Benford's Law and Dependent Random Variables

Thealexa Becker ${ }^{1}$, Alexander Greaves-Tunne $\|^{2}$, Steven J. Miller ${ }^{2}$, and Ryan Ronan ${ }^{3}$

${ }^{1}$ Smith College
${ }^{2}$ Williams College
${ }^{3}$ Cooper Union

Joint Meetings of the AMS / MAA, Boston January 5, 2011

Benford's Law

Benford's Law: Newcomb (1881), Benford (1938)

For many data sets, probability of observing a first digit of d base B is $\log _{B}\left(\frac{d+1}{d}\right)$.

Benford's Law

Benford's Law: Newcomb (1881), Benford (1938)

For many data sets, probability of observing a first digit of d base B is $\log _{B}\left(\frac{d+1}{d}\right)$.

Examples:

- iterates of $3 x+1$, along with power, exponential and rational maps
- products of independent random variables
- particle decay, hydrology and financial data

Benford's Law

Benford's Law: Newcomb (1881), Benford (1938)

For many data sets, probability of observing a first digit of d base B is $\log _{B}\left(\frac{d+1}{d}\right)$.

Examples:

- iterates of $3 x+1$, along with power, exponential and rational maps
- products of independent random variables
- particle decay, hydrology and financial data

Question: Which systems lead to Benford behavior?

Dependence Considerations

Most efforts to identify Benford processes assume random variables are independent.

Dependence Considerations

Most efforts to identify Benford processes assume random variables are independent.

Motivated by "real world" processes shown to be Benford, we want to explore dependent systems.

Dependence Considerations

Most efforts to identify Benford processes assume random variables are independent.

Motivated by "real world" processes shown to be Benford, we want to explore dependent systems.

Our motivating example (Lemons 1986):
Decomposition of a conserved quantity as a model for particle decay.

A Model for Decomposition of Conserved Quantities

A discrete-time, continuous-division model of decay:

- "Stick" of length L divided in two at each stage.

A Model for Decomposition of Conserved Quantities

A discrete-time, continuous-division model of decay:

- "Stick" of length L divided in two at each stage.
- Cuts from continuous random variable K on $(0,1)$.

A Model for Decomposition of Conserved Quantities

A discrete-time, continuous-division model of decay:

- "Stick" of length L divided in two at each stage.
- Cuts from continuous random variable K on (0,1).
- Pieces $\left\{X_{i}\right\}$ not independent, as must sum to L.

A Model for Decomposition of Conserved Quantities

A discrete-time, continuous-division model of decay:

- "Stick" of length L divided in two at each stage.
- Cuts from continuous random variable K on $(0,1)$.
- Pieces $\left\{X_{i}\right\}$ not independent, as must sum to L.

Equidistribution and Benford's Law

Significand: for positive x, write $x=S_{10}(x) \cdot 10^{k(x)}$.

Equidistribution and Benford's Law

Significand: for positive x, write $x=S_{10}(x) \cdot 10^{k(x)}$.
Equidistribution: $\left\{y_{i}\right\}$ equidistributed mod 1 if for any $[a, b] \subset[0,1]$ have $\lim _{N \rightarrow \infty} \frac{\#\left\{n \leq N: y_{n} \in[a, b]\right\}}{N}=b-a$.

For $s \in[1,10)$, let

$$
\varphi_{s}(u):= \begin{cases}1 & \text { if } u \text { 's significand is at most } s \\ 0 & \text { otherwise } .\end{cases}
$$

Equidistribution and Benford's Law

Significand: for positive x, write $x=S_{10}(x) \cdot 10^{k(x)}$.
Equidistribution: $\left\{y_{i}\right\}$ equidistributed mod 1 if for any $[a, b] \subset[0,1]$ have $\lim _{N \rightarrow \infty} \frac{\#\left\{n \leq N: y_{n} \in[a, b]\right\}}{N}=b-a$.

For $s \in[1,10)$, let

$$
\varphi_{s}(u):= \begin{cases}1 & \text { if } u ' s \text { significand is at most } s \\ 0 & \text { otherwise. }\end{cases}
$$

Fundamental Equivalence

Data set $\left\{x_{i}\right\}$ is Benford base B if $\left\{y_{i}\right\}$ is equidistributed modulo 1 , where $y_{i}=\log _{B} x_{i}$.

The Mellin Transform

Let $f(x)$ be a continuous real-valued function on $[0, \infty)$.
Define its Mellin transform, $(\mathcal{M} f)(s)$, by

$$
(\mathcal{M} f)(s):=\int_{0}^{\infty} f(x) x^{s} \frac{d x}{x}
$$

The Mellin Transform

Let $f(x)$ be a continuous real-valued function on $[0, \infty)$.
Define its Mellin transform, $(\mathcal{M} f)(s)$, by

$$
(\mathcal{M} f)(s):=\int_{0}^{\infty} f(x) x^{s} \frac{d x}{x} .
$$

- Note that $(\mathcal{M} f)(s)=\mathbb{E}\left[x^{s-1}\right]$, thus results concerning expected values translate to results on Mellin transforms.

The Mellin Transform

Let $f(x)$ be a continuous real-valued function on $[0, \infty)$.
Define its Mellin transform, $(\mathcal{M f})(s)$, by

$$
(\mathcal{M} f)(s):=\int_{0}^{\infty} f(x) x^{s} \frac{d x}{x} .
$$

- Note that $(\mathcal{M} f)(s)=\mathbb{E}\left[x^{s-1}\right]$, thus results concerning expected values translate to results on Mellin transforms.
- With a logarithmic change of variables, we can translate between Mellin and Fourier transforms.

Products of Independent Random Variables

Jang, Kang, Kruckman, Kudo and Miller (2009)

$\bar{\Xi}_{1}, \ldots, \bar{\Xi}_{N}$ independent variables with densities $\oint_{\Xi_{m}}$ and

$$
\lim _{N \rightarrow \infty} \sum_{\substack{\ell=-\infty \\ \ell \neq 0}}^{\infty} \prod_{m=1}^{N}\left(\mathcal{M} f_{\Xi_{m}}\right)\left(1-\frac{2 \pi i \ell}{\log B}\right)=0(C 1) .
$$

Then as $\Xi_{1} \cdots \bar{\Xi}_{N}$ converges to Benford's law.

Products of Independent Random Variables

Jang, Kang, Kruckman, Kudo and Miller (2009)

$\bar{\Xi}_{1}, \ldots, \bar{\Xi}_{N}$ independent variables with densities ${\Xi_{m}}$ and

$$
\lim _{N \rightarrow \infty} \sum_{\substack{\ell=-\infty \\ \ell \neq 0}}^{\infty} \prod_{m=1}^{N}\left(\mathcal{M} f_{\Xi_{m}}\right)\left(1-\frac{2 \pi i \ell}{\log B}\right)=0(C 1) .
$$

Then as $\Xi_{1} \cdots \Xi_{N}$ converges to Benford's law.

- (C1) is quite weak, met by most distributions.

Products of Independent Random Variables

Jang, Kang, Kruckman, Kudo and Miller (2009)

$\bar{\Xi}_{1}, \ldots, \bar{\Xi}_{N}$ independent variables with densities $\oint_{\Xi_{m}}$ and

$$
\lim _{N \rightarrow \infty} \sum_{\substack{\ell=-\infty \\ \ell \neq 0}}^{\infty} \prod_{m=1}^{N}\left(\mathcal{M} f_{\Xi_{m}}\right)\left(1-\frac{2 \pi i \ell}{\log B}\right)=0(C 1) .
$$

Then as $\Xi_{1} \cdots \Xi_{N}$ converges to Benford's law.

- (C1) is quite weak, met by most distributions.
- Corollary: For Ξ_{1}, \ldots, Ξ_{N} uniformly distributed on $(0,1)$ and $N \geq 4$,

$$
\left|\varphi_{s}(u)-\log _{10} s\right| \leq\left(\frac{1}{2.9^{N}}+\frac{\zeta(N)-1}{2.7^{N}}\right) 2 \log _{10} s .
$$

Limiting Behavior of Decompostions

Theorem (Decomposition model as above)

Fix a continuous density f on $[0,1]$ st $f(x), f(1-x)$ satisfy (C1), set

$$
P_{N}(s):=\frac{\sum_{i=1}^{2^{N}} \varphi_{s}\left(X_{i}\right)}{2^{N}}
$$

the fraction of pieces with significand less than or equal to s. Then
(1) $\lim _{N \rightarrow \infty} \mathbb{E}\left[P_{N}(s)\right]=\log _{10} s$.
(2) $\lim _{N \rightarrow \infty} \operatorname{Var}\left(P_{N}(s)\right)=0$.

Limiting Behavior of Decompostions

Theorem (Decomposition model as above)

Fix a continuous density f on $[0,1]$ st $f(x), f(1-x)$ satisfy (C1), set

$$
P_{N}(s):=\frac{\sum_{i=1}^{2^{N}} \varphi_{s}\left(X_{i}\right)}{2^{N}}
$$

the fraction of pieces with significand less than or equal to s. Then
(1) $\lim _{N \rightarrow \infty} \mathbb{E}\left[P_{N}(s)\right]=\log _{10} s$.
(2) $\lim _{N \rightarrow \infty} \operatorname{Var}\left(P_{N}(s)\right)=0$.

- Amalgamation of processes converges to Benford.

Limiting Behavior of Decompostions

Theorem (Decomposition model as above)

Fix a continuous density f on $[0,1]$ st $f(x), f(1-x)$ satisfy (C1), set

$$
P_{N}(s):=\frac{\sum_{i=1}^{2^{N}} \varphi_{s}\left(X_{i}\right)}{2^{N}}
$$

the fraction of pieces with significand less than or equal to s. Then
(1) $\lim _{N \rightarrow \infty} \mathbb{E}\left[P_{N}(s)\right]=\log _{10} s$.
(2) $\lim _{N \rightarrow \infty} \operatorname{Var}\left(P_{N}(s)\right)=0$.

- Amalgamation of processes converges to Benford.
- May consider a single process (if number stages tend to infinity).

Convergence of Amalgamated Lengths to Benford

$$
\mathbb{E}\left[P_{N}(s)\right]=\mathbb{E}\left[\frac{\sum_{i=1}^{2^{N}} \varphi_{s}\left(X_{i}\right)}{2^{N}}\right]=\frac{1}{2^{N}} \sum_{i=1}^{2^{N}} \mathbb{E}\left[\varphi_{s}\left(X_{i}\right)\right] .
$$

Convergence of Amaigamated Lengths to Benford

$$
\mathbb{E}\left[P_{N}(s)\right]=\mathbb{E}\left[\frac{\sum_{i=1}^{2^{N}} \varphi_{s}\left(X_{i}\right)}{2^{N}}\right]=\frac{1}{2^{N}} \sum_{i=1}^{2^{N}} \mathbb{E}\left[\varphi_{s}\left(X_{i}\right)\right] .
$$

Note: Dependencies exist in the pieces $\left\{X_{i}\right\}$, not the random variables K_{i}.

Convergence of Amalgamated Lengths to Benford

$$
\mathbb{E}\left[P_{N}(s)\right]=\mathbb{E}\left[\frac{\sum_{i=1}^{2^{N}} \varphi_{s}\left(X_{i}\right)}{2^{N}}\right]=\frac{1}{2^{N}} \sum_{i=1}^{2^{N}} \mathbb{E}\left[\varphi_{s}\left(X_{i}\right)\right] .
$$

Note: Dependencies exist in the pieces $\left\{X_{i}\right\}$, not the random variables K_{i}.

We can apply JKKKM's theorem, as the Mellin transform at $1-\frac{2 \pi i \ell}{\log 10}$ is strictly less than 1 .

For specific choices of f, can obtain precise bounds on the error. Ex: $\mathbb{E}\left[\varphi_{s}\left(X_{i}\right)\right]-\log _{10} s \ll \frac{1}{2.9^{\mathrm{N}}}$.

Analysis of a Single Process

Dependence greatly complicates analysis here.
Problem: Evaluating cross terms $\mathbb{E}\left[\varphi_{s}\left(X_{i}\right) \varphi_{s}\left(X_{j}\right)\right]$ for $i \neq j$.

Analysis of a Single Process

Dependence greatly complicates analysis here.
Problem: Evaluating cross terms $\mathbb{E}\left[\varphi_{s}\left(X_{i}\right) \varphi_{s}\left(X_{j}\right)\right]$ for $i \neq j$.

Solution:

- Pair $\left(X_{i}, X_{j}\right)$ shares M factors, split at $M+1$. Remaining elements in the product are independent, so we can simplify our integral.

Analysis of a Single Process

Dependence greatly complicates analysis here.
Problem: Evaluating cross terms $\mathbb{E}\left[\varphi_{s}\left(X_{i}\right) \varphi_{s}\left(X_{j}\right)\right]$ for $i \neq j$.

Solution:

- Pair $\left(X_{i}, X_{j}\right)$ shares M factors, split at $M+1$.

Remaining elements in the product are independent, so we can simplify our integral.

- Study integral as a function of the significand of first $M+1$ variables, which we can bound by JKKKM.

Analysis of a Single Process

Dependence greatly complicates analysis here.
Problem: Evaluating cross terms $\mathbb{E}\left[\varphi_{s}\left(X_{i}\right) \varphi_{s}\left(X_{j}\right)\right]$ for $i \neq j$.

Solution:

- Pair $\left(X_{i}, X_{j}\right)$ shares M factors, split at $M+1$. Remaining elements in the product are independent, so we can simplify our integral.
- Study integral as a function of the significand of first $M+1$ variables, which we can bound by JKKKM.
- Remaining task is to count for each of the 2^{N} choices of i and for $1 \leq n \leq N$, how many choices of X_{j} have n factors not in common with X_{i}.

Analysis of a Single Process

Dependence greatly complicates analysis here.
Problem: Evaluating cross terms $\mathbb{E}\left[\varphi_{s}\left(X_{i}\right) \varphi_{s}\left(X_{j}\right)\right]$ for $i \neq j$.

Solution:

- Pair $\left(X_{i}, X_{j}\right)$ shares M factors, split at $M+1$. Remaining elements in the product are independent, so we can simplify our integral.
- Study integral as a function of the significand of first $M+1$ variables, which we can bound by JKKKM.
- Remaining task is to count for each of the 2^{N} choices of i and for $1 \leq n \leq N$, how many choices of X_{j} have n factors not in common with X_{i}.
- Resulting sum bounds variance above and goes to 0 , thus $\lim _{N \rightarrow \infty} \operatorname{Var}\left(P_{N}(s)\right)=0$.

Summary of Results

- Decay model: Stick decomposes in discrete stages, cut determined by continuous density function.
- Pieces must sum to original stick length, thus they are dependent.
- Allowable densities obey weak condition C1.

Summary of Results

- Decay model: Stick decomposes in discrete stages, cut determined by continuous density function.
- Pieces must sum to original stick length, thus they are dependent.
- Allowable densities obey weak condition C1.
- Expected lengths of pieces from amalgamation of processes converges to Benford distribution.
- Key observation: dependencies exist among piece lengths, not densities.

Summary of Results

- Decay model: Stick decomposes in discrete stages, cut determined by continuous density function.
- Pieces must sum to original stick length, thus they are dependent.
- Allowable densities obey weak condition C1.
- Expected lengths of pieces from amalgamation of processes converges to Benford distribution.
- Key observation: dependencies exist among piece lengths, not densities.
- Variance in piece length distribution goes to zero for a single process. Calculation complicated by dependencies:
- Study expectation cross terms as integrals over their independent factors.

Thanks to:

- AMS / MAA
- Williams College SMALL 2011
- National Science Foundation
- Thealexa Becker, Professor Steven J. Miller, Ryan Ronan, Professor Frederick W. Strauch

