N \text{ has exactly } k \text{ summands} \}.$

$$N \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \le n-1.$$

$$p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference
			0000000	

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{the Zeckendorf decomposition of } N \text{ has exactly } k \text{ summands} \}.$

Representation

$$N \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \le n-1.$$

$$p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$$

$$p_{n,k+1} = p_{n-2,k} + p_{n-3,k} + \cdots$$

Intro	Central Limit Type THM	Generalizations	Approach	Far-differe
			0000000	

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{the Zeckendorf decomposition of } N \text{ has exactly } k \text{ summands} \}.$

ence Representation

$$N \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \le n-1.$$

$$p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$$

$$p_{n,k+1} = p_{n-2,k} + p_{n-3,k} + \cdots$$

$$\Rightarrow p_{n+1,k+1} = p_{n,k+1} + p_{n-1,k}.$$

Intro	Central Limit Type THM	Generalizations	Approach	Far-differ
			0000000	

Far-difference Representation

New Approach: Case of Fibonacci Numbers

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{the Zeckendorf decomposition of } N \text{ has exactly } k \text{ summands} \}.$

$$N \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \le n-1.$$

$$p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$$

$$p_{n,k+1} = p_{n-2,k} + p_{n-3,k} + \cdots$$

$$\Rightarrow p_{n+1,k+1} = p_{n,k+1} + p_{n-1,k}.$$
• Generating function: $\sum_{n,k>0} p_{n,k} x^k y^n = \frac{y}{1 - y - xy^2}.$

Intro	Central Limit Type THM	Generalizations	Approach	Far
			0000000	

Far-difference Representation

New Approach: Case of Fibonacci Numbers

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{the Zeckendorf decomposition of } N \text{ has exactly } k \text{ summands} \}.$

• Recurrence relation:

$$N \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \le n-1.$$

$$p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$$

$$p_{n,k+1} = p_{n-2,k} + p_{n-3,k} + \cdots$$

$$\Rightarrow p_{n+1,k+1} = p_{n,k+1} + p_{n-1,k}.$$
• Generating function: $\sum_{n,k>0} p_{n,k} x^k y^n = \frac{y}{1 - y - xy^2}.$

• Partial fraction expansion:

$$\frac{y}{1 - y - xy^2} = -\frac{y}{y_1(x) - y_2(x)} \left(\frac{1}{y - y_1(x)} - \frac{1}{y - y_2(x)}\right)$$

here $y_1(x)$ and $y_2(x)$ are the roots of $1 - y - xy^2 = 0$.

w

Intro	Central Limit Type THM	Generalizations	Approach
			0000000

Far-difference Representation

New Approach: Case of Fibonacci Numbers

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{the Zeckendorf decomposition of } N \text{ has exactly } k \text{ summands} \}.$

• Recurrence relation:

$$N \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \le n-1.$$

$$p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$$

$$p_{n,k+1} = p_{n-2,k} + p_{n-3,k} + \cdots$$

$$\Rightarrow p_{n+1,k+1} = p_{n,k+1} + p_{n-1,k}.$$

$$P_{n,k+1} = p_{n,k+1} + p_{n-1,k}.$$

$$P_{n,k+1} = p_{n,k+1} + p_{n-1,k}.$$

• Partial fraction expansion:

$$\frac{y}{1 - y - xy^2} = -\frac{y}{y_1(x) - y_2(x)} \left(\frac{1}{y - y_1(x)} - \frac{1}{y - y_2(x)}\right)$$

here $y_1(x)$ and $y_2(x)$ are the roots of $1 - y - xy^2 = 0$.
oefficient of y^n : $g(x) = \sum_{n,k>0} p_{n,k} x^k$.

w C

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			0000000	

 K_n : the corresponding random variable associated with k.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			0000000	

 K_n : the corresponding random variable associated with k. $g(x) = \sum_{n,k>0} p_{n,k} x^k$.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			0000000	

 K_n : the corresponding random variable associated with k. $g(x) = \sum_{n,k>0} p_{n,k} x^k$.

$$g(1) = \sum_{n,k>0} p_{n,k} = F_{n+1} - F_n,$$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			0000000	

 K_n : the corresponding random variable associated with k. $g(x) = \sum_{n,k>0} p_{n,k} x^k$.

$$g(1) = \sum_{n,k>0} p_{n,k} = F_{n+1} - F_n,$$

$$g'(x) = \sum_{n,k>0} k p_{n,k} x^{k-1},$$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			0000000	

 K_n : the corresponding random variable associated with k. $g(x) = \sum_{n,k>0} p_{n,k} x^k$.

$$g(1) = \sum_{n,k>0} p_{n,k} = F_{n+1} - F_n,$$

$$g'(x) = \sum_{n,k>0} k p_{n,k} x^{k-1}, g'(1) = g(1) E[K_n],$$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			0000000	

 K_n : the corresponding random variable associated with k. $g(x) = \sum_{n,k>0} p_{n,k} x^k$.

$$g(1) = \sum_{n,k>0} p_{n,k} = F_{n+1} - F_n,$$

$$g'(x) = \sum_{n,k>0} k p_{n,k} x^{k-1}, g'(1) = g(1) E[K_n],$$

$$(xg'(x))' = \sum_{n,k>0} k^2 p_{n,k} x^{k-1},$$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			0000000	

 K_n : the corresponding random variable associated with k. $g(x) = \sum_{n,k>0} p_{n,k} x^k$.

$$\begin{split} g(1) &= \sum_{n,k>0} p_{n,k} = F_{n+1} - F_n, \\ g'(x) &= \sum_{n,k>0} k p_{n,k} x^{k-1}, \ g'(1) = g(1) E[K_n], \\ (xg'(x))' &= \sum_{n,k>0} k^2 p_{n,k} x^{k-1}, \\ (xg'(x))' \mid_{x=1} &= g(1) E[K_n^2], \end{split}$$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			0000000	

 K_n : the corresponding random variable associated with k. $g(x) = \sum_{n,k>0} p_{n,k} x^k$.

$$\begin{split} g(1) &= \sum_{n,k>0} p_{n,k} = F_{n+1} - F_n, \\ g'(x) &= \sum_{n,k>0} k p_{n,k} x^{k-1}, \ g'(1) = g(1) E[K_n], \\ (xg'(x))' &= \sum_{n,k>0} k^2 p_{n,k} x^{k-1}, \\ (xg'(x))' \mid_{x=1} &= g(1) E[K_n^2], \ \left(x \left(xg'(x) \right)' \right)' \mid_{x=1} = g(1) E[K_n^3], \dots \end{split}$$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			0000000	

 K_n : the corresponding random variable associated with k. $g(x) = \sum_{n,k>0} p_{n,k} x^k$.

$$\begin{split} g(1) &= \sum_{n,k>0} p_{n,k} = F_{n+1} - F_n, \\ g'(x) &= \sum_{n,k>0} k p_{n,k} x^{k-1}, \ g'(1) = g(1) E[K_n], \\ (xg'(x))' &= \sum_{n,k>0} k^2 p_{n,k} x^{k-1}, \\ (xg'(x))' &|_{x=1} = g(1) E[K_n^2], \ (x (xg'(x))')' &|_{x=1} = g(1) E[K_n^3], \dots \\ \text{Similar results hold for the centralized } K_n: \ K'_n = K_n - E[K_n]. \end{split}$$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			0000000	

 K_n : the corresponding random variable associated with k. $g(x) = \sum_{n,k>0} p_{n,k} x^k$.

• Differentiating identities:

$$g(1) = \sum_{n,k>0} p_{n,k} = F_{n+1} - F_n,$$

$$g'(x) = \sum_{n,k>0} k p_{n,k} x^{k-1}, g'(1) = g(1) E[K_n],$$

$$(xg'(x))' = \sum_{n,k>0} k^2 p_{n,k} x^{k-1},$$

$$(xg'(x))'|_{x=1} = g(1) E[K_n^2], (x (xg'(x))')'|_{x=1} = g(1) E[K_n^3], ...$$

Similar results hold for the centralized K_n : $K'_n = K_n - E[K_n].$

• Method of moments (for normalized K'_n):

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			0000000	

 K_n : the corresponding random variable associated with k. $g(x) = \sum_{n,k>0} p_{n,k} x^k$.

• Differentiating identities:

$$g(1) = \sum_{n,k>0} p_{n,k} = F_{n+1} - F_n,$$

$$g'(x) = \sum_{n,k>0} k p_{n,k} x^{k-1}, g'(1) = g(1) E[K_n],$$

$$(xg'(x))' = \sum_{n,k>0} k^2 p_{n,k} x^{k-1},$$

$$(xg'(x))'|_{x=1} = g(1) E[K_n^2], (x (xg'(x))')'|_{x=1} = g(1) E[K_n^3], ...$$

Similar results hold for the centralized K_n : $K'_n = K_n - E[K_n].$

• Method of moments (for normalized K'_n): $E[(K'_n)^{2m}]/(SD(K'_n))^{2m} \rightarrow (2m-1)!!,$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			0000000	

 K_n : the corresponding random variable associated with k. $g(x) = \sum_{n,k>0} p_{n,k} x^k$.

• Differentiating identities:

$$g(1) = \sum_{n,k>0} p_{n,k} = F_{n+1} - F_n,$$

$$g'(x) = \sum_{n,k>0} k p_{n,k} x^{k-1}, g'(1) = g(1) E[K_n],$$

$$(xg'(x))' = \sum_{n,k>0} k^2 p_{n,k} x^{k-1},$$

$$(xg'(x))'|_{x=1} = g(1) E[K_n^2], (x (xg'(x))')'|_{x=1} = g(1) E[K_n^3], ...$$

Similar results hold for the centralized K_n : $K'_n = K_n - E[K_n].$

• Method of moments (for normalized K'_n): $E[(K'_n)^{2m}]/(SD(K'_n))^{2m} \rightarrow (2m-1)!!,$ $E[(K'_n)^{2m-1}]/(SD(K'_n))^{2m-1} \rightarrow 0. \Rightarrow K_n \rightarrow \text{Gaussian}.$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			0000000	

Let $p_{n,k} = \# \{ N \in [H_n, H_{n+1}) \}$: the generalized Zeckendorf decomposition of *N* has exactly *k* summands $\}$.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			0000000	

Let $p_{n,k} = \# \{ N \in [H_n, H_{n+1}) :$ the generalized Zeckendorf decomposition of *N* has exactly *k* summands $\}$.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			0000000	

Let $p_{n,k} = \# \{ N \in [H_n, H_{n+1}) :$ the generalized Zeckendorf decomposition of *N* has exactly *k* summands $\}$.

• Recurrence relation:

Fibonacci: $p_{n+1,k+1} = p_{n,k+1} + p_{n,k}$.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			0000000	

Let $p_{n,k} = \# \{ N \in [H_n, H_{n+1}) :$ the generalized Zeckendorf decomposition of *N* has exactly *k* summands $\}$.

• Recurrence relation:

Fibonacci: $p_{n+1,k+1} = p_{n,k+1} + p_{n,k}$. General: $p_{n+1,k} = \sum_{m=0}^{L-1} \sum_{i=s_m}^{s_{m+1}-1} p_{n-m,k-i}$.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			0000000	

New Approach: General Case

Let $p_{n,k} = \# \{ N \in [H_n, H_{n+1}) :$ the generalized Zeckendorf decomposition of *N* has exactly *k* summands $\}$.

• Recurrence relation:

Fibonacci: $p_{n+1,k+1} = p_{n,k+1} + p_{n,k}$. General: $p_{n+1,k} = \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} p_{n-m,k-j}$. where $s_0 = 0, s_m = c_1 + c_2 + \dots + c_m$.

• Generating function:

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			0000000	

New Approach: General Case

Let $p_{n,k} = \# \{ N \in [H_n, H_{n+1}) :$ the generalized Zeckendorf decomposition of *N* has exactly *k* summands $\}$.

• Recurrence relation:

Fibonacci: $p_{n+1,k+1} = p_{n,k+1} + p_{n,k}$. General: $p_{n+1,k} = \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} p_{n-m,k-j}$. where $s_0 = 0, s_m = c_1 + c_2 + \dots + c_m$.

• Generating function:

Fibonacci:
$$\frac{y}{1-y-xy^2}$$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			0000000	

New Approach: General Case

Let $p_{n,k} = \# \{ N \in [H_n, H_{n+1}) :$ the generalized Zeckendorf decomposition of *N* has exactly *k* summands $\}$.

• Recurrence relation:

Fibonacci: $p_{n+1,k+1} = p_{n,k+1} + p_{n,k}$.

General:
$$p_{n+1,k} = \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} p_{n-m,k-j}$$

where $s_0 = 0, s_m = c_1 + c_2 + \dots + c_m$.

• Generating function:

Fibonacci:
$$\frac{y}{1-y-xy^2}$$
.
General:

$$\frac{\sum_{n \le L} p_{n,k} x^k y^n - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} \sum_{n < L-m} p_{n,k} x^k y^n}{1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1}}$$

0 000 0000 00000 O	

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			000000	

Fibonacci:
$$-\frac{y}{y_1(x)-y_2(x)}\left(\frac{1}{y-y_1(x)}-\frac{1}{y-y_2(x)}\right)$$
.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			000000	

Fibonacci:
$$-\frac{y}{y_1(x)-y_2(x)} \left(\frac{1}{y-y_1(x)} - \frac{1}{y-y_2(x)}\right).$$

General:
 $-\frac{1}{\sum_{j=s_{L-1}}^{s_L-1} x^j} \sum_{i=1}^{L} \frac{B(x,y)}{(y-y_i(x)) \prod_{j \neq i} (y_j(x) - y_i(x))}$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			000000	

• Partial fraction expansion:

C

Fibonacci:
$$-\frac{y}{y_1(x)-y_2(x)}\left(\frac{1}{y-y_1(x)}-\frac{1}{y-y_2(x)}\right)$$
.
General: $-\frac{1}{\sum_{j=s_{L-1}}^{s_L-1} x^j} \sum_{i=1}^{L} \frac{B(x,y)}{(y-y_i(x))\prod_{j\neq i} (y_j(x)-y_i(x))}$.

$$B(x,y) = \sum_{n \leq L} p_{n,k} x^{k} y^{n} - \sum_{m=0}^{L-1} \sum_{j=s_{m}}^{s_{m+1}-1} x^{j} y^{m+1} \sum_{n < L-m} p_{n,k} x^{k} y^{n},$$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			000000	

Fibonacci:
$$-\frac{y}{y_1(x)-y_2(x)} \left(\frac{1}{y-y_1(x)} - \frac{1}{y-y_2(x)}\right)$$
.
General:
 $-\frac{1}{\sum_{j=s_{L-1}}^{s_L-1} x^j} \sum_{i=1}^{L} \frac{B(x,y)}{(y-y_i(x)) \prod_{j \neq i} (y_j(x) - y_i(x))}$.

$$B(x, y) = \sum_{n \le L} p_{n,k} x^k y^n - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} \sum_{n < L-m} p_{n,k} x^k y^n,$$

$$y_i(x): \text{ root of } 1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} = 0.$$

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			000000	

• Partial fraction expansion:

Fibonacci:
$$-\frac{y}{y_1(x)-y_2(x)} \left(\frac{1}{y-y_1(x)} - \frac{1}{y-y_2(x)}\right).$$

General: $-\frac{1}{\sum_{j=s_{L-1}}^{s_L-1} x^j} \sum_{i=1}^{L} \frac{B(x,y)}{(y-y_i(x)) \prod_{j \neq i} (y_j(x) - y_i(x))}.$

$$B(x, y) = \sum_{n \le L} p_{n,k} x^k y^n - \sum_{m=0}^{L-1} \sum_{\substack{j=s_m \ j=s_m}}^{s_{m+1}-1} x^j y^{m+1} \sum_{\substack{n < L-m \ n,k}} p_{n,k} x^k y^n,$$

$$y_i(x): \text{ root of } 1 - \sum_{\substack{m=0 \ m=0}}^{L-1} \sum_{\substack{j=s_m \ m=0}}^{s_{m+1}-1} x^j y^{m+1} = 0.$$

Coefficient of y^n : $g(x) = \sum_{n,k>0} p_{n,k} x^k$.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			000000	

• Partial fraction expansion:

Fibonacci:
$$-\frac{y}{y_1(x)-y_2(x)}\left(\frac{1}{y-y_1(x)}-\frac{1}{y-y_2(x)}\right)$$
.
General:
 $-\frac{1}{\sum_{j=s_{L-1}}^{s_L-1} x^j} \sum_{i=1}^{L} \frac{B(x,y)}{(y-y_i(x))\prod_{j\neq i} (y_j(x)-y_i(x))}$.

$$B(x,y) = \sum_{n \le L} p_{n,k} x^k y^n - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} \sum_{n < L-m} p_{n,k} x^k y^n,$$

$$y_i(x): \text{ root of } 1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} = 0.$$

Coefficient of y^n : $g(x) = \sum_{n,k>0} p_{n,k} x^k$.

Differentiating identities

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			000000	

• Partial fraction expansion:

Fibonacci:
$$-\frac{y}{y_1(x)-y_2(x)}\left(\frac{1}{y-y_1(x)}-\frac{1}{y-y_2(x)}\right)$$
.
General:
 $-\frac{1}{\sum_{j=s_{L-1}}^{s_L-1} x^j} \sum_{i=1}^{L} \frac{B(x,y)}{(y-y_i(x))\prod_{j\neq i} (y_j(x)-y_i(x))}$.

$$B(x,y) = \sum_{n \le L} p_{n,k} x^k y^n - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} \sum_{n < L-m} p_{n,k} x^k y^n,$$

$$y_i(x): \text{ root of } 1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} = 0.$$

Coefficient of y^n : $g(x) = \sum_{n,k>0} p_{n,k} x^k$.

- Differentiating identities
- Method of moments

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation
			000000	

• Partial fraction expansion:

Fibonacci:
$$-\frac{y}{y_1(x)-y_2(x)}\left(\frac{1}{y-y_1(x)}-\frac{1}{y-y_2(x)}\right)$$
.
General:
 $-\frac{1}{\sum_{j=s_{L-1}}^{s_L-1} x^j} \sum_{i=1}^{L} \frac{B(x,y)}{(y-y_i(x))\prod_{j\neq i} (y_j(x)-y_i(x))}$.

$$B(x,y) = \sum_{n \le L} p_{n,k} x^k y^n - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} \sum_{n < L-m} p_{n,k} x^k y^n,$$

$$y_i(x): \text{ root of } 1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} = 0.$$

Coefficient of y^n : $g(x) = \sum_{n,k>0} p_{n,k} x^k$.

- Differentiating identities
- Method of moments $\Rightarrow K_n \rightarrow$ Gaussian

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the $\pm F_n$'s, such that every two terms of the same (opposite) sign differ in index by at least 4 (3).

Intro C	Central Limit Type THM	Generalizations	Approach	Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the $\pm F_n$'s, such that every two terms of the same (opposite) sign differ in index by at least 4 (3).

Example:
$$1900 = F_{17} - F_{14} - F_{10} + F_6 + F_2$$
.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the $\pm F_n$'s, such that every two terms of the same (opposite) sign differ in index by at least 4 (3).

Example:
$$1900 = F_{17} - F_{14} - F_{10} + F_6 + F_2$$
.

K: # of positive terms, L: # of negative terms.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the $\pm F_n$'s, such that every two terms of the same (opposite) sign differ in index by at least 4 (3).

Example:
$$1900 = F_{17} - F_{14} - F_{10} + F_6 + F_2$$
.

K: # of positive terms, L: # of negative terms.

Generalized Lekkerkerker's Theorem

As $n \to \infty$, E[K] and $E[L] \to n/10$. $E[K] - E[L] = \varphi/2 \approx .809$.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the $\pm F_n$'s, such that every two terms of the same (opposite) sign differ in index by at least 4 (3).

Example:
$$1900 = F_{17} - F_{14} - F_{10} + F_6 + F_2$$
.

K: # of positive terms, L: # of negative terms.

Generalized Lekkerkerker's Theorem

As $n \to \infty$, E[K] and $E[L] \to n/10$. $E[K] - E[L] = \varphi/2 \approx .809$.

Central Limit Type Theorem

As $n \rightarrow \infty$, *K* and *L* converges to a bivariate Gaussian.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the $\pm F_n$'s, such that every two terms of the same (opposite) sign differ in index by at least 4 (3).

Example:
$$1900 = F_{17} - F_{14} - F_{10} + F_6 + F_2$$
.

K: # of positive terms, L: # of negative terms.

Generalized Lekkerkerker's Theorem

As $n \to \infty$, E[K] and $E[L] \to n/10$. $E[K] - E[L] = \varphi/2 \approx .809$.

Central Limit Type Theorem

As $n \rightarrow \infty$, *K* and *L* converges to a bivariate Gaussian.

• corr(
$$K, L$$
) = $-(21 - 2\varphi)/(29 + 2\varphi) \approx -.551$, $\varphi = \frac{\sqrt{5}+1}{2}$.

Intro	Central Limit Type THM	Generalizations	Approach	Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the $\pm F_n$'s, such that every two terms of the same (opposite) sign differ in index by at least 4 (3).

Example:
$$1900 = F_{17} - F_{14} - F_{10} + F_6 + F_2$$
.

K: # of positive terms, L: # of negative terms.

Generalized Lekkerkerker's Theorem

As $n \to \infty$, E[K] and $E[L] \to n/10$. $E[K] - E[L] = \varphi/2 \approx .809$.

Central Limit Type Theorem

As $n \rightarrow \infty$, *K* and *L* converges to a bivariate Gaussian.

• corr
$$(K, L) = -(21 - 2\varphi)/(29 + 2\varphi) \approx -.551, \varphi = \frac{\sqrt{5}+1}{2}$$

• K + L and K - L are independent.

Intro	Central Limit Type THM	C

Generalizations

Approach 0000000 Far-difference Representation

Thank You!

