Low-lying zeros of cuspidal Maass forms

Nadine Amersi ${ }^{1}$, Geoff lyer ${ }^{2}$, Oleg Lazarev ${ }^{3}$, Liyang Zhang ${ }^{4}$ Advisor: Steven J Miller ${ }^{5}$

http://www.williams.edu/Mathematics/sjmiller
${ }^{1}$ University College London, ${ }^{2}$ University of Michigan, ${ }^{3}$ Princeton University, ${ }^{4,5}$ Williams College

Joint Mathematics Meetings
 Boston, Jan 52012

Introduction

L-functions

Riemann zeta function:

$$
\zeta(s)=\sum_{n} \frac{1}{n^{s}}=\prod_{p \text { primes }} \frac{1}{1-p^{-s}}
$$

L-functions

Riemann zeta function:

$$
\zeta(s)=\sum_{n} \frac{1}{n^{s}}=\prod_{p \text { primes }} \frac{1}{1-p^{-s}}
$$

L-functions generalizes the Riemann zeta-function:

$$
L(s, f)=\sum_{n=1}^{\infty} \frac{a_{f}(n)}{n^{s}}=\prod_{p \text { prime }} L_{p}(s, f)^{-1}, \quad \operatorname{Re}(s)>1
$$

L-functions

Riemann zeta function:

$$
\zeta(s)=\sum_{n} \frac{1}{n^{s}}=\prod_{p \text { primes }} \frac{1}{1-p^{-s}}
$$

L-functions generalizes the Riemann zeta-function:

$$
L(s, f)=\sum_{n=1}^{\infty} \frac{a_{f}(n)}{n^{s}}=\prod_{p \text { prime }} L_{p}(s, f)^{-1}, \quad \operatorname{Re}(s)>1 .
$$

Explicit Formula: Relates sums over zeros to sums over primes.

L-functions

Riemann zeta function:

$$
\zeta(s)=\sum_{n} \frac{1}{n^{s}}=\prod_{p \text { primes }} \frac{1}{1-p^{-s}}
$$

L-functions generalizes the Riemann zeta-function:

$$
L(s, f)=\sum_{n=1}^{\infty} \frac{a_{f}(n)}{n^{s}}=\prod_{p \text { prime }} L_{p}(s, f)^{-1}, \quad \operatorname{Re}(s)>1 .
$$

Explicit Formula: Relates sums over zeros to sums over primes.
Functional Equation:

$$
\Lambda(s, f)=\Lambda_{\infty}(s, f) L(s, f)=\Lambda(1-s, f)
$$

L-functions

Riemann zeta function:

$$
\zeta(s)=\sum_{n} \frac{1}{n^{s}}=\prod_{p \text { primes }} \frac{1}{1-p^{-s}}
$$

L-functions generalizes the Riemann zeta-function:

$$
L(s, f)=\sum_{n=1}^{\infty} \frac{a_{f}(n)}{n^{s}}=\prod_{p \text { prime }} L_{p}(s, f)^{-1}, \quad \operatorname{Re}(s)>1 .
$$

Explicit Formula: Relates sums over zeros to sums over primes.
Functional Equation:

$$
\Lambda(s, f)=\Lambda_{\infty}(s, f) L(s, f)=\Lambda(1-s, f)
$$

Generalized Riemann Hypothesis (RH):
All non-trivial zeros have $\operatorname{Re}(s)=\frac{1}{2}$; can write zeros as $\frac{1}{2}+i \gamma$.

Measures of Spacings: n-Level Density

n-level density for one function

$$
D_{n, f}(\phi)=\sum_{\substack{j_{1}, \ldots, j_{n} \\ \text { distinct }}} \phi_{1}\left(L_{f} \gamma_{f}^{\left(j_{1}\right)}\right) \cdots \phi_{n}\left(L_{f} \gamma_{f}^{\left(j_{n}\right)}\right)
$$

- Test function $\phi(x):=\prod_{i} \phi_{i}\left(x_{i}\right), \phi_{i}$ is even Schwartz function.
- Fourier Transforms $\widehat{\phi}$ has compact support: $(-\sigma, \sigma)$.
- Zeros scaled by L_{f}.
- Most of contribution is from low zeros.

Katz-Sarnak Conjecture

Conjecture (Katz-Sarnak)

(In the limit) Scaled distribution of zeros near central point agrees with scaled distribution of eigenvalues near 1 of a classical compact group.

Need to average n-level density over a family and take the limit of this parameter; as $|N| \rightarrow \infty$,

$$
\frac{1}{\left|\mathcal{F}_{N}\right|} \sum_{f \in \mathcal{F}_{N}} D_{n, f}(\phi) \rightarrow \int \cdots \int \phi(x) W_{n, \mathcal{G}(\mathcal{F})}(x) d x
$$

Cuspidal Maass Forms

Maass Forms

Definition: Maass Forms

A Maass form on a group $\Gamma \subset \operatorname{PSL}(2, \mathbb{R})$ is a function $f: \mathcal{H} \rightarrow \mathbb{R}$ which satisfies:
(1) $f(\gamma z)=f(z)$ for all $\gamma \in \Gamma$,
(2) f vanishes at the cusps of Γ, and
(3) $\Delta f=\lambda f$ for some $\lambda=s(1-s)>0$, where

$$
\Delta=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)
$$

is the Laplace-Beltrami operator on \mathcal{H}.

L-function associated to Mass forms

Write Fourier expansion of Maass form u_{j} as

$$
u_{j}(z)=\cosh \left(t_{j}\right) \sum_{n \neq 0} \sqrt{y} \lambda_{j}(n) K_{i t_{j}}(2 \pi|n| y) e^{2 \pi i n x}
$$

L-function associated to Maass forms

Write Fourier expansion of Maass form u_{j} as

$$
u_{j}(z)=\cosh \left(t_{j}\right) \sum_{n \neq 0} \sqrt{y} \lambda_{j}(n) K_{i t_{j}}(2 \pi|n| y) e^{2 \pi i n x}
$$

Define L-function attached to u_{j} as

$$
L\left(s, u_{j}\right)=\sum_{n \geq 1} \frac{\lambda_{j}(n)}{n^{s}}=\prod_{p}\left(1-\frac{\alpha_{j}(p)}{p^{s}}\right)^{-1}\left(1-\frac{\beta_{j}(p)}{p^{s}}\right)^{-1}
$$

where $\alpha_{j}(p)+\beta_{j}(p)=\lambda_{j}(p), \quad \alpha_{j}(p) \beta_{j}(p)=1, \quad \lambda_{j}(1)=1$.

n-level over a family

- Recall for Katz-Sarnak Conjecture,

$$
\begin{aligned}
& \rightarrow \int \cdots \int \phi(x) W_{n, \mathcal{G}(\mathcal{F})}(x) d x \text {. }
\end{aligned}
$$

n-level over a family

- Recall for Katz-Sarnak Conjecture,

$$
\begin{aligned}
\frac{1}{\left|\mathcal{F}_{N}\right|} \sum_{f \in \mathcal{F}_{N}} D_{n, f}(\phi) & =\frac{1}{\left|\mathcal{F}_{N}\right|} \sum_{f \in \mathcal{F}_{N}} \sum_{i_{1}, \ldots, j_{n}} \prod_{i} \phi_{i}\left(L_{f} \gamma_{E}^{\left(j_{i}\right)}\right) \\
& \rightarrow \int \cdots \neq \neq \phi(x) W_{n, \mathcal{G}(\mathcal{F})}(x) d x .
\end{aligned}
$$

- For Dirichlet/cuspidal newform L-functions, there are many with a given conductor.
- Problem: For Maass forms, expect at most one with a given conductor.

n-level over a family, continued

- Solution: Average over Laplace eigenvalues $\lambda_{f}=1 / 4+t_{j}^{2}$.

n-level over a family, continued

- Solution: Average over Laplace eigenvalues $\lambda_{f}=1 / 4+t_{j}^{2}$.
- two choices for the weight function h_{T} :

$$
h_{1, T}\left(t_{j}\right)=\exp \left(-t_{j}^{2} / T^{2}\right)
$$

which picks out eigenvalues near the origin,

n-level over a family, continued

- Solution: Average over Laplace eigenvalues $\lambda_{f}=1 / 4+t_{j}^{2}$.
- two choices for the weight function h_{T} :

$$
h_{1, T}\left(t_{j}\right)=\exp \left(-t_{j}^{2} / T^{2}\right)
$$

which picks out eigenvalues near the origin, or

$$
h_{2, T}\left(t_{j}\right)=\exp \left(-\left(t_{j}-T\right)^{2} / L^{2}\right)+\exp \left(-\left(t_{j}+T\right)^{2} / L^{2}\right)
$$

which picks out eigenvalues centered at $\pm T$.

n-level over a family, continued

- Solution: Average over Laplace eigenvalues $\lambda_{f}=1 / 4+t_{j}^{2}$.
- two choices for the weight function h_{T} :

$$
h_{1, T}\left(t_{j}\right)=\exp \left(-t_{j}^{2} / T^{2}\right)
$$

which picks out eigenvalues near the origin, or

$$
h_{2, T}\left(t_{j}\right)=\exp \left(-\left(t_{j}-T\right)^{2} / L^{2}\right)+\exp \left(-\left(t_{j}+T\right)^{2} / L^{2}\right)
$$

which picks out eigenvalues centered at $\pm T$.

- Weighted 1-level density becomes

$$
\begin{aligned}
& \frac{1}{\sum_{j} \frac{h_{T}\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}}} \sum_{j} \frac{h_{T}\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}} D_{n, u_{j}}(\phi) \\
& =\frac{1}{\sum_{j} \frac{h_{T}\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}}} \sum_{j} \frac{h_{T}\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}} \sum_{\substack{j_{i}, \ldots, j_{n} \\
j_{i} \neq \neq j_{k}}} \prod_{i} \phi_{i}\left(\frac{\gamma}{2 \pi} \log R\right)
\end{aligned}
$$

Results

1-Level Density

1-level density for one function

$$
D\left(u_{j} ; \phi\right)=\sum_{\gamma} \phi\left(\frac{\gamma}{2 \pi} \log R\right)
$$

1-Level Density

1-level density for one function

$$
\begin{aligned}
& D\left(u_{j} ; \phi\right) \\
& =\text { Terms involving } \Gamma+\frac{2}{\log R} \sum_{p} \frac{\log p}{p} \hat{\phi}\left(\frac{2 \log p}{\log R}\right) \\
& -\sum_{p} \frac{2 \lambda_{j}(p) \log p}{p^{\frac{1}{2}} \log R} \hat{\phi}\left(\frac{\log p}{\log R}\right)-\sum_{p} \frac{2 \lambda_{j}\left(p^{2}\right) \log p}{p \log R} \hat{\phi}\left(\frac{2 \log p}{\log R}\right) \\
& +O\left(\frac{1}{\log R}\right)
\end{aligned}
$$

(1) Explicit formula.

1-Level Density

1-level density for one function

$$
\begin{aligned}
& D\left(u_{j} ; \phi\right) \\
& =\hat{\phi}(0) \frac{\log \left(1+t_{j}^{2}\right)}{\log R}+\frac{2}{\log R} \sum_{p} \frac{\log p}{p} \hat{\phi}\left(\frac{2 \log p}{\log R}\right) \\
& -\sum_{p} \frac{2 \lambda_{j}(p) \log p}{p^{\frac{1}{2}} \log R} \hat{\phi}\left(\frac{\log p}{\log R}\right)-\sum_{p} \frac{2 \lambda_{j}\left(p^{2}\right) \log p}{p \log R} \hat{\phi}\left(\frac{2 \log p}{\log R}\right) \\
& +O\left(\frac{1}{\log R}\right)
\end{aligned}
$$

(1) Explicit formula.
(2) Gamma function identities

1-Level Density

1-level density for one function

$$
\begin{aligned}
& D\left(u_{j} ; \phi\right) \\
& =\hat{\phi}(0) \frac{\log \left(1+t_{j}^{2}\right)}{\log R}+\frac{\phi(0)}{2}+O\left(\frac{\log \log R}{\log R}\right) \\
& -\sum_{p} \frac{2 \lambda_{j}(p) \log p}{p^{\frac{1}{2}} \log R} \hat{\phi}\left(\frac{\log p}{\log R}\right)-\sum_{p} \frac{2 \lambda_{j}\left(p^{2}\right) \log p}{p \log R} \hat{\phi}\left(\frac{2 \log p}{\log R}\right)
\end{aligned}
$$

(1) Explicit formula.
(2) Gamma function identities
(3) Prime Number Theorem

Average 1-level density

The weighted 1-level density becomes:

$$
\begin{aligned}
& \frac{1}{\sum_{j} \frac{h_{T}\left(t_{j}\right)^{2}}{\| u_{j}}} \sum_{j} \frac{h_{t}\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}} D\left(u_{j} ; \phi\right) \\
& =\frac{\phi(0)}{2}+O\left(\frac{\log \log R}{\log R}\right)+\frac{1}{\sum_{j} \frac{h_{t}\left(t_{j}\right)}{\| \|_{j} \|^{2}}} \sum_{j} \frac{h_{t}\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}} \widehat{\phi}(0) \frac{\log \left(1+t_{j}^{2}\right)}{\log R} \\
& -\frac{1}{\sum_{j} \frac{h_{T}\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}}} \sum_{p} \frac{2 \log p}{p^{\frac{1}{2}} \log R} \widehat{\phi}\left(\frac{\log p}{\log R}\right) \sum_{j} \frac{h_{T}\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}} \lambda_{j}(p) \\
& -\frac{1}{\sum_{j} \frac{h_{T}\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}}} \sum_{p} \frac{2 \log p}{p \log R} \widehat{\phi}\left(\frac{2 \log p}{\log R}\right) \sum_{j} \frac{h_{T}\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}} \lambda_{j}\left(p^{2}\right)
\end{aligned}
$$

Average 1-level density

The weighted 1-level density becomes:

$$
\begin{aligned}
& \frac{1}{\sum_{j} \frac{h_{T}\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}}} \sum_{j} \frac{h_{t}\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}} D\left(u_{j} ; \phi\right) \\
& =\frac{\phi(0)}{2}+O\left(\frac{\log \log R}{\log R}\right)+\frac{1}{\sum_{j} \frac{h_{t}\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}}} \sum_{j} \frac{h_{t}\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}} \widehat{\phi}(0) \frac{\log \left(1+t_{j}^{2}\right)}{\log R} \\
& -\frac{1}{\sum_{j} \frac{h_{T}\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}}} \sum_{p} \frac{2 \log p}{p^{\frac{1}{2}} \log R} \widehat{\phi}\left(\frac{\log p}{\log R}\right) \sum_{j} \frac{h_{T}\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}} \lambda_{j}(p) \\
& -\frac{1}{\sum_{j} \frac{h_{T}\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}}} \sum_{p} \frac{2 \log p}{p \log R} \widehat{\phi}\left(\frac{2 \log p}{\log R}\right) \sum_{j} \frac{h_{T}\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}} \lambda_{j}\left(p^{2}\right)
\end{aligned}
$$

Kuznetsov Trace Formula

To tackle terms with $\lambda_{j}(p)$ and $\lambda_{j}\left(p^{2}\right)$ we need the Kuznetsov Trace Formula:

Kuznetsov Trace Formula

To tackle terms with $\lambda_{j}(p)$ and $\lambda_{j}\left(p^{2}\right)$ we need the Kuznetsov Trace Formula:

$$
\sum_{j} \frac{h\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}} \lambda_{j}(m) \overline{\lambda_{j}(n)}
$$

$=$ some function that depends just on h, m, and n

Kuznetsov Trace Formula

$$
\begin{aligned}
& \sum_{j} \frac{h\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}} \lambda_{j}(m) \overline{\lambda_{j}(n)}+\frac{1}{4 \pi} \int_{\mathbb{R}} \overline{\tau(m, r)} \tau(n, r) \frac{h(r)}{\cosh (\pi r)} d r= \\
& \frac{\delta_{n, m}}{\pi^{2}} \int_{\mathbb{R}} r \tanh (r) h(r) d r+\frac{2 i}{\pi} \sum_{c \geq 1} \frac{S(n, m ; c)}{c} \int_{\mathbb{R}} J_{i r}\left(\frac{4 \pi \sqrt{m n}}{c}\right) \frac{h(r) r}{\cosh (\pi r)} d r
\end{aligned}
$$

where

$$
\begin{gathered}
\tau(m, r)=\pi^{\frac{1}{2}+i r} \Gamma(1 / 2+i r)^{-1} \zeta(1+2 i r)^{-1} n^{-\frac{1}{2}} \sum_{a b=|m|}\left(\frac{a}{b}\right)^{i r} . \\
S(n, m ; c)=\sum_{0 \leq x \leq c-1, g c d(x, c)=1} e^{2 \pi i\left(n x+m x^{*}\right) / c} \\
J_{i r}(x)=\sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!\Gamma(m+i r+1)}\left(\frac{1}{2} x\right)^{2 m+i r} .
\end{gathered}
$$

Kuznetsov Formula

$$
\begin{aligned}
& \sum_{j} \frac{h\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}} \lambda_{j}(m) \overline{\lambda_{j}(n)}+\frac{1}{4 \pi} \int_{\mathbb{R}} \overline{\tau(m, r) \tau(n, r)} \frac{h(r)}{\cosh (\pi r)} d r= \\
& \frac{\delta_{n, m}}{\pi^{2}} \int_{\mathbb{R}} r \tanh (r) h(r) d r+\frac{2 i}{\pi} \sum_{c \geq 1} \frac{S(n, m ; c)}{c} \int_{\mathbb{R}} J_{i r}\left(\frac{4 \pi \sqrt{m n}}{c}\right) \frac{h(r) r}{\cosh (\pi r)} d r
\end{aligned}
$$

Result: 1-level density

Theorem (AILMZ, 2011)

If $h_{T}=h_{2, T}, T \rightarrow \infty$, and $\sigma<2 / 3$ then 1 -level density is

$$
\begin{aligned}
& \frac{1}{\sum_{j} \frac{h_{T}\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}}} \sum_{j} \frac{h_{T}\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}} D\left(u_{j} ; \phi\right)=\frac{\phi(0)}{2}+\widehat{\phi}(0)+O\left(\frac{\log \log R}{\log R}\right) \\
& \quad+O\left(T^{\sigma(3 / 2+\epsilon)-\eta}\right) .
\end{aligned}
$$

Result: 1-level density

Theorem (AILMZ, 2011)

If $h_{T}=h_{2, T}, T \rightarrow \infty$, and $\sigma<2 / 3$ then 1 -level density is

$$
\begin{aligned}
& \frac{1}{\sum_{j} \frac{h_{T}\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}}} \sum_{j} \frac{h_{T}\left(t_{j}\right)}{\left\|u_{j}\right\|^{2}} D\left(u_{j} ; \phi\right)=\frac{\phi(0)}{2}+\widehat{\phi}(0)+O\left(\frac{\log \log R}{\log R}\right) \\
& \quad+O\left(T^{\sigma(3 / 2+\epsilon)-\eta}\right) .
\end{aligned}
$$

- This matches with the orthogonal family density as predicted by Katz-Sarnak.

Support

Can distinguish unitary and symplectic from the 3 orthogonal groups, but 1-level density cannot distinguish the orthogonal groups from each other if support in $(-1,1)$.

Support

Can distinguish unitary and symplectic from the 3 orthogonal groups, but 1-level density cannot distinguish the orthogonal groups from each other if support in $(-1,1)$.

2-level density can distinguish orthogonal groups with arbitrarily small support; additional term depending on distribution of signs of functional equations.

Result: 2-level density

Theorem (AILMZ, 2011)

Same conditions as before, for $\sigma<1 / 3$ have

$$
\begin{aligned}
D_{2, \mathcal{F}}^{*}= & \prod_{i=1}^{2}\left[\frac{\phi_{i}(0)}{2}+\widehat{\phi}_{i}(0)\right]+\frac{1}{2} \int_{-\infty}^{\infty}|z| \widehat{\phi}_{1}(z) \widehat{\phi}_{2}(z) d z \\
& -\phi_{1}(0) \phi_{1}(0)-2 \widehat{\phi_{1} \phi_{2}}(0)+\left(\phi_{1} \phi_{2}\right)(0) \mathcal{N}(-1) \\
& +O\left(\frac{\log \log R}{\log R}\right) .
\end{aligned}
$$

Note that $\mathcal{N}(-1)$ is the weighted percent that have odd sign in functional equation.

Conclusion

Recap

- We calculated 1-level for $\sigma<2 / 3$.
- Calculated 2-level densities for $\sigma<1 / 3$ in order to distinguish the orthogonal families.
- We showed agreement with Katz-Sarnak conjecture.

Thank you!

