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Outline of the Talk

• Review of1 and2-Level Densities.

• Constructing1-Parameter Families with rank
overQ(t).

• n-Level Density and Bounding Average Rank.

• Numerically Calculating (Approximating) Ranks.

• Potential Lower Order Density Corrections.

• Calculations of Excess Rank in Families.
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Elliptic Curves

ConsiderE : y2 + a1xy + a3y = x3 + a2x
2 +

a4x + a6, ai ∈ Q and itsL-function

L(s, E) =
∏
p|∆

(
1− app

−s
)−1 ∏

p †∆

(
1− app

−s + p1−2s
)−1

By GRH: All non-trivial zeros on the critical
line, can talk about spacings between zeros.

Rational solutions form a group:
E(Q) = Zr

⊕
T , T is the torsion points,r is

the geometric rank.

Birch and Swinnerton-Dyer Conjecture: Ge-
ometric rank equals the analytic rank, the order
of vanishing ofL(s, E) ats = 1

2.

One-parameter families:ai = ai(t) ∈ Z[t].
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n-Level Density: I

Let f (x) =
∏

i fi(xi), fi even Schwartz func-
tions whose Fourier Transforms are compactly
supported.

Dn,E(f ) =
∑

j1,...,jn
distinct

f1

(
LEγ

(j1)
E

)
· · · fn

(
LEγ

(jn)
E

)

1. individual zeros contribute in limit

2. most of contribution is from low zeros

3. average over similar curves (family)

To any geometric family, Katz-Sarnak pre-
dict then-level density depends only on a sym-
metry group attached to the family.
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n-Level Density: II

Let f (x) =
∏

i fi(xi), fi even Schwartz func-
tions whose Fourier Transforms are compactly
supported.

Dn,E(f ) =
∑

j1,...,jn
distinct

f1

(
LEγ

(j1)
E

)
· · · fn

(
LEγ

(jn)
E

)

Hope: forf a good even test function with
compact support, as|F| → ∞,

1

|F|
∑
E∈F

Dn,E(f ) =
1

|F|
∑
E∈F

∑
j1,...,jn
ji 6=±jk

∏
i

fi

(
log NE

2π
γ

(ji)
E

)

→
∫
· · ·
∫

f (x)Wn,G(F)(x)dx

=

∫
· · ·
∫

f̂ (u) ̂Wn,G(F)(u)du.
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Explicit Formula

Relates sums of test functions over zeros to sums over primes of
aE(p) anda2

E(p).

∑
γ

(j)
E

G

(
log NE

2π
γ

(j)
E

)
= Ĝ(0) + G(0)

− 2
∑

p

log p

log NE

1

p
Ĝ

(
log p

log NE

)
aE(p)

− 2
∑

p

log p

log NE

1

p2 Ĝ

(
2 log p

log NE

)
a2

E(p)

+ O

(
log log NE

log NE

)
.

Modified Explicit Formula:

∑
γ

(j)
E

G

(
log X

2π
γ

(j)
E

)
=

log NE

log X
Ĝ(0) + G(0)

− 2
∑

p

log p

log X

1

p
Ĝ

(
log p

log X

)
aE(p)

− 2
∑

p

log p

log X

1

p2 Ĝ

(
2 log p

log X

)
a2

E(p)

+ O

(
log log X

log X

)
.
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New Results

Rational Surfaces Density Theorem: 1-parameter
family, rankr overQ(t) and a rational surface. Assume

• GRH;

• j(t) non-constant;

• ABC (or Sq-Free Sieve) if∆(t) has an irred. factor
of degree≥ 4.

Let m = degC(t), fi even Schwartz with supportσi,
σ1 + σ2 < 1

3m. Possibly after passing to a subsequence,
we observe two pieces. The first equals the expected con-
tribution fromr zeros at the critical point (agreeing with
what B-SD suggests). The second is

D
(r)
1,F(f1) = f̂1(0) +

1

2
f1(0)

D
(r)
2,F(f ) =

2∏
i=1

[
f̂i(0) +

1

2
fi(0)

]
+ 2

∫ ∞

−∞
|u|f̂1(u)f̂2(u)du

−2f̂1f2(0)− f1(0)f2(0) + (f1f2)(0)N(F ,−1)

whereN(F ,−1) is the percent of curves with odd sign.

1 and2-level densities confirm Katz-Sarnak
predictions for small support.
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Examples

Constant-Sign Families:

1. y2 = x3 + 24(−3)3(9t + 1)2, 9t + 1 Sq-Free: all even.

2. y2 = x3 ± 4(4t + 2)x, 4t + 2 Sq-Free:+ yields all
odd,− yields all even.

3. y2 = x3 + tx2− (t + 3)x + 1, t2 + 3t + 9 Sq-Free: all
odd.

First two rank0 over Q(t); third is rank1. Only as-
sume GRH for first two;add B-SD to interpret third.

Family of Rank6 overQ(t) (modulo reasonable conjs):

y2 = x3 + (2at−B)x2 + (2bt− C)(t2 + 2t− A + 1)x

+(2ct−D)(t2 + 2t− A + 1)2

A = 8916100448256000000

B = −811365140824616222208

C = 26497490347321493520384

D = −343107594345448813363200

a = 16660111104

b = −1603174809600

c = 2149908480000
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Mestre’s Construction

Mestre ([Mes1], [Mes2]): families of rank11 and12 overQ(t);
within such a family, Nagao [Na1] finds a curve with rank≥ 21.

Consider6-tuple of integersai.

Let q(x) =
∏6

i=1(x− ai), p(t, x) = q(x− t)q(x + t).

∃g(t, x) of degree6 in x andr(t, x) of degree at most
5 in x such thatp(t, x) = g2(t, x)− r(t, x).

Considery2 = r(t, x). If r(t, x) is of degree3 or 4

in x, we obtain an elliptic curve, with pointsP±i(t) =(
± t + ai, g(±t + ai)

)
.

If r(t, x) has degree4, change variables to make the
coefficient ofx4 a perfect square (see [Mor], [Na1]). Two
6-tuples that work (see [Na1]) are(−17,−16, 10, 11, 14, 17)

and(399, 380, 352, 47, 4, 0).

Get families with rank up to14 overQ(t).

Shioda [Sh] gives explicit constructions for rank2, 4, 6, 7 and8
overQ(t) and generators of the Mordell-Weil groups.
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Rosen-Silverman Theorem

AE(p) =
1

p

p−1∑
t=0

at(p) =
1

p
A1,F(p).

The elliptic surfacey2 = x3 + A(t)x + B(t), t ∈ Z, is
rational if and only if one of the following holds

1. 0 < max{3degA(t), 2degB(t)} < 12.

2. 3degA(t) = 2degB(t) = 12, ordt=0t
12∆(t−1) = 0

Thm [R-S]: Let E : y2 = x3 + A(t)x + B(t), and
assume Tate’s conjecture (known for rational surfaces)
for the surface. Then

lim
X→∞

1

X

∑
p≤X

−AE(p) log p = rankE(Q(t)).

We constructE with AE(p) = −r + O(1
p). The PNT

impliesr is the rank overQ(t).
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Quadratic Legendre Sums

LEMMA: Quadratic Legendre Sums: Assumea and
b are not both zero modp andp > 2. Then

p−1∑
t=0

(
at2 + bt + c

p

)
=

{
(p− 1)

(
a
p

)
if p | b2 − 4ac

−
(
a
p

)
otherwise

Moral: We can handle linear and quadratic Legendre
sums; for cubic best is Hasse, givingO(

√
p).
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Rank 6 Rational Surfaces overQ(t)

y2 = ft(x) = x3t2 + 2g(x)t− h(x)

g(x) = x3 + ax2 + bx + c, c 6= 0

h(x) = (A− 1)x3 + Bx2 + Cx + D

Dt(x) = g(x)2 + x3h(x).

Dt(x) is one-fourth the discriminant of the quadratic
(in t) polynomialx3t2 + 2g(x)t− h(x).

The number of distinct, non-zero roots ofDt(x) will
control the rank.

at(p) = −
∑
x(p)

(
ft(x)

p

)
= −

∑
x(p)

(
x3t2 + 2g(x)t− h(x)

p

)
.

Study−A1,F(p) =
∑p−1

x=0

∑p−1
t=0

(
ft(x)

p

)
.

x = 0, thet-sum vanishes ifc 6= 0, as it is just
∑p−1

t=0

(
2ct−D

p

)
.
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Rank 6: II

Studying
∑
t(p)

∑
x 6≡0(p)

(
x3t2 + 2g(x)t− h(x)

p

)
.

Forx 6≡ 0, have

p−1∑
t=0

(
x3t2 + 2g(x)t− h(x)

p

)
=

{
(p− 1)

(
x3

p

)
if p | Dt(x)

−1
(
x3

p

)
otherwise

Find coefficientsa, b, c, A,B,C, D with Dt(x) six dis-
tinct, non-zero perfect square roots.

Gives6(p− 1)− 1(−6) + 0 = 6p.
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Rank 6: III

For 1 ≤ i ≤ 6, let ri = ρ2
i .

Dt(x) = g(x)2 + x3h(x)

= (x3 + ax2 + bx + c)2 + x3
(
(A− 1)x3 + Bx2 + Cx + D

)
= Ax6 + (B + 2a)x5 + (C + a2 + 2b)x4 + (D + 2ab + 2c)x3

+ (2ac + b2)x2 + (2bc)x + c2

= A
(
x6 +

B + 2a

A
x5 +

C + a2 + 2b

A
x4 +

D + 2ab + 2c

A
x3

+
2ac + b2

A
x2 +

2bc

A
x +

c2

A

)
= A(x6 + R5x

5 + R4x
4 + R3x

3 + R2x
2 + R1x + R0)

= A(x− r1)(x− r2)(x− r3)(x− r4)(x− r5)(x− r6)

= AΦ(x).
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Determining Constantsa, . . . , D

Can matching thex5, x4, x3 terms (B, C, D).

We must simultaneously solve

2ac + b2 = R2A

2bc = R1A

c2 = R0A.

(0.0.1)

SendA → Aw2, rescalingb andc by w.

Have2ac + b2w = R2Aw. Takingw = 2c simplifies
to a + b2 = R2A.

TakeA = 4R0. Thenc2 = 4R2
0, or c = 2R0.

2bc = R1A yieldsb = R1.

We now sendA → Aw2 = (4R0) · (2c)2 = 64R3
0.
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Determining Constantsa, . . . , D: II

c2 = 64R4
0 → c = 8R2

0

2bc = 64R3
0R1 → b = 4R0R1

2ac + b2 = 64R3
0R2 → a = 4R0R2 −R2

1.

Takeri = ρ2
i = i2. Then

AΦ(x) = A(x− 1)(x− 4)(x− 9)(x− 16)(x− 25)(x− 36)

= A
(
x6 − 91x5 + 3003x4 − 44473x3

+296296x2 − 773136x + 518400
)

= A
(
x6 +

B + 2a

A
x5 +

C + a2 + 2b

A
x4 +

D + 2ab + 2c

A
x3

+
2ac + b2

A
x2 +

2bc

A
x +

c2

A

)
= A(x6 + R5x

5 + R4x
4 + R3x

3 + R2x
2 + R1x + R0).

We have

R0 = 518400, R1 = −773136, R2 = 296296.

Hence
A = 64R3

0 = 8916100448256000000

c = 8R2
0 = 2149908480000

b = 4R0R1 = −1603174809600

a = 4R0R2 −R2
1 = 16660111104

15



Determining Constantsa, . . . , D: III

B = R5A− 2a = −811365140824616222208

C = R4A− a2 − 2b = 26497490347321493520384

D = R3A− 2ab− 2c = −343107594345448813363200

We converty2 = ft(x) to y2 = Ft(x) in Weierstrass
normal form.

y → y
t2+2t−A+1

, x → x
t2+2t−A+1

, multiply through by
(t2 + 2t− A + 1)2.

ft(x) = (t2 + 2t− A + 1)x3 + (2at−B)x2

+ (2bt− C)x + (2ct−D)

Ft(x) = x3 + (2at−B)x2 + (2bt− C)(t2 + 2t− A + 1)x

+(2ct−D)(t2 + 2t− A + 1)2.

Except for finitely many primes,Ft will give same
sums (modulo lower order terms).

Is a rational surface; Rosen-Silverman Theorem is ap-
plicable.
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Future Work

By using cubics, quartics, and higher degrees int, can
we force sums to be large?

Will not be possible (in general) to evaluate most
∑

t(p)

for fixedx.

Might hope to get a large contribution fromx where
the discriminant (int) vanishes, and hope everything else
"cancels".
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n-Level Density and Excess Rank
Bounds

Forn = 1 and2, consider the test functions

f̂i(u) =
1

2

(1

2
σn −

1

2
|u|
)
, |u| ≤ σ

fi(x) =
sin2(2π 1

2σnx)

(2πx)2
.

Expectσ2 = σ1
2 ; only able to prove forσ2 = σ1

4 .

Notefi(0) = σ2
n
4 , f̂i(0) = fi(0) 1

σn
.

Assume B-SD, Equidistribution of Sign
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Notation

Family with rankr, D1,F(f ) = f̂ (0) + 1
2f (0) + rf (0).

By even (odd) we mean a curve whose rankrE has
rE − r even (odd).

P0: probability even curve has rank≥ r + 2a0.

P1: probability odd curve has rank≥ r + 1 + 2b0.

D1,F(f ) =
1

|F|
∑
E∈F

∑
γE

f

(
log NE

2π
γE

)
,

γE is the imaginary part of the zeros.
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Average Rank: 1-Level Bounds

1

|F|
∑
E∈F

rEf (0) ≤ f̂1(0) +
1

2
f1(0) + rf1(0)

1

|F|
∑
E∈F

rE ≤ 1

σ1
+

1

2
+ r.

• All Curves: r = 0, σ = 4
7, giving 2.25 (Brumer,

Heath-Brown: [Br], [BHB3], [BHB5])

• 1-Parameter Families:
(
deg(N(t)) + r + 1

2

)
·(1 + o(1))

(Silverman [Si3]).

Hope1-Level Density true forσ →∞.

Would yield average rank isr + 1
2.
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Excess Rank:1-Level Bounds

Assume half even, half odd.

Even curves:1− P0 have rank≤ r + 2a0 − 2; replace
ranks withr. P0 have rank≥ r+2a0; replace withr+2a0.

Odd curves:1−P1 contributingr +1. P1 contributing
r + 1 + 2b0.

1

σ1
+

1

2
+ r ≥ 1

2

[
(1− P0)r + P0(r + 2a0)

]
+

1

2

[
(1− P1)(r + 1) + P1(r + 1 + 2b0)

]
1

σ1
≥ a0P0 + b0P1.

1-Level Density Bounds for Excess Rank

P0 ≤ 1

a0σ1

P1 ≤ 1

b0σ1

Prob{rank≥ r + 2a0} ≤ 1

a0σ1
.
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2-Level Bounds:

D2,F(f ) = D∗
2,F(f )− 2D1,F(f1f2) + f1(0)f2(0)N(F ,−1)

D∗
2,F(f ) =

2∏
i=1

[
f̂i(0) +

1

2
fi(0)

]
+ 2

∫
|u|f̂1(u)f̂2(u)du

+rf̂1(0)f2(0) + rf1(0)f̂2(0) + (r2 + r)f1(0)f2(0)

D1,F(f ) = f̂ (0) +
1

2
f (0) + rf (0).

D∗
2,F(f ) is over all zeros. Gives

1

|F|
∑
E∈F

r2
E ≤ 1

σ2
2

+
1

σ2
+

1

4
+

1

3
+

2r

σ2
+ r2 + r

=
1

σ2
2

+
2r + 1

σ2
+

1

12
+ r2 + r +

1

2
.
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Excess Rank:2-Level Bounds: I

Similar proof yields

Theorem: First 2-Level Density Bounds

P0 ≤
1

2σ2
2

+ 1
24 +

r+1
2

σ2

a0(a0 + r)

P1 ≤
1

2σ2
2

+ 1
24 +

r+1
2

σ2

b0(b0 + r + 1)
.

Forσ2 = σ1
4 , r = 0, a1 = 1: worsethan1-level density.

For fixedσ2 = σ1
4 andr, as we increasea0 we eventu-

ally do get a better bound.

Proportional to 1
(a0σ1)2

instead of 1
a0σ1

.
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Excess Rank:2-Level Bounds: II

UseD2,F(f ) instead ofD∗
2,F(f ).

rE = number of zeros of curveE. Sum overj1 6= j2.

rE even, getrE(rE−2) (each zero matched withrE−2

others).

rE odd: (rE − 1)(rE − 2) + (rE − 1) = rE(rE − 2) + 1.

Theorem: Second2-Level Density Bounds

P0 ≤
1

2σ2
2

+ 1
24 + r

σ2
− 1

6σ2

a0(a0 + r − 1)

P1 ≤
1

2σ2
2

+ 1
24 + r

σ2
− 1

6σ2

b0(b0 + r)
,

wherea0 6= 1 if r = 0.

σ2 = σ1
4 andr = 0, better fora0 >

σ2
1+8σ1+192

24σ1
.

r = 1, better fora0 >
σ2

1+80σ1+192

24σ1
.

Decay is proportional to 1
(a0σ1)2

.

Note the numerator is never negative; at least1
18.
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Excess Rank:2-Level Bounds: IIIa

rE = r + zE.∑
j1

∑
j2

f1(LγEj1
)f2(LγEj2

). Let j1 be one of ther
family zeros, varyingj2 givesf1(0)D1,E(f2). Interchang-
ing j1 andj2 we get a contribution ofD1,E(f1)f2(0) for
each of ther family.

Only double counting whenj1 andj2 are both a family
zero. Subtract offr2f1(0)f2(0).

For the otherzE zeros: already taken into account con-
tribution fromj1 one of thezE zeros andj2 one of ther
family zeros (and vice-versa).

Thus, for a given curve, a lower bound of the contri-
bution from all pairs(j1, j2) is

rf1(0)D1,E(f2) + rD1,E(f1)f2(0)− r2f1(0)f2(0) + z2
E.
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Excess Rank:2-Level Bounds: IIIb

Summing over allE ∈ F and simplifying gives

1

|F|
∑
E∈F

z2
E ≤ 1

σ2
2

+
1

σ2
+

1

12
+

1

2
.

Similar calculation gives

Theorem: Third 2-Level Density Bounds

P0 ≤
1

2σ2
2

+ 1
2σ2

+ 1
24

a2
0

P1 ≤
1

2σ2
2

+ 1
2σ2

+ 1
24

b0 + b2
0

σ2 = σ1
4 : beats1-level fora0 >

σ2
1+48σ1+192

24σ1
.

r 6= 0: beats first2-level oncea0 >
σ2

1+48σ1+192

96σ1
.

r ≥ 1: beats second2-level oncea0 > 3(r−1)
3r−2

σ2
1+48σ1+192

96σ1
.
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Heath-Brown & Brumer

Family of all elliptic curvesEa,b:

FT = {y2 = x3 + ax + b; |a| ≤ T
1
3 , |b| ≤ T

1
2 .

From1-Level Expansion, get

r(Ea,b) ≤ 2+
log T

log X
−2
∑
p≤X

aP (Ea,b)h

(
log p

log X

)
+O

(
1

log X

)
.

If r(Ea,b) ≥ r ≥ 3 + 2 log T
log X , then|U(Ea,b, X)| ≥ log T

2 .

Led to

#{Ea,b ∈ FT : r(Ea,b) ≥ r}·
(

log T

2

)2k

≤
∑

Ea,b∈F

|U(Ea,b, X)|2k.

FindX = T
1

10k , k =
[

r−3
20

]
. Yields

Prob(rank(Ea,b) ≥ r) � (11r)−
r
20

rank(Ea,b) ≤ 17
log T

log log T
.
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Numerically Approximating Ranks:
Preliminaries

Cusp formf , levelN , weight2:

f (−1/Nz) = −εNz2f (z)

f (i/y
√

N) = εy2f (iy/
√

N).

Define

L(f, s) = (2π)sΓ(s)−1

∫ i∞

0

(−iz)sf (z)
dz

z

Λ(f, s) = (2π)−sN s/2Γ(s)L(f, s) =

∫ ∞

0

f (iy/
√

N)ys−1dy.

Get

Λ(f, s) = εΛ(f, 2− s), ε = ±1.

To eachE corresponds anf , write
∫∞

0 =
∫ 1

0 +
∫∞

1 and
use transformations.
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Algorithm for Lr(s, E): I

Λ(E, s) =

∫ ∞

0

f (iy/
√

N)ys−1dy

=

∫ 1

0

f (iy/
√

N)ys−1dy +

∫ ∞

1

f (iy/
√

N)ys−1dy

=

∫ ∞

1

f (iy/
√

N)(ys−1 + εy1−s)dy.

Differentiate k times with respect to s:

Λ(k)(E, s) =

∫ ∞

1

f (iy/
√

N)(log y)k(ys−1 + ε(−1)ky1−s)dy.

At s = 1,

Λ(k)(E, 1) = (1 + ε(−1)k)

∫ ∞

1

f (iy/
√

N)(log y)kdy.

Trivially zero for half ofk; let r be analytic rank.
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Algorithm for Lr(s, E): II

Λ(r)(E, 1) = 2

∫ ∞

1

f (iy/
√

N)(log y)rdy

= 2

∞∑
n=1

an

∫ ∞

1

e−2πny/
√

N(log y)rdy.

Integrating by parts

Λ(r)(E, 1) =

√
N

π

∞∑
n=1

an

n

∫ ∞

1

e−2πny/
√

N(log y)r−1dy

y
.

We obtain

L(r)(E, 1) = 2r!

∞∑
n=1

an

n
Gr

(
2πn√

N

)
,

where

Gr(x) =
1

(r − 1)!

∫ ∞

1

e−xy(log y)r−1dy

y
.
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Expansion ofGr(x)

Gr(x) = Pr

(
log

1

x

)
+

∞∑
n=1

(−1)n−r

nr · n!
xn

Pr(t) is a polynomial of degree r,Pr(t) = Qr(t− γ).

Q1(t) = t;

Q2(t) =
1

2
t2 +

π2

12
;

Q3(t) =
1

6
t3 +

π2

12
t− ζ(3)

3
;

Q4(t) =
1

24
t4 +

π2

24
t2 − ζ(3)

3
t +

π4

160
;

Q5(t) =
1

120
t5 +

π2

72
t3 − ζ(3)

6
t2 +

π4

160
t− ζ(5)

5
− ζ(3)π2

36
.

For r = 0,

Λ(E, 1) =

√
N

π

∞∑
n=1

an

n
e−2πny/

√
N .

Need about
√

N or
√

N log N terms.
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Potential Lower Order Density Corrections

D1,F(f ) = f̂ (0) + f (0)− 2
1

|F|
∑
E∈F

∑
p

log p

log NE

1

p
f̂
( log p

log NE

)
at(p)

−2
1

|F|
∑
E∈F

∑
p

log p

log NE

1

p2
f̂
(
2

log p

log NE

)
at(p)2.

j(t) non-const⇒ A2,F(p) =
∑
t(p)

at(p)2 = p2 + O(p
3
2).

The main term ofA2,F(p) contributes−1
2f (0) in the

limit. For a great many families, we can do better than
Michel’s O(p

3
2).

Have errors of size 1
log N and log log N

log N from the Explicit
Formula.

The conductor dependence in the Gamma factors of
the Explicit Formula is easily managed. The real diffi-
culty is handling the primes which divide the discrimi-
nant and the sums ofam

E (p), m ≥ 3.

For convenience, rescale each curve’s zeros by the av-
erage log-conductor.

32



ObservedA2,F(p) Corrections

Family:y2 = A1,F(p) A2,F(p)

All Curves 0 p3 − p2

x3 + 24(−3)3(9t + 1)2 0
{

2p2−2p p≡2(3)
0 p≡1(3)

x3 ± 4(4t + 2)x 0
{

2p2−2p p≡1(4)
0 p≡3(3)

x3 + (t + 1)x2 + tx 0 p2 − 2p− 1

x3 + x2 + 2t + 1 0 p2 − 2p−
(−3

p

)
x3 + tx2 + 1 −p p2 − c1(p)p

x3 − t2x + t2 −2p p2 − p− c2(p)p− c3(p)

x3 − t2x + t4 −2p p2 − p− c2(p)p− c3(p)

c1(p) =

{
3p + 1 p ≡ 2(3)

3ph3,p(2) + 1− p
∑

x(p)

(4x3+1
p

)
p ≡ 1(3)

c2(p) =

[∑
x(p)

(
x3 − x

p

)]2

c3(p) =

(
−3

p

)
+

(
3

p

)
,

andh3,p(2) is one if2 is a cube modp and zero otherwise.

33



Contributions from A2,F(p) Corrections

Correction from−mFp, mF > 0. Have N
p full sums

and one partial sum. Substituting yields

C2 =
2

N

∑
p

log p

log M
f̂
(
2

log p

log M

) 1

p2

N

p
mFp

=
2mF

log M

∑
p

f̂
(
2

log p

log M

)log p

p2
.

Correction of size 1
log N . Consider

f̂ (u) =
1

2

(
1

2
σ − 1

2
|u|

)
, |u| ≤ σ

f (x) =
sin2(2π 1

2σx)

(2πx)2
.

Gives

Ave Rank ≤ 1

σ
+ r +

1

2
+

(
.986

σ
− 2.966

σ2 log M

)
mF

log M
.
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ObservedA2,F(p) Corrections

Family of all elliptic curves,σ = 4
7. Ignoring the cor-

rection term, AveRank≤ 2.25. Correction is.05.

Extra Contributions: mF = 1

M σ = 4
7 σ = 1 σ = 2 σ = ∞

106 .077 .056 .032 0

1012 .051 .032 .017 0

1018 .036 .022 .011 0

1024 .025 .015 .007 0

Fermigier observes average rank≈ (r + 1
2) + .40.

Cond≈ 1012: σ = 1: AveRank≤ (r + 1
2) + 1 + .03.

Cond≈ 1012: σ = 2: AveRank≤ (r + 1
2) + 1

2 + .02.

Hopeless to get support≥ 2. ILS obtain such large
support for some of their families, but only because of
great averaging formulas. No good analogue, and our
conductors grow very quickly.
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All Curves:
Complete sums ofam

a,b(p) vanish form odd, and

p−1∑
a=0

p−1∑
b=0

a4
a,b(p) = 3p− 3p2 − 2p3 + 2p4

p−1∑
a=0

p−1∑
b=0

a6
a,b(p) = 5p + 4p2 − 9p3 − 5p4 + 5p5

p−1∑
a=0

p−1∑
b=0

a8
a,b(p) = 7p + 13p2 + 8p3 − 28p4 − 14p5 + 14p6.

Explicit Formula gives sums ofαm
E (p) + βm

E (p), m ≥ 3.
For p |r NE, αE(p) + βE(p) = aE(p) andαE(p)βE(p) = p. For

p|r NE,

α3
E(p) + β3

E(p) = a3
E(p)− 3paE(p)

α4
E(p) + β4

E(p) = a4
E(p)− 4pa2

E(p) + 2p2

α5
E(p) + β5

E(p) = a5
E(p)− 5p(α3

E(p)− β3
E(p)) + 10p2aE(p)

α6
E(p) + β6

E(p) = a6
E(p)− 6pa4

E(p) + 9p2a2
E(p)− 2p3

α7
E(p) + β7

E(p) = a7
E(p)− 7p(α5

E(p) + β5
E(p))− 21p2(α3

E(p) + β3
E(p))− 35p3aE(p)

α8
E(p) + β8

E(p) = a8
E(p)− 8pa6

E(p) + 20p2a4
E(p)− 16p3a2

E(p) + 2p4.

Have 1
N5

N2

p
N3

p complete sums, multiply by1
p2m (and other factors)

and sum over the primes.

The main contribution to the potential density correction is from
m = 2. Complete sum ofa2

E(p) givesp3 − p2, with the p2 term
leading to a sum of1p2 .
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All Curves (cont)

p−1∑
a=0

p−1∑
b=0

a4
a,b(p) = 3p− 3p2 − 2p3 + 2p4

α4
E(p) + β4

E(p) = a4
E(p)− 4pa2

E(p) + 2p2

p−1∑
a=0

p−1∑
b=0

a6
a,b(p) = 5p + 4p2 − 9p3 − 5p4 + 5p5

α6
E(p) + β6

E(p) = a6
E(p)− 6pa4

E(p) + 9p2a2
E(p)− 2p3

p−1∑
a=0

p−1∑
b=0

a8
a,b(p) = 7p + 13p2 + 8p3 − 28p4 − 14p5 + 14p6.

α8
E(p) + β8

E(p) = a8
E(p)− 8pa6

E(p) + 20p2a4
E(p)− 16p3a2

E(p) + 2p4.

Whenm = 4, potential term of size1
p2 , as 1

p2·2 exactly balances

p2+2. Note, the test function will be evaluated at3 log p
log M and not2 log p

log M .

Thep4 terms (which yield the main term) exactly cancel. Thus,
them = 4 term contributes a sum of size1p3 and not of size1

p2 .

Form ≥ 6, the contributions will be of size1p3 or less.

Hence, subject to proving the expansion formulas, for the fam-
ily of all elliptic curves (no sieving, rescaling by the average log-
conductor), them ≥ 1 terms contribute a potential lower order cor-
rection, where we sum over the primes terms of size1

p2 .

37



Excess Rank Calculations
Families with y2 = ft(x); D(t) SqFree

Family t Range Num t r r r + 1 r + 2 r + 3

+4(4t + 2) [2, 2002] 1622 0 95.44 4.56

−4(4t + 2) [2, 2002] 1622 0 70.53 29.35

9t + 1 [2, 247] 169 0 71.01 28.99

t2 + 9t + 1 [2, 272] 169 1 71.60 27.81

t(t− 1) [2, 2002] 643 0 40.44 48.68 10.26 0.62

(6t + 1)x2 [2, 101] 93 1 34.41 47.31 17.20 1.08

(6t + 1)x [2, 77] 66 2 30.30 50.00 16.67 3.03

1. x3 + 4(4t + 2)x, 4t + 2 Sq-Free, odd.

2. x3 − 4(4t + 2)x, 4t + 2 Sq-Free, even.

3. x3 + 24(−3)3(9t + 1)2, 9t + 1 Sq-Free, even.

4. x3 + tx2 − (t + 3)x + 1, t2 + 3t + 9 Sq-Free, odd.

5. x3 + (t + 1)x2 + tx, t(t− 1) Sq-Free, rank0.

6. x3 + (6t + 1)x2 + 1, 4(6t + 1)3 + 27 Sq-Free, rank1.

7. x3 − (6t + 1)2x + (6t + 1)2, (6t + 1)[4(6t + 1)2 − 27]

Sq-Free, rank2.
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Excess Rank Calculations
Families with y2 = ft(x); All D(t)

Family t Range Num t r r r + 1 r + 2 r + 3

+4(4t + 2) [2, 2002] 2001 0 6.45 85.76 3.95 3.85

−4(4t + 2) [2, 2002] 2001 0 63.52 9.90 25.99 .50

9t + 1 [2, 247] 247 0 55.28 23.98 20.73

t2 + 9t + 1 [2, 272] 271 1 73.80 25.83

t(t− 1) [2, 2002] 2001 0 42.03 48.43 9.25 0.30

(6t + 1)x2 [2, 101] 100 1 32.00 50.00 17.00 1.00

(6t + 1)x [2, 77] 76 2 32.89 50.00 14.47 2.63

1. x3 + 4(4t + 2)x, 4t + 2 Sq-Free, odd.

2. x3 − 4(4t + 2)x, 4t + 2 Sq-Free, even.

3. x3 + 24(−3)3(9t + 1)2, 9t + 1 Sq-Free, even.

4. x3 + tx2 − (t + 3)x + 1, t2 + 3t + 9 Sq-Free, odd.

5. x3 + (t + 1)x2 + tx, t(t− 1) Sq-Free, rank0.

6. x3 + (6t + 1)x2 + 1, 4(6t + 1)3 + 27 Sq-Free, rank1.

7. x3 − (6t + 1)2x + (6t + 1)2, (6t + 1)[4(6t + 1)2 − 27]

Sq-Free, rank2.
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Appendix I: Standard Conjectures

Generalized Riemann Hypothesis (for Elliptic Curves)Let L(s, E) be the
(normalized)L-function of the elliptic curveE. Then the non-trivial zeros of
L(s, E) satisfy Re(s) = 1

2
.

Birch and Swinnerton-Dyer Conjecture [BSD1], [BSD2]Let E be an el-
liptic curve of geometric rankr overQ (the Mordell-Weil group isZr ⊕ T , T is
the subset of torsion points). Then the analytic rank (the order of vanishing of the
L-function at the critical point) is alsor.

Tate’s Conjecture for Elliptic Surfaces [Ta] Let E/Q be an elliptic surface
and L2(E , s) be theL-series attached toH2

ét(E/Q, Ql). ThenL2(E , s) has a
meromorphic continuation toC and satisfies−ords=2L2(E , s) = rankNS(E/Q),
whereNS(E/Q) is theQ-rational part of the Néron-Severi group ofE . Further,
L2(E , s) does not vanish on the line Re(s) = 2.

Most of the one-parameter families we investigate are rational surfaces, where
Tate’s conjecture is known. See, for example, [RSi].
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Appendix II: Equidistribution of Signs

ABC Conjecture Fix ε > 0. For co-prime positive integersa, b and c with
c = a + b andN(a, b, c) =

∏
p|abc p, c �ε N(a, b, c)1+ε.

The full strength of ABC is never needed; rather, we need a consequence of
ABC, the Square-Free Sieve (see [Gr]):

Square-Free Sieve ConjectureFix an irreducible polynomialf(t) of degree
at least4. AsN → ∞, the number oft ∈ [N, 2N ] with f(t) divisible byp2 for
somep > log N is o(N).

For irreducible polynomials of degree at most3, the above is known, complete
with a better error thano(N) ([Ho], chapter4).

Restricted Sign Conjecture (for the FamilyF) Consider a one-parameter
familyF of elliptic curves. AsN → ∞, the signs of the curvesEt are equidis-
tributed fort ∈ [N, 2N ].

The Restricted Sign conjecture often fails. First, there are families with con-
stantj(Et) where all curves have the same sign. Helfgott [He] has recently related
the Restricted Sign conjecture to the Square-Free Sieve conjecture and standard
conjectures on sums of Moebius:

Polynomial MoebiusLetf(t) be a non-constant polynomial such that no fixed
square dividesf(t) for all t. Then

∑2N
t=N µ(f(t)) = o(N).

The Polynomial Moebius conjecture is known for linearf(t).
Helfgott shows the Square-Free Sieve and Polynomial Moebius imply the Re-

stricted Sign conjecture for many families. More precisely, letM(t) be the prod-
uct of the irreducible polynomials dividing∆(t) and notc4(t).

Theorem: Equidistribution of Sign in a Family [He]: Let F be a one-
parameter family withai(t) ∈ Z[t]. If j(Et) andM(t) are non-constant, then the
signs ofEt, t ∈ [N, 2N ], are equidistributed asN → ∞. Further, if we restrict
to goodt, t ∈ [N, 2N ] such thatD(t) is good (usually square-free), the signs are
still equidistributed in the limit.
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Appendix III: Quadratic Legendre
Sums

Lemma: For p > 2,

S(n) =

p−1∑
x=0

(
n1 + x

p

)(
n2 + x

p

)
=

{
p− 1 if p | n1 − n2

−1 otherwise

Proof: Shiftingx by −n2, we need only prove the lemma whenn2 = 0.
Assume(n, p) = 1 as otherwise the result is trivial. For(a, p) = 1 we have:

S(n) =

p−1∑
x=0

(
n + x

p

)(
x

p

)
(0.0.2)

=

p−1∑
x=0

(
n + a−1x

p

)(
a−1x

p

)

=

p−1∑
x=0

(
an + x

p

)(
x

p

)
= S(an)

Hence

S(n) =
1

p− 1

p−1∑
a=1

p−1∑
x=0

(
an + x

p

)(
x

p

)
(0.0.3)

=
1

p− 1

p−1∑
a=0

p−1∑
x=0

(
an + x

p

)(
x

p

)
− 1

p− 1

p−1∑
x=0

(
x

p

)2

=
1

p− 1

p−1∑
x=0

(
x

p

) p−1∑
a=0

(
an + x

p

)
− 1

= 0− 1 = −1

Where do we usep > 2? We used
∑p−1

a=0

(
an+x

p

)
= 0 for (n, p) = 1. This is

true for all odd primes (as there arep−1
2

quadratic residues,p−1
2

non-residues, and
0); for p = 2, there is one quadratic residue, no non-residues, and0.
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Lemma: Quadratic Legendre Sums:Assumea andb are not both zero mod
p andp > 2. Then

p−1∑
t=0

(
at2 + bt + c

p

)
=

{
(p− 1)

(
a
p

)
if p | b2 − 4ac

−
(

a
p

)
otherwise

Proof: Assumea 6≡ 0(p) as otherwise the proof is trivial. Letδ = 4−1(b2 −
4ac). Then

p−1∑
t=0

(
at2 + bt + c

p

)
=

p−1∑
t=0

(
a−1

p

)(
a2t2 + bat + ac

p

)
(0.0.4)

=

p−1∑
t=0

(
a

p

)(
t2 + bt + ac

p

)

=

p−1∑
t=0

(
a

p

)(
t2 + bt + 4−1b2 + ac− 4−1b2

p

)

=

p−1∑
t=0

(
a

p

)(
(t + 2−1b)2 − 4−1(b2 − 4ac)

p

)

=

p−1∑
t=0

(
a

p

)(
t2 − δ

p

)

=

(
a

p

) p−1∑
t=0

(
t2 − δ

p

)
If δ ≡ 0(p) we getp− 1. If δ ≡ η2, η 6= 0, then by the previous Lemma

p−1∑
t=0

(
t2 − δ

p

)
=

p−1∑
t=0

(
t− η

p

)(
t + η

p

)
= −1.

We note that
∑p−1

t=0

(
t2−δ

p

)
is the same for all non-squareδ’s (letg be a generator

of the multiplicative group,δ = g2k+1, change variables byt → gkt). Denote this
sum byS, the set of non-zero squares modp byR, and the non-squares modp by
N . Since

∑p−1
δ=0

(
t2−δ

p

)
= 0 we have
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p−1∑
δ=0

p−1∑
t=0

(
t2 − δ

p

)
=

p−1∑
t=0

(
t2

p

)
+
∑
δ∈R

p−1∑
t=0

(
t2 − δ

p

)
+
∑
δ∈N

p−1∑
t=0

(
t2 − δ

p

)
= (p− 1) +

p− 1

2
(−1) +

p− 1

2
S = 0.

HenceS = −1, proving the lemma.
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Appendix IV: Contributions from
Sub-Families

A strong possible explanation for the observed excess rank is the presence of
sub-families of higher rank. These families’ contributions will be dwarfed in the
limit, but noticeable for smallN .

Consider an elliptic curveE : y2 = x3 + ax + b over Q and its family of
twistsEd : dy2 = x3 + ax + b by square-freed. Assuming the Restricted Sign
conjecture for twists, Gouvéa and Mazur [GM] prove that there exist positive
constantsC0(ε, E) andC1(ε, E) such that, ifN ≥ C0(ε, E), the number of square-
freed ≤ N with the rank ofEd even and at least2 is at leastC1(ε, E)N

1
2
−ε.

Similarly, Mai [Mai] consideredEd : x3 + y3 = d for cube-freed. Assuming
the Restricted Sign conjecture for cubic twists, he proved there exist positive con-
stantsC2(ε, E) andC3(ε, E) such that, ifN ≥ C2(ε, E), the number of cube-free
|d| ≤ N with the rank ofEd even and at least2 is at leastC3(ε, E)N

2
3
−ε.

Stewart and Top [ST] generalize these results and remove the dependence on
the Restricted Sign conjecture, though at the cost of weaker bounds. They prove:

Theorem 0.0.1 (Cubic Twists).For the familyx3 + y3 = d, there exists a uni-
versal constantC4 such that, for cube-free|d| ≤ N , if N ≥ 657, at leastC4N

1
6

curves have rank at least3.

Theorem 0.0.2 (Quadratic Twists). Let E be an elliptic curve overQ with
j(E) 6= 0, 1728, and letEd be a quadratic twist. There exist constantsC5(E)
and C6(E) such that, for square-free|d| ≤ N , if N ≥ C5(E), then at least
C6(E)N

1
7 · log−2 N have rank even and at least2.

In all of the above results, there is very slow decay with respect toN . The car-
dinality in these families is a multiple ofN . Thus, we have contributions ranging
from N

1
7 /N to N

1
2 /N to N

2
3 /N . TakingN = 100, 1000 and10000 yields

N N− 6
7 N− 1

2 N− 2
3

100 .0193 .1000 .2154
1000 .0027 .0316 .1000

10000 .0004 .0100 .0464
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In Fermigier’s [Fe2] investigations,N ranges from250 to 1000. Thus, it is
very likely, depending on the size of the constants (and the true values of the
exponents) that there may be higher rank sub-families of cardinalityN c lurking
within our families,0 < c < 1. While not contributing in the limit, they will be
very noticeable for small values ofN .

To determine the analytic rank (the order of vanishing ofL(s, E) at the crit-
ical point s = 1) requires studying sums of the coefficientsaE(n) for n ≤√

NE log NE. See, for example, [Cr]. As the conductors grow polynomially in
our families, it already requires several hours to investigate families fort up to
1000. It thus seems unlikely that we will be able to attain large enough ranges of
t to get past the contributions of these possibly lower cardinality sub-families.
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Appendix V: Heath-Brown and
Brumer Bounds

Some very quick notes about the details of the proof for the family of elliptic
curves (the exponential decay).

We have the following expansion of
(

x
p

)
:

(
x

p

)
= G−1

p

p∑
c=1

(
c

p

)
e

(
cx

p

)
, (0.0.5)

whereGp =
∑

a(p)

(
a
p

)
e
(

a
p

)
, which equals

√
p for p ≡ 1(4) andi

√
p for p ≡

3(4). See, for example, [BEW].
For the curvey2 = fE(x), aE(p) = −

∑
x(p)

(
fE(x)

p

)
. We expand thex-sum by

using Gauss sums, namely

aE(p) = G−1
p

∑
x(p)

p∑
c=1

(
c

p

)
e

(
cfE(x)

p

)
. (0.0.6)

For the family of all elliptic curves,y2 = x3 + ax + b, when we need to
calculate high moments of theU sum we will be led to

∑
a,b

∑
t1(p1)

· · ·
∑

t2k(p2k)

∑
x1(p1)

· · ·
∑

x2k(p2k)

2k∏
i=1

(
ti
pi

)
epi

(tix
3
i + tixia + tib). (0.0.7)

We have complete sums asa andb run throughp1 · · · p2k. |a| ≤ T
1
3 , each tuple

of xis will give a
∏

i pi, and we will be left with having to bound

T
1
3

∏
i

pi

∑
t1(p1)

· · ·
∑

t2k(p2k)

∣∣∣∣∣∑
b

e

([
t1
p1

+ · · ·+ t2k

p2k

]
b

)∣∣∣∣∣ . (0.0.8)

The main contribution will be when there is at least one prime that occurs
only once. In this case, the exponent is not an integer, since its denominator will
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be divisible by that prime. We then have a geometric series, which can be bounded
well (where the bound will depend on the fractional part oft1

p1
+ · · ·+ t2k

p2k
.

It is crucial here that we have something of the formy2 = x3 + ax + b,
and we can average overb. This allows us to use the Gauss sum expansion and
obtain good cancellation. We are being very crude in estimating thexi sums. For a
general family of elliptic curves, we will not have such a separation of parameters.
Thus, in general we would have a1-parameter family, sayy2 = x3+A(t)x+B(t),
and we would not be able to execute the summation overt without having to worry
about the values of thexis.
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