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Outline of the Talk

e Review of1 and2-Level Densities.

e Constructing -Parameter Families with rank

overQ(t).
¢ n-Level Density and Bounding Average Rank.
e Numerically Calculating (Approximating) Ranks.
e Potential Lower Order Density Corrections.

e Calculations of Excess Rank in Families.



Elliptic Curves

ConsiderE : y? + ajzy + asy = x° + asx® +
asT + ag, a; € Q and itsL-function

L(s, F) = H (1 — a,pp_5> H (1 —app® +p1_28>1

plA p TA

By GRH: All non-trivial zeros on the critical
line, can talk about spacings between zeros.

—1

Rational solutions form a group:
E(Q) = Z"€T, T is the torsion pointsy is
the geometric rank.

Birch and Swinnerton-Dyer Conjecture: Ge-
ometric rank equals the analytic rank, the order
of vanishing ofL(s, E) ats = 3.

One-parameter families; = a;(t) € Z[t].



n-Level Density: |

Let f(z) =[], fi(z:), f; even Schwartz func-
tions whose Fourier Transforms are compactly
supported.

Dy e(f) = Z f1(LEVg1)) -~fn(megj”)>

j]_ 7777 .]TL
distinct

1. individual zeros contribute in limit
2. most of contribution is from low zeros

3. average over similar curves (family)

To any geometric family, Katz-Sarnak pre-
dict then-level density depends only on a sym-
metry group attached to the family.



n-Level Density: I

Let f(z) =[], fi(z:), f; even Schwartz func-
tions whose Fourier Transforms are compactly
supported.

D, u(f) = Z fl(ng))...fn(ngn))

]1 7777 ]’I"L
distinct

Hope: for f a good even test function with
compact support, d§| — oo,

mZDn,E(f) = ’?‘Z > Hf( iﬁ%?)

EeF E€F jiin 1
JiFEI

= [ [ W @

_ / / F) W gy (u)du.



Explicit Formula

Relates sums of test functions over zeros to sums over primes of
ap(p) anda%(p).

ZG(IOgNE J’) — G(0) + G(0)

logp 1 ~( logp
— 2 G
ZlogNEp (10gNE a5 (p)

log X
logplA log p
—2
ZlogXp <logX a5 (p)
logplA 2logp
—2
ZlogXp (ng a5 (P)

log log X
O ———|.
T < log X )

> <@vg>> = BIEG(0) +G(0)




New Results

Rational Surfaces Density Theorem: 1-parameter
family, rankr overQ(¢) and a rational surface. Assume

e GRH;

e j(t) non-constant;

e ABC (or Sg-Free Sieve) i\(¢) has an irred. factor
of degree> 4.

Letm = degC(t), f; even Schwartz with suppart,
o1+ 09 < ?%m Possibly after passing to a subsequence,
we observe two pieces. The first equals the expected con-
tribution fromr zeros at the critical point (agreeing with
what B-SD suggests). The second is

DY) = ﬁ(o)%fl(O)
2

ok = I r2 [l
=1 -0

~2£1£2(0) = £1(0) f2(0) + (1 f2)(O)N(F, —1)

whereN (F, —1) is the percent of curves with odd sign.

F0) + 340

1 and2-level densities confirm Katz-Sarnak
predictions for small support.
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Examples

Constant-Sign Families:
1. y* = 2% +24(=3)3(9t + 1), 9t + 1 Sq-Free: all even.

2.y% = o3 £ 4(4t + 2)z, 4t + 2 Sq-Free:+ yields all
odd, — yields all even.

3.yt =2 +ta? — (t+3)x +1,t* + 3t + 9 Sg-Free: all
odd.

First two rank0 over Q(t); third is rank1. Only as-
sume GRH for first twoadd B-SD to interpret third.

Family of Ranks overQ(¢) (modulo reasonable conjs):

y? = 2%+ (2at — B)x? 4+ (20t — C)(t* +2t — A+ 1)z
+(2ct — D)(t* + 2t — A+ 1)

= 8916100448256000000
—811365140824616222208
26497490347321493520384
—343107594345448813363200
16660111104
—1603174809600

= 2149908480000

o e QT
I



Mestre’s Construction

Mestre ([Mes1], [Mes2]): families of rankl and12 overQ(t);
within such a family, Nagao [Nal] finds a curve with rank21.

Consider6-tuple of integers,.

Letq(x) = H?:l(a: —a;), p(t,x) = qlx — t)q(x + t).

dg(t, x) of degrees in z andr (¢, z) of degree at most
5in z such thap(t, z) = ¢*(t, z) — r(t, x).

Considery* = r(t,z). If r(t,z) is of degree3 or 4
in z, we obtain an elliptic curve, with pointB.;(t) =

(it—kai,g(j:t—kai)).

If r(¢,z) has degred, change variables to make the
coefficient ofz* a perfect square (see [Mor], [Nal]). Two
6-tuples that work (see [Nal]) afe- 17, —16, 10, 11, 14, 17)
and(399, 380, 352,47, 4, 0).

Get families with rank up ta4 overQ(¢).

Shioda [Sh] gives explicit constructions for ragkd, 6,7 and8
overQ(t) and generators of the Mordell-Weil groups.



Rosen-Silverman Theorem

The elliptic surface)® = 2 + A(t)x + B(t),t € Z, is
rational if and only if one of the following holds

1.0 < max{3degA(t),2degB(t)} < 12.
2. 3degA(t) = 2degB(t) = 12, ord_ot*A(t™1) = 0

Thm [R-S]: Let€& : y* = 2° + A(t)x + B(t), and
assume Tate’s conjecture (known for rational surfaces)
for the surface. Then

1
Jim — ;{ —Ag(p) log p = rank E(Q(1)).
P>

We construct with Ag(p) = —r + O(;). The PNT
impliesr is the rank ovefQ(t).



Quadratic Legendre Sums

LEMMA: Quadratic Legendre Sums: Assume and
b are not both zero modandp > 2. Then

1

P fat? bt + c B (p—l)(§>ifp|bz—4ac
= ()

= p — (%) otherwise

Moral: We can handle linear and quadratic Legendre
sums; for cubic best is Hasse, giviog,/p).

10



Rank 6 Rational Surfaces overQ(t)

y? = filx) = 2°t* +2g(x)t — h(z)
glx) = 2 +ax* +bx+c, c#0
hir) = (A—1)2°+ Bax* + Cz + D
Di(x) = g(x)* + 2°h(x).

Dy(x) is one-fourth the discriminant of the quadratic
(in t) polynomialz3t? + 2g(z)t — h(x).

The number of distinct, non-zero roots bf(xz) will
control the rank.

- (H@)) - (2 2@t = hi)
lp) = ;( )=y (Pt

b ) P

Study—A; #(p) = ZZ;%) Z?:_(} (%)

) . e —1 /2¢t—D
x = 0, thet-sum vanishes if # 0, asitisjust_/_; (*-°).

p

11



Rank 6: Il

Studying Z 3 ( 3t2+29p) h(x))

p) x#0(p)

Forx # 0, have

L8 129t — hia)) [ D() ifp] Dia)
§:< p >_{

— —1 (?) otherwise

Find coefficients, b, ¢, A, B, C, D with D,(x) six dis-
tinct, non-zero perfect square roots.

Gives6(p — 1) — 1(—6) + 0 = 6p.

12



Rank 6: Il

Forl <i <6, letr; = p.

Di(x) = g(z)* + 2°h(x)
= (" +ar’ +br+c)*+2° (A—1)2° + Ba® + Cx + D)

= Az° + (B +2a)2” + (C + a® + 2b)z* + (D + 2ab + 2¢)z*
+ (2ac + b*)z* + (2bc)z + ¢

B+2a - C+H+a*+2b , D+2ab+2c ,

. 6
—A(x+ 1 T’ + 1 T+ 1 T
+2ac+b2 2_|_2bc +02)
A AT

= A(z° 4 Rs2’ + Ryz* 4+ R32® + Rox® + Riz + Ry)
= Alx —r)(x —ro)(x — 13)(x — 14) (T — 15) (T — T6)

= Ad(x).

13



Determining Constantsa, ..., D
Can matching the®, 2%, 3 terms (B, C, D).

We must simultaneously solve

20c + b2 = RyA

2bc = R1A

& = RyA.
(0.0.1)

SendA — Aw?, rescalingy andc by w.

Have2ac + b*w = RyAw. Takingw = 2c¢ simplifies
toa + b? = R-A.

TakeA = 4R,. Thenc? = 4R?, orc = 2R,.
2bc = RlA erIdSb = Rj;.

We now sendd — Aw?* = (4Ry) - (2¢)* = 64R;.

14



Determining Constantsa, ..., D: |l

> = 64R; — ¢ = 8R?
2bc 64R8R1 — b 4ROR1
2ac + b = 64R8R2 — a = 4RyRy — R%

Taker; = p7 = °. Then

AP(z) = Az — 1)(x —4)(z — 9)(z — 16)(x — 25)(z — 36)
— A(xﬁ — 912 + 30032 — 4447343
42962962 — 773136x + 518400)
B+ 2a C+a*>+2b , D+2ab+2c 4

:A(x6+ ¥ T+ Y zt+ ¥ T
2ac + b? 2+2_bc +c_2)
A ATy

= A(2®+ Rs2® 4+ Ryx* 4+ Rsx® + Ryx® + Riz + Ry).
We have
Ry = 518400, Ry = —773136, Ry = 296296.

Hence
A = 64R3 = 8916100448256000000
c = SR3 = 2149908480000
b = AR R, = —1603174809600
a = 4RyRy — R? = 16660111104

15



Determining Constantsa, ..., D: Il

B = R;A —2a = —811365140824616222208
C = RyA—a*>—2b = 26497490347321493520384
D = R3A —2ab—2c = —343107594345448813363200

We converty? = fi(x) to y* = F,(z) in Weierstrass
normal form.

Y
Y= oA
(t2+2t — A+ 1)%

multiply through by

i
H -
xr t2492t—A+1"

filz) = +2t — A+ 12’ + (2at — B)a?
+ (20t — C)x + (2¢t — D)

Fy(z) =2+ (2at — B)ax* + (2bt — C)(t* + 2t — A+ 1)z
+(2ct — D)(t* + 2t — A+ 1)°.

Except for finitely many primesfF; will give same
sums (modulo lower order terms).

|s a rational surface; Rosen-Silverman Theorem is ap-
plicable.

16



Future Work

By using cubics, quartics, and higher degrees tan
we force sums to be large?

Will not be possible (in general) to evaluate m@&p)
for fixed z.

Might hope to get a large contribution fromwhere

the discriminant (irt) vanishes, and hope everything else
"cancels".

17



n-Level Density and Excess Rank
Bounds

Forn = 1 and2, consider the test functions

Fw) = 5 (30— glul), ul <o

ol
 sin®(2m50,7)
filz) = (27‘(';)2

Expecto, = 3; only able to prove for, = 7.

Note f,(0) = %, £,(0) = f,(0)%.

Assume B-SD, Equidistribution of Sign

18



Notation

AN

Family with rankr, Dy #(f) = f(0) + 2 £(0) + 7 £(0).

By even (odd) we mean a curve whose rankhas
rg — r even (odd).

Fy: probability even curve has rank r + 2ay,.

Py probability odd curve has rank r + 1 + 2b,.

D) = 1 Y00 (5.

EeF g
~vg IS the imaginary part of the zeros.

19



Average Rank: 1-Level Bounds

éﬂEj”#”)S ﬁmy+%ﬁ@%+ﬁﬂ®

EecF

1 11
TE 2L TE S gt
\f|E;E o1 2

o All Curves: r = 0, ¢ = 3, giving 2.25 (Brumer,
Heath-Brown: [Br], [BHB3], [BHB5])

e 1-Parameter Familiegdeg(N (¢)) + r + 3)-(1 + o(1))
(Silverman [Si3]).

Hopel-Level Density true for — oc.

Would yield average rank is+ 1.

20



Excess Rank:1-Level Bounds
Assume half even, half odd.

Even curvesl — P, have rank< r + 2aq — 2; replace
ranks withr. P, have rank> r+2a; replace withr+2ay.

Odd curvesi1 — P, contributingr + 1. P, contributing
r+1+ 2b()

1 1
—+-+r 2

o1 5 _(1 — Po)T’ + P()(T + 2&0)i|

1
2
1_
+§ 1=P)(r+1)+Pr+1+ zbo)]

1
— > aoFy + by F.
01

1-Level Density Bounds for Excess Rank

Py

IA

Py

IA

1
ap01
1
b00'1
ap01

Prob{rank> r 4+ 2ag} <

21



2-Level Bounds:

Dy (f) = D3 #(f) = 2D #(f1f2) + f1(0) f2(0)N(F, —1)

Dio1) = [1[700+ 350 + 2 [ Wl
+7£1(0) f2(0) + 7 £1(0) f2(0) + (1% + 1) 1(0) f2(0)

AN

Di#(f) = f0)+5f(0) +7f(0).

DO | —

D; +(f) is over all zeros. Gives

1

1 5 1 1 1 2r 5
— < SH—++t+—+ritr
]]:\E;ETE - 0% oo 4 3 o9 "
1 2T+1+1+ 2 +1
— — e+ -,
0% 09 12 2

22



Excess Rank:2-Level Bounds: |
Similar proof yields
Theorem: First 2-Level Density Bounds

H—%
02

1 1
20% + 24 +

P <
0 ag(ag + )

1
1 o, 1 3
20’% + 24 —|_ 09

P < .
P by 1+ 1)

Foro, = %, r =0, a; = 1: worsethan1-level density.

For fixedo, = 7 andr, as we increase, we eventu-
ally do get a better bound.

Proportional to—— instead of——.
(apo1) ago1

23



Excess Rank:2-Level Bounds: Il
Use D, #(f) instead ofD3 (f).
rrp = number of zeros of curvé. Sum overj; # js.

rp even, getrp(rp—2) (each zero matched with; —2
others).

rpodd: (rg —1)(rg—2)+ (rg—1) =rg(rg —2) + L.

Theorem: Second2-Level Density Bounds

1 1, 7 ]
2] T2 T
Py <
(I()(CLQ + 71— 1)
1 1, 1
27 7207 5 T 6oy
P < ’
bo(bo + 1)
wherea, #£ 1 if r = 0.
2.9 192
oy = % andr = 0, better fora > 2572
2 192
r = 1, better fora, > al+82€fl+ -
o1

Decay is proportional t?ao}fil)?'
Note the numerator is never negative; at Iq@st

24



Excess Rank:2-Level Bounds: llla
rp = T+ Zg.

> 22, [1(Le; ) fo(Lye,,). Let ji be one of ther
family zeros, varying, gives f1(0) Dy g( f2). Interchang-
Ing 71 andj, we get a contribution oD, z(f;)f2(0) for
each of the- family.

Only double counting whep andj, are both a family
zero. Subtract off~ f1(0) f2(0).

For the other; zeros: already taken into account con-
tribution from j; one of thezg zeros andj, one of ther

family zeros (and vice-versa).

Thus, for a given curve, a lower bound of the contri-
bution from all pairgj,, jo) IS

r f1(0) D1 g(f2) + 7Dy (f1) f2(0) — 17 f1(0) f2(0) + 2.

25



Excess Rank:2-Level Bounds: IlIb
Summing over ally' € F and simplifying gives

E +1+1+1
Z _— e o 1 —
| £ E—02 12 2
eF

Similar calculation gives

Theorem: Third 2-Level Density Bounds

P <

P <

02 +4801+192
2401
02 +4801+192
9601

oy = °}: beatsl-level foray >

r # 0. beats first-level oncea, >

(7’ 1) oy 2 4801+192
-2 9601

r > 1: beats secongtlevel oncezy >

26



Heath-Brown & Brumer

Family of all elliptic curvesE,, ;.

= {y* =2+ az+bila] < T, [b] < T,

From1-Level Expansion, get

logT log p 1
T’(Ea,b> —2 E CLP ab ( )—I—O ( ) .
log = log X log X
If r(E,p) > r > 342155, then|U(E,, X)| > <5+

Led to

loo T 2k
#{Ea,befT:r(Ea,b)zr}.(Og ) < Y |U(Eap X

2
Ea7b€~7:
Find X = T'oF, k = [22]. Yields
Prob(rankE,;) > r) < (llr)™®

log T’
loglogT"

rank E,;,) < 17

27



Numerically Approximating Ranks:
Preliminaries

Cusp formf, level N, weight2:

J(=1/N2) = —eN2*f(2)
fi/yVN) = e fliyVN).

Define

A(f,s) =€eN(f,2—5s), e==1.

To eachF corresponds afi, write [ = [/ + [ and
use transformations.

28



Algorithm for L"(s, E): |

A(E,s) — / " Flig NNy dy
= [y [y
_ / " Hay NN+ ey )dy.

Differentiate k times with respect to s:

AB(E, 5) = / " Fly NN log ) (" + e(— 1)y d.

At s =1,

A®(E, 1) = (14 e(~ 1)) / " Hiy NN (og y)tdy.

Trivially zero for half ofk; let » be analytic rank.

29



Algorithm for L' (s, E): |l

AD(E, 1) = 2 / " Hiy NN (log y)dy

=2) a / e~ (log ) dy.
n=1 1

Integrating by parts

30



Expansion ofG(x)

G,(x) = (log >+§: e

n=1

P.(t) is a polynomial of degree £,.(t) = Q,(t — 7).

() =t

Q) = 2+

Q) = 1+ T4

Qi) = ot T -y T
Forr = 0,

N < a,
A(E, 1):£§ :a_e—%ny/ﬁ_
n

T
n=1

Need about/N or v/N log N terms.

31



Potential Lower Order Density Corrections

Dir(f) = Fl0)+ f(0 )_2‘_;’2;11%19 1]?( log p )at(p)

log Ng

j(t) non-const=- A, #(p) = > ai(p)* = p” + O(p?).
t(p)
The main term ofA, (p) contributes—1 f(0) in the

limit. For a great many families, we can do better than
. 3
Michel's O(p2).

: 1 log log N P
Have errors of SIZ& & and—log s— from the Explicit
Formula.

The conductor dependence in the Gamma factors of
the Explicit Formula is easily managed. The real diffi-
culty is handling the primes which divide the discrimi-
nant and the sums af(p), m > 3.

For convenience, rescale each curve’s zeros by the av-
erage log-conductor.
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Observed A, ~(p) Corrections

Familyy? = A 7(p) Ay 7(p)
All Curves 0 p® —p?
2 —
3 4 24(—3)3(9t + 1)2 0 {2% 2p ppz—f((;;)
23 4 4(4t + 2)x 0 {2% 2 f;l(%)
w3+ (t+ 1)2? + ta 0 P —2p—1
2 a2+ 1 0 P =2p—(3)
I | —p p* —ci(p)p
3 — 2y + 12 —2p p2 e C2(p)p - C3(P)
73— 2 + 4 —2p p* —p — c2(p)p — c3(p)
3p+1 p=2(3)
Cl(p) = 423+1 _

o) [Z <p)]
- G+ )

andh;,(2) is one if2 is a cube mog and zero otherwise.

33



Contributions from A, =(p) Corrections

Correction from—mgp, mz > 0. Have% full sums
and one partial sum. Substituting yields

log p logp\ 1 N
G, = = Fla2t )=
. N Z log Mf log M mrp

p p
_ me Z ]?(2 log p )logp
~ logM - log M/ p?
Correction of siqu;—N. Consider

~ 1({1 1
flu) = §<§0—§\U\>» ul <o

sin®(2riow)
(27x)?

Gives

1 1
Ave Rank < —+7“+——|—<

o o2logM |log M

986 2.966 mr
o 2
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Observed A, ~(p) Corrections

Family of all elliptic curvesg = % Ignoring the cor-
rection term, AveRank 2.25. Correction is05.

Extra Contributions: mz =1

_ 4
M o=z

oco=1 =2 0=
109 077  .056  .032
1012 051  .032  .017
1018 036 .022  .011
1024 025  .015  .007

o O o O

Fermigier observes average raskr + 3) + .40.
Cond= 10': ¢ = 1: AveRank< (r +1) + 1+ .03.
Cond~ 10'%: o = 2: AveRank< (r + 3) + 1 +.02.

Hopeless to get support 2. ILS obtain such large
support for some of their families, but only because of
great averaging formulas. No good analogue, and our
conductors grow very quickly.

35



All Curves:

Complete sums of, (p) vanish form odd, and

3
3

Il
_ o
N o

M’UQ
ML

[l
= O
ko>

=9
Il
= O

= 3p— 3" 2"+ 2’
= 5p+ 4p® —9p® — Spt4 5y’

= Tp+ 13p? + 8p> — 28p* — 14p° + 14p°.

p) — 6pay(p) + Ip*ay(p) — 2p°

#(p)

2(p)

ay(p) — 5pla(p) — (p)) + 10p°ap(p)

%(p)

ag(p) — Tp(an(p) + By (p )) — 21p*(ay(p) + BE(p)) — 35p°ag

= a%(p) — 8pal(p) + 20p°at(p) — 16p°ay(p) + 2p".

complete sums, multiply b?gl— (and other factors)

and sum over the primes.

The main contribution to the potential density correction is from
m = 2. Complete sum ofi%(p) givesp® — p?, with the p* term
leading to a sum of;.

36



All Curves (cont)

N ar,p) = 3p— 3" 2"+ 2p*

—0 b=0
ap(p) + By(p) = ap(p) — 4pagp(p) + 2p°

Z Z ay,(p) = 5p+ 4p° —9p° — 5p'+ Bp°

—0 b=0
agp(p) + By(p) = ap(p) — 6pag(p) + Ip’agp(p) — 2p°

aS,(p) = Tp+13p* + 8p° — 28p* — 14p° + 149",

—0

ab(p) + Bp(p) = ay(p) — 8pak(p) + 20p%ak(p) — 16p°as(p) + 2p".
Whenm = 4, potential term of size;, as» exactly balances

p*™2. Note, the test function will be evaluated%;% and noti}é)%g.

Thep* terms (which yield the main term) exactly cancel. Thus,
them = 4 term contributes a sum of sizg and not of size;.

Form > 6, the contributions will be of sizgg or less.

Hence, subject to proving the expansion formulas, for the fam-
ily of all elliptic curves (no sieving, rescaling by the average log-
conductor), then > 1 terms contribute a potential lower order cor-
rection, where we sum over the primes terms of %;ze

37
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Excess Rank Calculations
Families with 3* = f,(z);

Family t Range Numt¢ r
+4(4t +2) [2,2002] 1622 0
—4(4t +2) [2,2002] 1622 0
9t +1 2, 247] 169 0
2+ 9t+1 [2,272] 169 1
tt—1)  [2,2002] 643 0
(6t +1)x® [2,101] 93 1
(6t + Lz [2,77] 66 2

D(t) SqFree

rr+1 r+2 r+3

95.44 4.56
70.53 29.35
71.01 28.99
71.60 27.81
40.44 48.68 10.26 0.62
34.41 47.31 17.20 1.08
30.30 50.00 16.67 3.03

.23+ 4(4t + 2)x, 4t + 2 Sq-Free, odd.

— 4(4t + 2)x, 4t + 2 Sq-Free, even.
c2? + 24(=3)3(9t + 1)%, 9t + 1 Sg-Free, even.

3+ ta?

— (t +3)z + 1, t* + 3t + 9 Sg-Free, odd.

23+ (t +1)2? + ta, t(t — 1) Sg-Free, rank.
23+ (6t + 1)a? + 1, 4(6t + 1) + 27 Sg-Free, rank.

cx3 — (6t 4+ 1)%x + (6t + 1)
Sqg-Free, rank.

38
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Excess Rank Calculations
Families with > = f;(z); All D(t)

Family t Range Numt¢ rr+1 r+2 r+3

=3

+4(4¢+2) [2,2002] 2001 0 6.45 85.76 3.95 3.85
—4(4t+2) [2,2002] 2001 0 63.52 9.90 25.99 .50
9t + 1 [2,247] 247 0 55.28 23.98 20.73
2+ 9t+1 [2,272] 271 1 73.80 25.83

tt—1)  [2,2002] 2001 0 42.03 48.43 9.25 0.30
(6t +1)x* [2,101] 100 1 32.00 50.00 17.00 1.00
(6t+ 1)z [2,77] 76 2 32.80 50.00 14.47 2.63
. 2% + 4(4t + 2)z, 4t + 2 Sg-Free, odd.

— 4(4t + 2)z, 4t + 2 Sq-Free, even.

c2? +24(=3)3(9t + 1)%, 9t + 1 Sg-Free, even.

c2d+ta? — (t+3)x + 1, 17 + 3t + 9 Sg-Free, odd.

23+ (t + 1)2? + ta, t(t — 1) Sg-Free, rank.

3+ (6t + 1)z* + 1, 4(6t + 1)% + 27 Sq-Free, rank.

2% — (6t +1)%x + (6t + 1)2, (6t + 1)[4(6t + 1) — 27]
Sqg-Free, rank.
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Appendix |: Standard Conjectures

Generalized Riemann Hypothesis (for Elliptic Curves)Let L(s, E) be the
(normalized) L-function of the elliptic curvey. Then the non-trivial zeros of
L(s, F) satisfy Rés) = 1.

Birch and Swinnerton-Dyer Conjecture [BSD1], [BSD2]Let E be an el-
liptic curve of geometric rank over Q (the Mordell-Weil group i<Z" & T', T' is
the subset of torsion points). Then the analytic rank (the order of vanishing of the
L-function at the critical point) is also.

Tate’s Conjecture for Elliptic Surfaces [Ta] Let£/Q be an elliptic surface
and L, (&, s) be the L-series attached td{%t(é’/@, Qi). ThenLy(&,s) has a
meromorphic continuation t€ and satisfies-ord,_. L»(&, s) = rank NS(E/Q),
where N S(£/Q) is theQ-rational part of the Néron-Severi group 6f Further,
Ly (&, s) does not vanish on the line Re = 2.

Most of the one-parameter families we investigate are rational surfaces, where
Tate’s conjecture is known. See, for example, [RSI].
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Appendix Il: Equidistribution of Signs

ABC Conjecture Fix ¢ > 0. For co-prime positive integers, b and ¢ with
c=a+bandN(a,b,c) = [, .0 ¢ < N(a,b, ).

The full strength of ABC is never needed; rather, we need a consequence of
ABC, the Square-Free Sieve (see [Gr]):

Square-Free Sieve Conjecturd=ix an irreducible polynomialf (¢) of degree
at leastd. AsN — oo, the number of € [N,2N] with f(¢) divisible byp?* for
somep > log N iso(N).

For irreducible polynomials of degree at m8sthe above is known, complete
with a better error than(N) ([Ho], chapterd).

Restricted Sign Conjecture (for the Family F) Consider a one-parameter
family F of elliptic curves. AV — oo, the signs of the curves; are equidis-
tributed fort € [V, 2N].

The Restricted Sign conjecture often fails. First, there are families with con-
stantj(£;) where all curves have the same sign. Helfgott [He] has recently related
the Restricted Sign conjecture to the Square-Free Sieve conjecture and standard
conjectures on sums of Moebius:

Polynomial MoebiusLet f(¢) be a non-constant polynomial such that no fixed
square divides (t) for all t. Then3>_Y, u(f(t)) = o(N).

The Polynomial Moebius conjecture is known for lingat).

Helfgott shows the Square-Free Sieve and Polynomial Moebius imply the Re-
stricted Sign conjecture for many families. More preciselyMgt) be the prod-
uct of the irreducible polynomials dividing (¢) and notc,(t).

Theorem: Equidistribution of Sign in a Family [He]: Let F be a one-
parameter family with; (¢) € Z[t]. If j(E;) and M (t) are non-constant, then the
signs ofE,, t € [N, 2N], are equidistributed asv — oo. Further, if we restrict
to goodt, t € [NV, 2N] such thatD(¢) is good (usually square-free), the signs are
still equidistributed in the limit.
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Appendix lll: Quadratic Legendre
Sums

Lemma: For p > 2,

p—1 .
B m+a\ (net+z\ | p—11ifp|ny—ny
S(n) = Z( p )( P ) _{ —1 otherwise

z=0

Proof: Shiftingz by —ns, we need only prove the lemma when = 0.
Assume(n, p) = 1 as otherwise the result is trivial. F@t, p) = 1 we have:

S(n) = p: <”p#) (i) (0.0.2)

Hence
1 plpl(an—l—x)(x)
Stn) = —— . (0.0.3)
() p—l;; p p
1 il <an—|—x> <£ 1 (g)Q
B p—lgg p p p—lg p

= 0-1=-1

Where do we usp > 2? We usedy " (“**) = 0 for (n,p) = 1. Thisis
true for all odd primes (as there afg" quadratic residueg.* non-residues, and
0); for p = 2, there is one quadratic residue, no non-residuespand
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Lemma: Quadratic Legendre Sums:Assume: andb are not both zero mod
pandp > 2. Then

— (at2 +bt+c) (=14 if p| 0 — dac
pa B - (i) otherwise

Proof: Assume: # 0(p) as otherwise the proof is trivial. Lét= 4-1(b* —
4ac). Then

i (at2 + bt + c) B
P

3
L

(0.0.4)

IO
|
_= O

Il
(]

-
Il
_= O

IO
|
_= O

Il
(]

I
i)
[
7~ N N @ YRS /_\
N———
7 N\
~
[\o}
+
S+
IS
+
;.J;
oT
[N}
_|_
Q
Q
;_.
S
[N}
N————

(t 4+ 271b)? 1(b2 —4ac))

T 0
I
- o

- (9 ’;j &

If § = 0(p) we getp — 1. If 6 = n*,n # 0, then by the previous Lemma

()-S50 -
t=0 t=0 p p
We note tha f;(} (97’5) is the same for all non-squadts (let g be a generator
of the multiplicative groupy = ¢g?**!, change variables by— ¢*t). Denote this

sum byS, the set of non-zero squares mobdy R, and the non-squares mpdy
N Since32"! (Y%) = 0 we have

p
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IS -
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S w

HenceS = —1, proving the lemma.
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Appendix IV: Contributions from
Sub-Families

A strong possible explanation for the observed excess rank is the presence of
sub-families of higher rank. These families’ contributions will be dwarfed in the
limit, but noticeable for smallN .

Consider an elliptic curveé? : y* = 2® + ax + b over Q and its family of
twists £, : dy? = 2® + ax + b by square-freel. Assuming the Restricted Sign
conjecture for twists, Gouvéa and Mazur [GM] prove that there exist positive
constantg’y (e, £) andC' (e, F) such that, itN > Cy(e, E), the number of square-
freed < N with the rank ofE; even and at leagtis at least’' (e, E)N%—E.

Similarly, Mai [Mai] considered®, : =3 + y* = d for cube-freed. Assuming
the Restricted Sign conjecture for cubic twists, he proved there exist positive con-
stantsCy (e, E) andCjs(e, E) such that, ifNV > Cy(¢, E), the number of cube-free
|d| < N with the rank ofZ; even and at leastis at leastC;(e, E) N3 .

Stewart and Top [ST] generalize these results and remove the dependence on
the Restricted Sign conjecture, though at the cost of weaker bounds. They prove:

Theorem 0.0.1 (Cubic Twists).For the familyz?® + ¢ = d, there exists a uni-
versal constant’, such that, for cube-fregl| < N, if N > 657, at leastCy N 5
curves have rank at least

Theorem 0.0.2 (Quadratic Twists).Let £ be an elliptic curve ovef) with
J(E) # 0,1728, and let £, be a quadratic twist. There exist constaiits(£)
and Cs(F) such that, for square-fregl| < N, if N > C5(F), then at least
Cs(E)N7 -log™2 N have rank even and at leaat

In all of the above results, there is very slow decay with respebt tdhe car-
dinality in these families is a multiple a@f. Thus, we have contributions ranging
from N7 /N to Nz /N to N3 /N. Taking N = 100, 1000 and10000 yields

N N7 N-: N-3
100 .0193 .1000 .2154
1000 .0027 .0316 .1000
10000 .0004 .0100 .0464
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In Fermigier’'s [Fe2] investigationsy ranges from250 to 1000. Thus, it is
very likely, depending on the size of the constants (and the true values of the
exponents) that there may be higher rank sub-families of cardin@lfitjurking
within our families,0 < ¢ < 1. While not contributing in the limit, they will be
very noticeable for small values of.

To determine the analytic rank (the order of vanishind.¢f, ) at the crit-
ical points = 1) requires studying sums of the coefficients(n) for n <
V/Nglog Ni. See, for example, [Cr]. As the conductors grow polynomially in
our families, it already requires several hours to investigate families tqr to
1000. It thus seems unlikely that we will be able to attain large enough ranges of
t to get past the contributions of these possibly lower cardinality sub-families.
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Appendix V: Heath-Brown and
Brumer Bounds

Some very quick notes about the details of the proof for the family of elliptic
curves (the exponential decay).
We have the following expansion ¢f):

(-a06) e

whereG, = 3, (2)e(%), which equals,/p for p = 1(4) andi/p for p =
3(4). See, for example, [BEW].

For the curve/ = fi(x), ap(p) = — X, (£12). We expand the-sum by
using Gauss sums, namely

Gplzzp:<c> (CfE ) (0.0.6)

z(p) c=1

For the family of all elliptic curvesy? = 2 + ax + b, when we need to
calculate high moments of thé sum we will be led to

DD IR D DRI H( )epltx +tiva+tb).  (0.0.7)

ab ti(p1) tar (p2r) ©1(p1) Zar (P2t)

We have complete sums asindb run throughp; - - - pay.. |a] < T3, each tuple
of z;s will give a[ ], p;, and we will be left with having to bound

P s - 5 (2]

i t1(p1) tor (P2k)

The main contribution will be when there is at least one prime that occurs
only once. In this case, the exponent is not an integer, since its denominator will

(0.0.8)

47



be divisible by that prime. We then have a geometric series, which can be bounded
well (where the bound will depend on the fractional pargofi- - - + 2=,

It is crucial here that we have something of the fogt = 23 + ax + b,
and we can average over This allows us to use the Gauss sum expansion and
obtain good cancellation. We are being very crude in estimating;tbems. For a
general family of elliptic curves, we will not have such a separation of parameters.
Thus, in general we would have gparameter family, say* = 23+ A(t)z+ B(t),
and we would not be able to execute the summationowehout having to worry
about the values of thes.
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