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Benford’s Law

Benford’s Law: Newcomb (1881), Benford (1938)
For many data sets, probability of observing a first digit of
d base B is logB

(

d+1
d

)

.
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Benford’s Law: Newcomb (1881), Benford (1938)
For many data sets, probability of observing a first digit of
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Examples:
iterates of 3x+1, along with power, exponential and
rational maps
products of independent random variables
particle decay, hydrology and financial data
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Benford’s Law

Benford’s Law: Newcomb (1881), Benford (1938)
For many data sets, probability of observing a first digit of
d base B is logB

(

d+1
d

)

.

Examples:
iterates of 3x+1, along with power, exponential and
rational maps
products of independent random variables
particle decay, hydrology and financial data

Question: Which systems lead to Benford behavior?
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Dependence Considerations

Most efforts to identify Benford processes assume
random variables are independent.

5



Introduction Preliminaries Results Conclusion

Dependence Considerations

Most efforts to identify Benford processes assume
random variables are independent.

Motivated by "real world" processes shown to be Benford,
we want to explore dependent systems.
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Dependence Considerations

Most efforts to identify Benford processes assume
random variables are independent.

Motivated by "real world" processes shown to be Benford,
we want to explore dependent systems.

Our motivating example (Lemons 1986):
Decomposition of a conserved quantity as a model for
particle decay.
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A Model for Decomposition of Conserved Quantities

A discrete-time, continuous-division model of decay:
“Stick” of length L divided in two at each stage.

8



Introduction Preliminaries Results Conclusion

A Model for Decomposition of Conserved Quantities

A discrete-time, continuous-division model of decay:
“Stick” of length L divided in two at each stage.
Cuts from continuous random variable K on (0, 1).

9



Introduction Preliminaries Results Conclusion

A Model for Decomposition of Conserved Quantities

A discrete-time, continuous-division model of decay:
“Stick” of length L divided in two at each stage.
Cuts from continuous random variable K on (0, 1).
Pieces {Xi} not independent, as must sum to L.
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A Model for Decomposition of Conserved Quantities

A discrete-time, continuous-division model of decay:
“Stick” of length L divided in two at each stage.
Cuts from continuous random variable K on (0, 1).
Pieces {Xi} not independent, as must sum to L.

L

L K1 LH1-K1L

L K1K2 L K1H1-K2L LH1-K1LK3 LH1-K1LH1-K3L

L K1K2K4 L K1K2H1-K4L L K1H1-K2LK5 L K1H1-K2LH1-K45L LH1-K1LK3K6 LH1-K1LK3H1-K6L LH1-K1LH1-K3LK7 LH1-K1LH1-K3LH1-K7L
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Equidistribution and Benford’s Law

Significand: for positive x, write x = S10(x) · 10k(x).
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Equidistribution and Benford’s Law

Significand: for positive x, write x = S10(x) · 10k(x).

Equidistribution: {yi} equidistributed mod 1 if for any
[a, b] ⊂ [0, 1] have limN→∞

#{n≤N:yn∈[a,b]}
N = b − a.

For s ∈ [1, 10), let

ϕs(u) :=

{

1 if u’s significand is at most s
0 otherwise.
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Equidistribution and Benford’s Law

Significand: for positive x, write x = S10(x) · 10k(x).

Equidistribution: {yi} equidistributed mod 1 if for any
[a, b] ⊂ [0, 1] have limN→∞

#{n≤N:yn∈[a,b]}
N = b − a.

For s ∈ [1, 10), let

ϕs(u) :=

{

1 if u’s significand is at most s
0 otherwise.

Fundamental Equivalence

Data set {xi} is Benford base B if {yi} is equidistributed
modulo 1, where yi = logB xi .
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The Mellin Transform

Let f (x) be a continuous real-valued function on [0,∞).
Define its Mellin transform, (Mf )(s), by

(Mf )(s) :=

∫ ∞

0
f (x)xs dx

x
.
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Let f (x) be a continuous real-valued function on [0,∞).
Define its Mellin transform, (Mf )(s), by

(Mf )(s) :=

∫ ∞

0
f (x)xs dx

x
.

Note that (Mf )(s) = E[xs−1], thus results concerning
expected values translate to results on Mellin
transforms.
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The Mellin Transform

Let f (x) be a continuous real-valued function on [0,∞).
Define its Mellin transform, (Mf )(s), by

(Mf )(s) :=

∫ ∞

0
f (x)xs dx

x
.

Note that (Mf )(s) = E[xs−1], thus results concerning
expected values translate to results on Mellin
transforms.
With a logarithmic change of variables, we can
translate between Mellin and Fourier transforms.
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Products of Independent Random Variables

Jang, Kang, Kruckman, Kudo and Miller (2009)

Ξ1, . . . ,ΞN independent variables with densities fΞm and

lim
N→∞

∞
∑

ℓ=−∞
ℓ 6=0

N
∏

m=1

(MfΞm)

(

1 −
2πiℓ
log B

)

= 0 (C1).

Then as Ξ1 · · ·ΞN converges to Benford’s law.
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Ξ1, . . . ,ΞN independent variables with densities fΞm and

lim
N→∞

∞
∑

ℓ=−∞
ℓ 6=0

N
∏

m=1

(MfΞm)

(

1 −
2πiℓ
log B

)

= 0 (C1).

Then as Ξ1 · · ·ΞN converges to Benford’s law.

(C1) is quite weak, met by most distributions.
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Products of Independent Random Variables

Jang, Kang, Kruckman, Kudo and Miller (2009)

Ξ1, . . . ,ΞN independent variables with densities fΞm and

lim
N→∞

∞
∑

ℓ=−∞
ℓ 6=0

N
∏

m=1

(MfΞm)

(

1 −
2πiℓ
log B

)

= 0 (C1).

Then as Ξ1 · · ·ΞN converges to Benford’s law.

(C1) is quite weak, met by most distributions.
Corollary: For Ξ1, . . . ,ΞN uniformly distributed on
(0, 1) and N ≥ 4,

|ϕs(u)− log10 s| ≤
(

1
2.9N + ζ(N)−1

2.7N

)

2 log10 s.
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Limiting Behavior of Decompostions

Theorem (Decomposition model as above)

Fix a continuous density f on [0, 1] st f (x), f (1 − x) satisfy
(C1), set

PN(s) :=

∑2N

i=1 ϕs(Xi)

2N
,

the fraction of pieces with significand less than or equal to
s. Then

1 lim
N→∞

E[PN(s)] = log10 s.

2 lim
N→∞

Var (PN(s)) = 0.

21



Introduction Preliminaries Results Conclusion

Limiting Behavior of Decompostions

Theorem (Decomposition model as above)

Fix a continuous density f on [0, 1] st f (x), f (1 − x) satisfy
(C1), set

PN(s) :=

∑2N

i=1 ϕs(Xi)
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,
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s. Then

1 lim
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E[PN(s)] = log10 s.

2 lim
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Var (PN(s)) = 0.

Amalgamation of processes converges to Benford.
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Limiting Behavior of Decompostions

Theorem (Decomposition model as above)

Fix a continuous density f on [0, 1] st f (x), f (1 − x) satisfy
(C1), set

PN(s) :=

∑2N

i=1 ϕs(Xi)

2N
,

the fraction of pieces with significand less than or equal to
s. Then

1 lim
N→∞

E[PN(s)] = log10 s.

2 lim
N→∞

Var (PN(s)) = 0.

Amalgamation of processes converges to Benford.
May consider a single process (if number stages tend
to infinity).
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Convergence of Amalgamated Lengths to Benford

E[PN(s)] = E

[

∑2N
i=1 ϕs(Xi )

2N

]

= 1
2N

∑2N

i=1 E[ϕs(Xi)].
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E[PN(s)] = E

[

∑2N
i=1 ϕs(Xi )

2N

]

= 1
2N

∑2N

i=1 E[ϕs(Xi)].

Note: Dependencies exist in the pieces {Xi}, not the
random variables Ki .
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Convergence of Amalgamated Lengths to Benford

E[PN(s)] = E

[

∑2N
i=1 ϕs(Xi )

2N

]

= 1
2N

∑2N

i=1 E[ϕs(Xi)].

Note: Dependencies exist in the pieces {Xi}, not the
random variables Ki .

We can apply JKKKM’s theorem, as the Mellin transform
at 1 − 2πiℓ

log 10 is strictly less than 1.

For specific choices of f , can obtain precise bounds on
the error. Ex: E[ϕs(Xi)]− log10 s ≪ 1

2.9N .
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Analysis of a Single Process

Dependence greatly complicates analysis here.

Problem: Evaluating cross terms E[ϕs(Xi)ϕs(Xj)] for i 6= j .
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Analysis of a Single Process

Dependence greatly complicates analysis here.

Problem: Evaluating cross terms E[ϕs(Xi)ϕs(Xj)] for i 6= j .

Solution:
Pair (Xi ,Xj) shares M factors, split at M + 1.
Remaining elements in the product are independent,
so we can simplify our integral.
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Dependence greatly complicates analysis here.

Problem: Evaluating cross terms E[ϕs(Xi)ϕs(Xj)] for i 6= j .

Solution:
Pair (Xi ,Xj) shares M factors, split at M + 1.
Remaining elements in the product are independent,
so we can simplify our integral.
Study integral as a function of the significand of first
M + 1 variables, which we can bound by JKKKM.
Remaining task is to count for each of the 2N choices
of i and for 1 ≤ n ≤ N, how many choices of Xj have
n factors not in common with Xi .
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Analysis of a Single Process

Dependence greatly complicates analysis here.

Problem: Evaluating cross terms E[ϕs(Xi)ϕs(Xj)] for i 6= j .

Solution:
Pair (Xi ,Xj) shares M factors, split at M + 1.
Remaining elements in the product are independent,
so we can simplify our integral.
Study integral as a function of the significand of first
M + 1 variables, which we can bound by JKKKM.
Remaining task is to count for each of the 2N choices
of i and for 1 ≤ n ≤ N, how many choices of Xj have
n factors not in common with Xi .
Resulting sum bounds variance above and goes to 0,
thus limN→∞ Var (PN(s)) = 0.
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Summary of Results

Decay model: Stick decomposes in discrete stages,
cut determined by continuous density function.

Pieces must sum to original stick length, thus they are
dependent.
Allowable densities obey weak condition C1.
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Summary of Results

Decay model: Stick decomposes in discrete stages,
cut determined by continuous density function.

Pieces must sum to original stick length, thus they are
dependent.
Allowable densities obey weak condition C1.

Expected lengths of pieces from amalgamation of
processes converges to Benford distribution.

Key observation: dependencies exist among piece lengths,
not densities.
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Summary of Results

Decay model: Stick decomposes in discrete stages,
cut determined by continuous density function.

Pieces must sum to original stick length, thus they are
dependent.
Allowable densities obey weak condition C1.

Expected lengths of pieces from amalgamation of
processes converges to Benford distribution.

Key observation: dependencies exist among piece lengths,
not densities.

Variance in piece length distribution goes to zero for a
single process. Calculation complicated by
dependencies:

Study expectation cross terms as integrals over their
independent factors.
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