Generalized More-Sum-Than Difference Sets

Geoffrey lyer ${ }^{1}$, Liyang Zhang ${ }^{2}$, Oleg Lazarev ${ }^{3}$

1. University of Michigan, 2. Williams College, 3. Princeton University

Advisor Steven J Miller (sjm1@williams.edu)
http://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/talks.html

Joint Mathematics Meetings January 6, 2012

Motivation

We often care about the sum/difference of a set $A \subseteq \mathbb{Z}$.

Motivation

We often care about the sum/difference of a set $A \subseteq \mathbb{Z}$.

- Goldbach's Conjecture: $\{$ Evens $\} \backslash\{2\} \subseteq P+P$
- Fermat's Last Theorem: If A_{n} is the set of positive $n^{\text {th }}$ powers, then $A_{n}+A_{n} \cap A_{n}=\emptyset$ for all $n \geq 3$

Motivation

We often care about the sum/difference of a set $A \subseteq \mathbb{Z}$.

- Goldbach's Conjecture: $\{$ Evens $\} \backslash\{2\} \subseteq P+P$
- Fermat's Last Theorem: If A_{n} is the set of positive $n^{\text {th }}$ powers, then $A_{n}+A_{n} \cap A_{n}=\emptyset$ for all $n \geq 3$
Natural question: What are the sizes of the sum/difference sets?

Definitions

A finite set of integers, $|A|$ its size. Form

- Sumset: $A+A=\left\{a_{i}+a_{j}: a_{i}, a_{j} \in A\right\}$.
- Difference set: $A-A=\left\{a_{i}-a_{j}: a_{i}, a_{j} \in A\right\}$.

Definitions

A finite set of integers, $|A|$ its size. Form

- Sumset: $A+A=\left\{a_{i}+a_{j}: a_{i}, a_{j} \in A\right\}$.
- Difference set: $A-A=\left\{a_{i}-a_{j}: a_{i}, a_{j} \in A\right\}$.

Definition

Difference dominated: $|A-A|>|A+A|$
Balanced: $|A-A|=|A+A|$
Sum dominated (or MSTD): $|A+A|>|A-A|$.

History

Nathanson, Problems in Additive Number Theory. "With the right way of counting the vast majority of sets satisfy $|A-A|>|A+A| . "$

History

Nathanson, Problems in Additive Number Theory. "With the right way of counting the vast majority of sets satisfy $|A-A|>|A+A| . "$
$x+y=y+x$, but $x-y \neq y-x$.

History

Theorem (Martin-O'Bryant): If each set $A \subseteq[0, n-1]$ is equally likely, then a positive percentage of sets are sum-dominant in the limit. More precisely:

$$
\lim _{n \rightarrow \infty} \frac{\#\{A \subseteq[0, n-1] ; A \text { is sum-dominant }\}}{2^{n}} \approx 0.00045
$$

History

How is it possible for a positive percent of sets to be sum-dominant?

History

How is it possible for a positive percent of sets to be sum-dominant?

With high probability, the middle will be full.
There are many ways to make $10(0+10,1+9, \ldots)$, but few ways to make 1.

History

How is it possible for a positive percent of sets to be sum-dominant?

With high probability, the middle will be full.
There are many ways to make $10(0+10,1+9, \ldots)$, but few ways to make 1.

The trick is to control the fringes.

Notation

- As adding sets and not multiplying, set

$$
k A=\underbrace{A+\cdots+A}_{\text {k times }} .
$$

- $[a, b]=\{a, a+1, \ldots, b\}$.

Questions

- Can we find a set A such that $|k A+k A|>|k A-k A|$?
- Can we find a set A such that $|A+A|>|A-A|$ and $|2 A+2 A|>|2 A-2 A|$?
- Can we find a set A such that $|k A+k A|>|k A-k A|$ for all k ?

Questions

- Can we find a set A such that $|k A+k A|>|k A-k A|$? Yes.
- Can we find a set A such that $|A+A|>|A-A|$ and $|2 A+2 A|>|2 A-2 A|$? Yes.
- Can we find a set A such that $|k A+k A|>|k A-k A|$ for all k ? No. (No such set exists.)

Initial Observations

Question: Can we find A with $|k A+k A|>|k A-k A|$?

Initial Observations

Question: Can we find A with $|k A+k A|>|k A-k A|$?

- One set is enough to show a positive percentage.

Initial Observations

Question: Can we find A with $|k A+k A|>|k A-k A|$?

- One set is enough to show a positive percentage.
- Computer simulations? We couldn't find a set for $k=2$; the probability of finding some of these sets is less than 10^{-8}.

Initial Observations

Question: Can we find A with $|k A+k A|>|k A-k A|$?

- One set is enough to show a positive percentage.
- Computer simulations? We couldn't find a set for $k=2$; the probability of finding some of these sets is less than 10^{-8}.

If A is symmetric ($A=c-A$ for some c) then

$$
|A+A|=|A+(c-A)|=|A-A| .
$$

$|2 A+2 A|>|2 A-2 A|$

Example: $|2 A+2 A|>|2 A-2 A|$

$|2 A+2 A|>|2 A-2 A|$

Example: $|2 A+2 A|>|2 A-2 A|$
$A=\{0,1,3,4,5,9\} \cup[33,56] \cup\{79,83,84,85,87,88,89\}$

$|2 A+2 A|>|2 A-2 A|$

A

$|2 A+2 A|>|2 A-2 A|$

$A+A$

$|2 A+2 A|>|2 A-2 A|$

$A+A+A$

$|2 A+2 A|>|2 A-2 A|$

$A+A+A+A$

$|2 A+2 A|>|2 A-2 A|$

$A+A$

$|2 A+2 A|>|2 A-2 A|$

$A+A-A$

$|2 A+2 A|>|2 A-2 A|$

$A+A+A$

$|2 A+2 A|>|2 A-2 A|$

$A+A-A$

$|2 A+2 A|>|2 A-2 A|$

$A+A-A-A$

Generalization

After dealing with some technical obstructions, we can generalize:

Generalization

After dealing with some technical obstructions, we can generalize:

For all nontrivial choices of $s_{1}, d_{1}, s_{2}, d_{2}, \exists A \subseteq \mathbb{Z}$ such that $\left|s_{1} A-d_{1} A\right|>\left|s_{2} A-d_{2} A\right|$.

Generalization

After dealing with some technical obstructions, we can generalize:

For all nontrivial choices of $s_{1}, d_{1}, s_{2}, d_{2}, \exists A \subseteq \mathbb{Z}$ such that $\left|s_{1} A-d_{1} A\right|>\left|s_{2} A-d_{2} A\right|$.

Example: We can have $|A+A+A+A|>|A+A+A-A|$:

$$
A=\{0,1,3,4,5,9,33,34,35,50,54,55,56,58,59,60\}
$$

k-Generational Sets

Question: Does a set A exist such that $|A+A|>|A-A|$ and $|A+A+A+A|>|A+A-A-A|$?

k-Generational Sets

Question: Does a set A exist such that $|A+A|>|A-A|$ and $|A+A+A+A|>|A+A-A-A|$?

Say A is k-generational if $A, 2 A, \ldots, k A$ all sum-dominant.

k-Generational Sets

Question: Does a set A exist such that $|A+A|>|A-A|$ and $|A+A+A+A|>|A+A-A-A|$?

k-Generational Sets

Question: Does a set A exist such that $|A+A|>|A-A|$ and $|A+A+A+A|>|A+A-A-A|$?

Yes!

$$
\begin{gathered}
A=\{0,1,3,4,7,26,27,29,30,33,37,38,40,41,42,43, \\
\\
46,49,50,52,53,54,72,75,76,78,79,80\}
\end{gathered}
$$

In fact, we can find a k-generational set for all k.

k-Generational Sets

Idea of proof: We can find A_{j} such that $\left|j A_{j}+j A_{j}\right|>\left|j A_{j}-j A_{j}\right|$ for a specific $1 \leq j \leq k$.

k-Generational Sets

Idea of proof: We can find A_{j} such that
$\left|j A_{j}+j A_{j}\right|>\left|j A_{j}-j A_{j}\right|$ for a specific $1 \leq j \leq k$.
Combine the A_{j} using the method of base expansion.

Base Expansion

Base Expansion: For sets A_{1}, A_{2} and $m \in \mathbb{N}$ sufficiently large (relative to A_{1}, A_{2}) the set

$$
A=m \cdot A_{1}+A_{2}
$$

has the property that

$$
|x A-y A|=\left|x A_{1}-y A_{1}\right| \cdot\left|x A_{2}-y A_{2}\right|
$$

whenever $x+y$ is small relative to m.

Base Expansion

Base Expansion: For sets A_{1}, A_{2} and $m \in \mathbb{N}$ sufficiently large (relative to A_{1}, A_{2}) the set

$$
A=m \cdot A_{1}+A_{2}
$$

has the property that

$$
|x A-y A|=\left|x A_{1}-y A_{1}\right| \cdot\left|x A_{2}-y A_{2}\right|
$$

whenever $x+y$ is small relative to m.
(here multiplication is the usual scalar multiplication)

Generalization

For nontrivial $x_{j}, y_{j}, w_{j}, z_{j}(2 \leq j \leq k)$, we can find an A such that $\left|x_{j} A-y_{j} A\right|>\left|w_{j} A-z_{j} A\right|$ for all j.

Generalization

For nontrivial $x_{j}, y_{j}, w_{j}, z_{j}(2 \leq j \leq k)$, we can find an A such that $\left|x_{j} A-y_{j} A\right|>\left|w_{j} A-z_{j} A\right|$ for all j.

Example: We can find an A such that

$$
\begin{aligned}
&|A+A|>|A-A| \\
&|A+A-A|>|A+A+A| \\
&|5 A-2 A|>|A-6 A| \\
& \vdots \\
&|1870 A-141 A|>|1817 A-194 A|
\end{aligned}
$$

Limiting behavior of kA

Question: Can we find A with $|k A+k A|>|k A-k A|$ for all k ?

Limiting behavior of kA

Question: Can we find A with $|k A+k A|>|k A-k A|$ for all k ?

No. No such set exists.

Limiting behavior of kA

Question: Can we find A with $|k A+k A|>|k A-k A|$ for all k ?

No. No such set exists.
It turns out that all sets have a sort of limiting behavior.

Stabilizing Fringes

Example: $A=\{0,3,5,6,8,9,10,11,12,15,16,20\}$

Figure: A

Stabilizing Fringes

Example: $A=\{0,3,5,6,8,9,10,11,12,15,16,20\}$

Figure: A

Figure: $A+A$

$|k A-k A|$ vs. $|k A+k A|$

Nathanson: For any set $A, k A$ becomes stabilized before k reaches $\max (A)^{2} \cdot|A|$.

We improve this bound to $\max (A)$.

```
|kA - kA| vs. |kA + kA|
```


Theorem

For any set $A, k A$ will become difference-dominated or balanced before k reaches $2 \cdot \max (A)$.

Proof Idea:

- Subtraction allows the two fringes to interact, while addition keeps them apart.
- After the set stabilizes, the difference set will "contain" the sum set.

Thanks

Thanks to:

- Williams College,
- NSF Grant DMS0850577,
- Conference Coordinators.

