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L-functions

Riemann zeta function:

ζ(s) =
∑

n

1
ns =

∏
p primes

1
1− p−s

L-functions generalizes the Riemann zeta-function:

L(s, f ) =
∞∑

n=1

af (n)

ns =
∏

p prime

Lp (s, f )−1 , Re(s) > 1.

Explicit Formula: Relates sums over zeros to sums over
primes.
Functional Equation:

Λ(s, f ) = Λ∞(s, f )L(s, f ) = Λ(1− s, f ).

Generalized Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2

; can write zeros as
1
2

+ iγ.

3



Introduction Maass Forms Results Conclusion

L-functions

Riemann zeta function:

ζ(s) =
∑

n

1
ns =

∏
p primes

1
1− p−s

L-functions generalizes the Riemann zeta-function:

L(s, f ) =
∞∑

n=1

af (n)

ns =
∏

p prime

Lp (s, f )−1 , Re(s) > 1.

Explicit Formula: Relates sums over zeros to sums over
primes.
Functional Equation:

Λ(s, f ) = Λ∞(s, f )L(s, f ) = Λ(1− s, f ).

Generalized Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2

; can write zeros as
1
2

+ iγ.

4



Introduction Maass Forms Results Conclusion

L-functions

Riemann zeta function:

ζ(s) =
∑

n

1
ns =

∏
p primes

1
1− p−s

L-functions generalizes the Riemann zeta-function:

L(s, f ) =
∞∑

n=1

af (n)

ns =
∏

p prime

Lp (s, f )−1 , Re(s) > 1.

Explicit Formula: Relates sums over zeros to sums over
primes.

Functional Equation:

Λ(s, f ) = Λ∞(s, f )L(s, f ) = Λ(1− s, f ).

Generalized Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2

; can write zeros as
1
2

+ iγ.

5



Introduction Maass Forms Results Conclusion

L-functions

Riemann zeta function:

ζ(s) =
∑

n

1
ns =

∏
p primes

1
1− p−s

L-functions generalizes the Riemann zeta-function:

L(s, f ) =
∞∑

n=1

af (n)

ns =
∏

p prime

Lp (s, f )−1 , Re(s) > 1.

Explicit Formula: Relates sums over zeros to sums over
primes.
Functional Equation:

Λ(s, f ) = Λ∞(s, f )L(s, f ) = Λ(1− s, f ).

Generalized Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2

; can write zeros as
1
2

+ iγ.

6



Introduction Maass Forms Results Conclusion

L-functions

Riemann zeta function:

ζ(s) =
∑

n

1
ns =

∏
p primes

1
1− p−s

L-functions generalizes the Riemann zeta-function:

L(s, f ) =
∞∑

n=1

af (n)

ns =
∏

p prime

Lp (s, f )−1 , Re(s) > 1.

Explicit Formula: Relates sums over zeros to sums over
primes.
Functional Equation:

Λ(s, f ) = Λ∞(s, f )L(s, f ) = Λ(1− s, f ).

Generalized Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2

; can write zeros as
1
2

+ iγ.
7



Introduction Maass Forms Results Conclusion

Measures of Spacings: n-Level Density

n-level density for one function

Dn,f (φ) =
∑

j1,...,jn
distinct

φ1

(
Lfγ

(j1)
f

)
· · ·φn

(
Lfγ

(jn)
f

)

Test function φ(x) :=
∏

i φi(xi), φi is even Schwartz
function.
Fourier Transforms φ̂ has compact support: (−σ, σ).
Zeros scaled by Lf .
Most of contribution is from low zeros.
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Katz-Sarnak Conjecture

Conjecture (Katz-Sarnak)
(In the limit) Scaled distribution of zeros near central point
agrees with scaled distribution of eigenvalues near 1 of a
classical compact group.

Need to average n-level density over a family and take the limit
of this parameter; as |N| → ∞,

1
|FN |

∑
f∈FN

Dn,f (φ) →
∫
· · ·
∫
φ(x)Wn,G(F)(x)dx .
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Cuspidal Maass Forms
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Maass Forms

Definition: Maass Forms
A Maass form on a group Γ ⊂ PSL(2,R) is a function f : H → R
which satisfies:

1 f (γz) = f (z) for all γ ∈ Γ,
2 f vanishes at the cusps of Γ, and
3 ∆f = λf for some λ = s(1− s) > 0, where

∆ = −y2
(
∂2

∂x2 +
∂2

∂y2

)
is the Laplace-Beltrami operator on H.
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L-function associated to Maass forms

Write Fourier expansion of Maass form uj as

uj(z) = cosh(tj)
∑
n 6=0

√
yλj(n)Kitj (2π|n|y)e2πinx .

Define L-function attached to uj as

L(s,uj) =
∑
n≥1

λj(n)

ns =
∏

p

(
1−

αj(p)

ps

)−1(
1−

βj(p)

ps

)−1

where αj(p) + βj(p) = λj(p), αj(p)βj(p) = 1, λj(1) = 1.
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n-level over a family

Recall for Katz-Sarnak Conjecture,

1
|FN |

∑
f∈FN

Dn,f (φ) =
1
|FN |

∑
f∈FN

∑
j1,...,jn
ji 6=±jk

∏
i

φi

(
Lfγ

(ji )
E

)

→
∫
· · ·
∫
φ(x)Wn,G(F)(x)dx .

For Dirichlet/cuspidal newform L-functions, there are many
with a given conductor.
Problem: For Maass forms, expect at most one with a
given conductor.
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n-level over a family, continued

Solution: Average over Laplace eigenvalues λf = 1/4 + t2
j .

two choices for the weight function hT :

h1,T (tj) = exp (−t2
j /T

2),

which picks out eigenvalues near the origin, or

h2,T (tj) = exp (−(tj − T )2/L2) + exp (−(tj + T )2/L2),

which picks out eigenvalues centered at ±T .
Weighted 1-level density becomes

1∑
j

hT (tj )
‖uj‖2

∑
j

hT (tj)
‖uj‖2

Dn,uj (φ)

=
1∑

j
hT (tj )
‖uj‖2

∑
j

hT (tj)
‖uj‖2

∑
j1,...,jn
ji 6=±jk

∏
i

φi

(
γ

2π
log R

)
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Results
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1-Level Density

1-level density for one function

D(uj ;φ) =
∑
γ

φ
( γ

2π
log R

)
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1-Level Density

1-level density for one function

D(uj ;φ)

= Terms involving Γ +
2

log R

∑
p

log p
p

φ̂

(
2 log p
log R

)

−
∑

p

2λj(p) log p

p
1
2 log R

φ̂

(
log p
log R

)
−
∑

p

2λj(p2) log p
p log R

φ̂

(
2 log p
log R

)
+O

(
1

log R

)
1 Explicit formula.
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1-Level Density

1-level density for one function

D(uj ;φ)

= φ̂(0)
log(1 + t2

j )

log R
+

2
log R

∑
p

log p
p

φ̂

(
2 log p
log R

)

−
∑

p

2λj(p) log p

p
1
2 log R

φ̂

(
log p
log R

)
−
∑

p

2λj(p2) log p
p log R

φ̂

(
2 log p
log R

)
+O

(
1

log R

)
1 Explicit formula.
2 Gamma function identities
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1-Level Density

1-level density for one function

D(uj ;φ)

= φ̂(0)
log(1 + t2

j )

log R
+
φ(0)

2
+ O

(
log log R

log R

)
−
∑

p

2λj(p) log p

p
1
2 log R

φ̂

(
log p
log R

)
−
∑

p

2λj(p2) log p
p log R

φ̂

(
2 log p
log R

)

1 Explicit formula.
2 Gamma function identities
3 Prime Number Theorem
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Average 1-level density

The weighted 1-level density becomes:

1∑
j

hT (tj )
‖uj‖2

∑
j

ht (tj)
‖uj‖2

D(uj ;φ)

=
φ(0)

2
+ O

(
log log R

log R

)
+

1∑
j

ht (tj )
‖uj‖2

∑
j

ht (tj)
‖uj‖2

φ̂(0)
log(1 + t2

j )

log R

− 1∑
j

hT (tj )
‖uj‖2

∑
p

2 log p

p
1
2 log R

φ̂

(
log p
log R

)∑
j

hT (tj)
‖uj‖2

λj(p)

− 1∑
j

hT (tj )
‖uj‖2

∑
p

2 log p
p log R

φ̂

(
2 log p
log R

)∑
j

hT (tj)
‖uj‖2

λj(p2)
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Kuznetsov Trace Formula

To tackle terms with λj(p) and λj(p2) we need the Kuznetsov
Trace Formula:

∑
j

h(tj)
‖uj‖2

λj(m)λj(n)

= some function that depends just on h, m, and n
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Kuznetsov Trace Formula

X
j

h(tj)
‖uj‖2 λj(m)λj(n) +

1
4π

Z
R
τ(m, r)τ(n, r)

h(r)
cosh(πr)

dr =

δn,m

π2

Z
R

r tanh(r)h(r)dr +
2i
π

X
c≥1

S(n,m; c)

c

Z
R

Jir

„
4π

√
mn

c

«
h(r)r

cosh(πr)
dr

where
τ(m, r) = π

1
2 +ir Γ(1/2 + ir)−1ζ(1 + 2ir)−1n−

1
2
∑

ab=|m|
(a

b

)ir .

S(n,m; c) =
∑

0≤x≤c−1,gcd(x ,c)=1

e2πi(nx+mx∗)/c

Jir (x) =
∞∑

m=0

(−1)m

m!Γ(m + ir + 1)

(
1
2

x
)2m+ir

.
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Kuznetsov Formula

X
j

h(tj)
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4π

Z
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Result: 1-level density

Theorem (AILMZ, 2011)
If hT = h2,T , T →∞, and σ < 2/3 then 1-level density is

1∑
j

hT (tj )
‖uj‖2

∑
j

hT (tj)
‖uj‖2

D(uj ;φ) =
φ(0)

2
+ φ̂(0) + O

(
log log R

log R

)
+ O(T σ(3/2+ε)−η).

This matches with the orthogonal family density as
predicted by Katz-Sarnak.
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Support

Can distinguish unitary and symplectic from the 3 orthogonal
groups, but 1-level density cannot distinguish the orthogonal
groups from each other if support in (−1,1).

2-level density can distinguish orthogonal groups with arbitrarily
small support; additional term depending on distribution of
signs of functional equations.
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Result: 2-level density

Theorem (AILMZ, 2011)
Same conditions as before, for σ < 1/3 have

D∗2,F =
2∏

i=1

[
φi(0)

2
+ φ̂i(0)

]
+

1
2

∫ ∞
−∞
|z|φ̂1(z)φ̂2(z)dz

−φ1(0)φ1(0)− 2φ̂1φ2(0) + (φ1φ2)(0)N (−1)

+O
(

log log R
log R

)
.

Note that N (−1) is the weighted percent that have odd sign in
functional equation.
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Conclusion
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Recap

We calculated 1-level for σ < 2/3.

Calculated 2-level densities for σ < 1/3 in order to
distinguish the orthogonal families.

We showed agreement with Katz-Sarnak conjecture.

Thank you!
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