On Summand Minimality of Generalized Zeckendorf Decompositions

Chi Huynh (nhuynh30@gatech.edu)
Carsten Peterson (carsten.peterson@yale.edu)
Yen Nhi Truong Vu (ytruongvu17@amherst.edu)

Joint work with Katherine Cordwell, Max Hlavacek and Steven J. Miller

Joint Mathematics Meeting of the AMS/MAA

AMS Contributed Paper Session on Undergraduate Research

Atlanta 01/05/2017

Introduction

Base d Representation and Zeckendorf's theorem

Theorem (Base d Representation)

Every natural number can be represented uniquely as a sum of powers of d with coefficients in $\{0, 1, ..., d-1\}$.

Theorem (Zeckendorf)

Every natural number can be represented uniquely as a sum of non-consecutive Fibonacci numbers (with $F_1 = 1$ and $F_2 = 2$).

Definition: PLRS

Definition

A positive linear recurrence sequence (PLRS) is the sequence given by a recurrence of the following form:

$$H_n = c_1 H_{n-1} + \cdots + c_t H_{n-t}$$

where all $c_i \ge 0$ and $c_1, c_t \ge 1$. We use **ideal initial** conditions $H_{-(n-1)} = 0, \dots, H_{-1} = 0, H_0 = 1$.

Definition: PLRS

Definition

A positive linear recurrence sequence (PLRS) is the sequence given by a recurrence of the following form:

$$H_n = c_1 H_{n-1} + \cdots + c_t H_{n-t}$$

where all $c_i \ge 0$ and $c_1, c_t \ge 1$. We use **ideal initial** conditions $H_{-(n-1)} = 0, \dots, H_{-1} = 0, H_0 = 1$.

Definition

We call (c_1, \ldots, c_t) the signature of the sequence.

Representation Notation

Definition

For a sequence $\{H_i\}$ with signature (c_1, \ldots, c_t) , suppose we have:

$$n = b_k H_k + b_{k-1} H_{k-1} + \cdots + b_0 H_0$$

Then we call $[b_k, b_{k-1}, \dots, b_0, \infty_{(t-1)}]$ a **representation** of n over $\{H_i\}$.

Example: Representation Notation

Representations of 18

F_7	F_6	F_5	F_4	F_3	F_2	F_1	F_0	\mathbf{F}_{-1}
21	13	8	5	3	2	1	1	0
	1	0	1	0	0	0	0	∞
	1	0	0	1	1	0	0	∞

Allowable Blocks

Definition

Given a PLRS with signature (c_1, \ldots, c_t) , we say that $[b_1, \ldots, b_k]$ is an **allowable block** if $k \le t$ and $b_i = c_i$ for i < k and $0 \le b_k < c_k$. In other words, allowable blocks are *lexicographically less than* the signature.

Examples:

-Admpioo.		
$\sigma = (1, 1)$	$\sigma = (2,2,1)$	$\sigma = (3, 0, 2)$
[0]	[0]	[0]
[1, 0]	[1]	[1]
	[2, 0]	[2]
	[2, 1]	[3, 0, 0]
	[2, 2, 0]	[3, 0, 1]

Generalized Zeckendorf Decompositions

Theorem (Miller et al., Hamlin)

Given a positive linear recurrence sequence, every natural number has a unique representation composed of allowable blocks. This representation is called the **Generalized Zeckendorf Decomposition** (GZD).

Examples

Signature:
$$\sigma = (d)$$

Allowable blocks: $\{[0], [1], ..., [d-1]\}$

This is the base d representation.

Signature:
$$\sigma = (1, 1)$$

Allowable blocks: {[0], [1, 0]}

5 3 2 1 1 0
1 0 0 1 0
$$\infty$$

This is the Zeckendorf representation.

Example

```
Signature: \sigma = (2,2,1) Allowable blocks: \{[0],[1],[2,0],[2,1],[2,2,0]\} \frac{385 \quad 136 \quad 48 \quad 17 \quad 6 \quad 2 \quad 1 \quad 0 \quad 0}{2 \quad 0 \quad 1 \quad 2 \quad 2 \quad 0 \quad 0 \quad \infty \quad \infty}
```

Summand minimality

Number of Summands

Signature: $\sigma = (1, 1)$ Representations of 6:

# of summands	5	3	2	1	1	0
2	1	0	0	1	0	∞
2		2	0	0	0	∞
3		1	1	1	0	∞
3			3	0	0	∞
4			2	2	0	∞
5			1	0	4	∞
6					6	∞

The GZD has the fewest number of summands.

Number of Summands

Signature: $\sigma = (3, 0, 2)$ Representations of 116:

# of summands	93	29	9	3	1	0	0
4		4	0	0	0	∞	∞
6	1	0	2	1	2	∞	∞

There exists a representation with fewer summands than the GZD.

Summand minimality

Definition

A positive linear recurrence sequence, H, is called **summand minimal** if for all $n \in \mathbb{N}$, the GZD of n has the fewest number of summands among all representations for n using H.

Question

When is a positive linear recurrence summand minimal?

Summand minimality

Definition

A positive linear recurrence sequence, H, is called **summand minimal** if for all $n \in \mathbb{N}$, the GZD of n has the fewest number of summands among all representations for n using H.

Question

When is a positive linear recurrence summand minimal?

Theorem (CHHMPT '16)

A positive linear recurrence sequence is summand minimal if and only if its signature is weakly decreasing, i.e. $\sigma = (c_1, c_2, \dots, c_t)$ with $c_1 \ge c_2 \ge \dots \ge c_t$.

Sketch of techniques

From one representation to another: borrowing

- Signature $\sigma = (3, 2)$
- Strings [-1,3,2] and [1,-3,-2] represent 0.
- Representations of 39

H_4	H_3	H_2	H_1	H_0	H_{-1}
139	39	11	3	1	0
	1	0	0	0	∞
	-1	3	2		
	0	3	2	0	∞
			-1	3	2
		3	1	3	∞

From one representation to another: carrying

- Signature $\sigma = (2, 1, 3)$
- Representations of 42

H_4	H_3	H_2	H_1	H_0	H_{-1}	H_{-2}
41	15	5	2	1	0	0
	1	3	4	4	∞	∞
	1	-2	-1	-3		
	2	1	3	1	∞	∞
1	-2	-1	-3			
1	0	0	0	1	∞	∞

From any representation to the GZD

Theorem (CHHMPT '16)

There exists an algorithm which, given any $n \in \mathbb{N}$ and any representation for n, terminates in the GZD for n through a finite sequence of borrows and carries.

Example of the algorithm

- Signature $\sigma = (3, 2, 2)$
- Representations of 44

H_5	H_4	H_3	H_2	H_1	H_0	H_{-1}	H_{-2}
537	148	41	11	3	1	0	0
			4	0	0	∞	∞
			-1	3	2	2	
			3	3	2	∞	∞
		1	-3	-2	-2		
		1	0	1	0	∞	∞

Weakly decreasing signature implies summand minimality

Corollary

The definition of the algorithm immediately implies that positive linear recurrences sequences with weakly decreasing signature are summand minimal.

Idea: after every borrow we are immediately able to carry which causes the number of summands to weakly decrease.

Summand minimality implies weakly decreasing signature

- What about non-weakly decreasing signature?
- When c₁ > 1, we can construct an explicit non-GZD representation with fewer summands than the GZD. Idea is to construct a representation such that during the algorithm we need at least two borrows before we can carry (so that the number of summands increases as we move towards the GZD).
- When $c_1 = 1$, using the theory of irreducible polynomials, we are able to non-constructively prove the existence of a non-GZD representation with fewer summands than the GZD.

Acknowledgments/References

Acknowledgments

- ► Full paper available on arXiv: https://arxiv.org/abs/1608.08764
- ► The authors were supported by: SMALL Program at Williams College, Professor Amanda Folsom for funding as well as NSF Grants DMS1265673, DMS1561945, DMS1347804, and DMS1449679.
- ► Thank you to JMM and AMS Contributed Paper Session on Undergraduate Research organizers.

Selected References

M. Catral, P. Ford, P. E. Harris, S. J. Miller, and D. Nelson, *Notes on Monoinvariants and Minimal Fibonacci Representations*, preprint 2016.

N. Hamlin, Representing Positive Integers as a Sum of Linear Recurrence Sequences, Fibonacci Quarterly **50** (2012), no. 2, 99–10

S. J. Miller and Y. Wang, *From Fibonacci numbers to Central Limit Type Theorems*, Journal of Combinatorial Theory, Series A **119** (2012), no. 7, 1398–1413.

A. Schinzel, *Solution d'un probleme de K. Zarankiewicz sur les suites de puissances consécutives de nombres irrationnels*, Colloquium Mathematicae, **9** (1972), no. 2, pages 291–296.

E. Zeckendorf, *Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas*, Bulletin de la Société Royale des Sciences de Liége **41** (1972), pages 179–182.