Low-lying zeros of cuspidal Maass forms

Nadine Amersi¹, Geoff Iyer², Oleg Lazarev³, Liyang Zhang⁴ Advisor: Steven J Miller⁵

http://www.williams.edu/Mathematics/sjmiller

¹University College London, ²University of Michigan, ³Princeton University, ^{4,5}Williams College

> Joint Mathematics Meetings Boston, Jan 5 2012

Introduction ●○○	Maass Forms	Results ೦೦೦೦೦೦೦೦೦೦	Conclusion
/-functions			

Riemann zeta function:

$$\zeta(s) = \sum_{n} \frac{1}{n^{s}} = \prod_{p \text{ primes}} \frac{1}{1 - p^{-s}}$$

Introduction ●○○	Maass Forms	Results	Conclusion
<i>L</i> -functions			

Riemann zeta function:

$$\zeta(s) = \sum_{n} \frac{1}{n^{s}} = \prod_{p \text{ primes}} \frac{1}{1 - p^{-s}}$$

L-functions generalizes the Riemann zeta-function:

$$L(s, f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s} = \prod_{p \text{ prime}} L_p(s, f)^{-1}, \quad \text{Re}(s) > 1.$$

Introduction ●○○	Maass Forms	Results	Conclusion
<i>L</i> -functions			

Riemann zeta function:

$$\zeta(s) = \sum_{n} \frac{1}{n^{s}} = \prod_{p \text{ primes}} \frac{1}{1 - p^{-s}}$$

L-functions generalizes the Riemann zeta-function:

$$L(s, f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s} = \prod_{p \text{ prime}} L_p(s, f)^{-1}, \quad \text{Re}(s) > 1.$$

Explicit Formula: Relates sums over zeros to sums over primes.

Introduction	Maass Forms	Results	Conclusion
●○○	0000	oooooooooo	

L-functions

Riemann zeta function:

$$\zeta(s) = \sum_{n} \frac{1}{n^{s}} = \prod_{p \text{ primes}} \frac{1}{1 - p^{-s}}$$

L-functions generalizes the Riemann zeta-function:

$$L(s, f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s} = \prod_{p \text{ prime}} L_p(s, f)^{-1}, \quad \text{Re}(s) > 1.$$

Explicit Formula: Relates sums over zeros to sums over primes.

Functional Equation:

$$\Lambda(s, f) = \Lambda_{\infty}(s, f)L(s, f) = \Lambda(1 - s, f).$$

Introduction ●○○	Maass Forms	Results 0000000000	Conclusion

L-functions

Riemann zeta function:

$$\zeta(s) = \sum_{n} \frac{1}{n^{s}} = \prod_{p \text{ primes}} \frac{1}{1 - p^{-s}}$$

L-functions generalizes the Riemann zeta-function:

$$L(s, f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s} = \prod_{p \text{ prime}} L_p(s, f)^{-1}, \quad \text{Re}(s) > 1.$$

Explicit Formula: Relates sums over zeros to sums over primes.

Functional Equation:

$$\Lambda(s, f) = \Lambda_{\infty}(s, f)L(s, f) = \Lambda(1 - s, f).$$

Generalized Riemann Hypothesis (RH):

All non-trivial zeros have $\operatorname{Re}(s) = \frac{1}{2}$; can write zeros as $\frac{1}{2} + i\gamma$.

Results

Conclusion

Measures of Spacings: *n*-Level Density

n-level density for one function

$$\mathcal{D}_{n,f}(\phi) = \sum_{\substack{j_1,\ldots,j_n \\ \text{distinct}}} \phi_1\left(L_f \gamma_f^{(j_1)}\right) \cdots \phi_n\left(L_f \gamma_f^{(j_n)}\right)$$

- Test function φ(x) := Π_i φ_i(x_i), φ_i is even Schwartz function.
- Fourier Transforms $\hat{\phi}$ has compact support: $(-\sigma, \sigma)$.
- Zeros scaled by L_f.
- Most of contribution is from low zeros.

Results 00000000000 Conclusion

Katz-Sarnak Conjecture

Conjecture (Katz-Sarnak)

(In the limit) Scaled distribution of zeros near central point agrees with scaled distribution of eigenvalues near 1 of a classical compact group.

Need to average *n*-level density over a family and take the limit of this parameter; as $|N| \rightarrow \infty$,

$$\frac{1}{|\mathcal{F}_N|}\sum_{f\in\mathcal{F}_N}D_{n,f}(\phi) \quad \rightarrow \quad \int\cdots\int\phi(x)W_{n,\mathcal{G}(\mathcal{F})}(x)dx.$$

Results

Cuspidal Maass Forms

10

Results

Maass Forms

Definition: Maass Forms

A Maass form on a group $\Gamma \subset PSL(2, \mathbb{R})$ is a function $f : \mathcal{H} \to \mathbb{R}$ which satisfies:

•
$$f(\gamma z) = f(z)$$
 for all $\gamma \in \Gamma$,

If vanishes at the cusps of Γ, and

3 $\Delta f = \lambda f$ for some $\lambda = s(1 - s) > 0$, where

$$\Delta = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$$

is the Laplace-Beltrami operator on \mathcal{H} .

Introduction	Maass Forms ○●○○	Results ooooooooooo	Conclusion
L-function associ	iated to Maass forms		

Write Fourier expansion of Maass form u_i as

$$u_j(z) = \cosh(t_j) \sum_{n \neq 0} \sqrt{y} \lambda_j(n) \mathcal{K}_{it_j}(2\pi |n|y) e^{2\pi i n x}.$$

Introduction	Maass Forms ○●○○	Results 0000000000	Conclusion

L-function associated to Maass forms

Write Fourier expansion of Maass form u_j as

$$u_j(z) = \cosh(t_j) \sum_{n \neq 0} \sqrt{y} \lambda_j(n) \mathcal{K}_{it_j}(2\pi |n|y) e^{2\pi i n x}.$$

Define *L*-function attached to u_j as

$$L(s, u_j) = \sum_{n \ge 1} \frac{\lambda_j(n)}{n^s} = \prod_p \left(1 - \frac{\alpha_j(p)}{p^s}\right)^{-1} \left(1 - \frac{\beta_j(p)}{p^s}\right)^{-1}$$

where $\alpha_j(p) + \beta_j(p) = \lambda_j(p)$, $\alpha_j(p)\beta_j(p) = 1$, $\lambda_j(1) = 1$.

• Recall for Katz-Sarnak Conjecture,

$$\frac{1}{|\mathcal{F}_N|} \sum_{f \in \mathcal{F}_N} D_{n,f}(\phi) = \frac{1}{|\mathcal{F}_N|} \sum_{f \in \mathcal{F}_N} \sum_{\substack{j_1, \dots, j_n \\ j_l \neq \pm j_k}} \prod_i \phi_i \left(L_f \gamma_E^{(j_l)} \right)$$
$$\rightarrow \int \cdots \int \phi(x) W_{n,\mathcal{G}(\mathcal{F})}(x) dx.$$

• Recall for Katz-Sarnak Conjecture,

$$\frac{1}{|\mathcal{F}_N|} \sum_{f \in \mathcal{F}_N} D_{n,f}(\phi) = \frac{1}{|\mathcal{F}_N|} \sum_{f \in \mathcal{F}_N} \sum_{\substack{i_1, \dots, i_n \\ i_i \neq \pm i_k}} \prod_i \phi_i \left(L_f \gamma_E^{(j_i)} \right)$$
$$\rightarrow \int \cdots \int \phi(x) W_{n,\mathcal{G}(\mathcal{F})}(x) dx.$$

- For Dirichlet/cuspidal newform L-functions, there are many with a given conductor.
- Problem: For Maass forms, expect at most one with a given conductor.

Introduction	Maass Forms	Results	Conclusion
	0000		

• Solution: Average over Laplace eigenvalues $\lambda_f = 1/4 + t_i^2$.

Introduction	Maass Forms	Results	Conclusion
	0000		

- Solution: Average over Laplace eigenvalues $\lambda_f = 1/4 + t_i^2$.
- two choices for the weight function h_T :

$$h_{1,T}(t_j) = \exp{(-t_j^2/T^2)},$$

which picks out eigenvalues near the origin,

Introduction	Maass Forms	Results	Conclusion
	0000		

- Solution: Average over Laplace eigenvalues $\lambda_f = 1/4 + t_j^2$.
- two choices for the weight function h_T :

$$h_{1,T}(t_j) = \exp{(-t_j^2/T^2)},$$

which picks out eigenvalues near the origin, or

$$h_{2,T}(t_j) = \exp\left(-(t_j - T)^2/L^2\right) + \exp\left(-(t_j + T)^2/L^2\right),$$

which picks out eigenvalues centered at $\pm T$.

Introduction	Maass Forms	Results	Conclusion
	0000		

- Solution: Average over Laplace eigenvalues $\lambda_f = 1/4 + t_j^2$.
- two choices for the weight function h_T :

$$h_{1,T}(t_j) = \exp{(-t_j^2/T^2)},$$

which picks out eigenvalues near the origin, or

$$h_{2,T}(t_j) = \exp\left(-(t_j - T)^2/L^2\right) + \exp\left(-(t_j + T)^2/L^2\right),$$

which picks out eigenvalues centered at $\pm T$.

Weighted 1-level density becomes

$$\frac{1}{\sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}}} \sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}} D_{n,u_{j}}(\phi)$$
$$= \frac{1}{\sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}}} \sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}} \sum_{\substack{j_{1},\dots,j_{n}\\ j_{j}\neq\pm j_{k}}} \prod_{i} \phi_{i}\left(\frac{\gamma}{2\pi} \log R\right)$$

Results

Introduction 000	Maass Forms	Results ●ooooooooo	Conclusion
1-Level Density			

1-level density for one function

$$D(u_j; \phi) = \sum_{\gamma} \phi\left(\frac{\gamma}{2\pi} \log R\right)$$

Results ○●○○○○○○○○ Conclusion

1-Level Density

1-level density for one function

$$\begin{split} D(u_j;\phi) \\ &= \text{Terms involving } \Gamma + \frac{2}{\log R} \sum_p \frac{\log p}{p} \hat{\phi} \left(\frac{2\log p}{\log R} \right) \\ &- \sum_p \frac{2\lambda_j(p)\log p}{p^{\frac{1}{2}}\log R} \hat{\phi} \left(\frac{\log p}{\log R} \right) - \sum_p \frac{2\lambda_j(p^2)\log p}{p\log R} \hat{\phi} \left(\frac{2\log p}{\log R} \right) \\ &+ O\left(\frac{1}{\log R} \right) \end{split}$$

Explicit formula.

Results oo●ooooooo Conclusion

1-Level Density

1-level density for one function

$$\begin{split} D(u_j;\phi) \\ &= \hat{\phi}(0) \frac{\log(1+t_j^2)}{\log R} + \frac{2}{\log R} \sum_p \frac{\log p}{p} \hat{\phi}\left(\frac{2\log p}{\log R}\right) \\ &- \sum_p \frac{2\lambda_j(p)\log p}{p^{\frac{1}{2}}\log R} \hat{\phi}\left(\frac{\log p}{\log R}\right) - \sum_p \frac{2\lambda_j(p^2)\log p}{p\log R} \hat{\phi}\left(\frac{2\log p}{\log R}\right) \\ &+ O\left(\frac{1}{\log R}\right) \end{split}$$

- Explicit formula.
- ② Gamma function identities

Results ooo●ooooooo

1-Level Density

1-level density for one function

$$\begin{split} D(u_j;\phi) \\ &= \hat{\phi}(0) \frac{\log(1+t_j^2)}{\log R} + \frac{\phi(0)}{2} + O\left(\frac{\log\log R}{\log R}\right) \\ &- \sum_p \frac{2\lambda_j(p)\log p}{p^{\frac{1}{2}}\log R} \hat{\phi}\left(\frac{\log p}{\log R}\right) - \sum_p \frac{2\lambda_j(p^2)\log p}{p\log R} \hat{\phi}\left(\frac{2\log p}{\log R}\right) \end{split}$$

Explicit formula.

- ② Gamma function identities
- Prime Number Theorem

Introduction	Maass Forms	Results	Conclusion
000	0000	○○○○●○○○○○○	

Average 1-level density

The weighted 1-level density becomes:

$$\begin{split} &\frac{1}{\sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}}} \sum_{j} \frac{h_{t}(t_{j})}{\|u_{j}\|^{2}} D(u_{j};\phi) \\ &= \frac{\phi(0)}{2} + O\left(\frac{\log\log R}{\log R}\right) + \frac{1}{\sum_{j} \frac{h_{t}(t_{j})}{\|u_{j}\|^{2}}} \sum_{j} \frac{h_{t}(t_{j})}{\|u_{j}\|^{2}} \widehat{\phi}(0) \frac{\log(1+t_{j}^{2})}{\log R} \\ &- \frac{1}{\sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}}} \sum_{p} \frac{2\log p}{p^{\frac{1}{2}}\log R} \widehat{\phi}\left(\frac{\log p}{\log R}\right) \sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}} \lambda_{j}(p) \\ &- \frac{1}{\sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}}} \sum_{p} \frac{2\log p}{p\log R} \widehat{\phi}\left(\frac{2\log p}{\log R}\right) \sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}} \lambda_{j}(p^{2}) \end{split}$$

Introduction 000	Maass Forms	Results ○○○○●○○○○○	Conclusion
Average 1-level den	sity		

The weighted 1-level density becomes:

$$\begin{split} &\frac{1}{\sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}}} \sum_{j} \frac{h_{t}(t_{j})}{\|u_{j}\|^{2}} D(u_{j};\phi) \\ &= \frac{\phi(0)}{2} + O\left(\frac{\log\log R}{\log R}\right) + \frac{1}{\sum_{j} \frac{h_{t}(t_{j})}{\|u_{j}\|^{2}}} \sum_{j} \frac{h_{t}(t_{j})}{\|u_{j}\|^{2}} \widehat{\phi}(0) \frac{\log(1+t_{j}^{2})}{\log R} \\ &- \frac{1}{\sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}}} \sum_{p} \frac{2\log p}{p^{\frac{1}{2}}\log R} \widehat{\phi}\left(\frac{\log p}{\log R}\right) \sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}} \lambda_{j}(p) \\ &- \frac{1}{\sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}}} \sum_{p} \frac{2\log p}{p\log R} \widehat{\phi}\left(\frac{2\log p}{\log R}\right) \sum_{j} \frac{h_{T}(t_{j})}{\|u_{j}\|^{2}} \lambda_{j}(p^{2}) \end{split}$$

Introduction	Maass Forms	Results	Conclusion
000	0000	○○○○○●○○○○○	
Kuznetsov Tra	ce Formula		

To tackle terms with $\lambda_j(p)$ and $\lambda_j(p^2)$ we need the Kuznetsov Trace Formula:

To tackle terms with $\lambda_i(p)$ and $\lambda_i(p^2)$ we need the Kuznetsov Trace Formula:

$$\sum_{j} \frac{h(t_j)}{\|u_j\|^2} \lambda_j(m) \overline{\lambda_j(n)}$$

.

= some function that depends just on h, m, and n

Introduction
000

Results ○○○○○●○○○○ Conclusion

Kuznetsov Trace Formula

$$\sum_{j} \frac{h(t_{j})}{\|u_{j}\|^{2}} \lambda_{j}(m) \overline{\lambda_{j}(n)} + \frac{1}{4\pi} \int_{\mathbb{R}} \overline{\tau(m,r)} \tau(n,r) \frac{h(r)}{\cosh(\pi r)} dr = \frac{\delta_{n,m}}{\pi^{2}} \int_{\mathbb{R}} r \tanh(r) h(r) dr + \frac{2i}{\pi} \sum_{c \ge 1} \frac{S(n,m;c)}{c} \int_{\mathbb{R}} J_{ir} \left(\frac{4\pi\sqrt{mn}}{c}\right) \frac{h(r)r}{\cosh(\pi r)} dr$$

where

$$\tau(m,r) = \pi^{\frac{1}{2} + ir} \Gamma(1/2 + ir)^{-1} \zeta(1 + 2ir)^{-1} n^{-\frac{1}{2}} \sum_{ab=|m|} \left(\frac{a}{b}\right)^{ir}.$$

$$S(n,m;c) = \sum_{0 \le x \le c-1, gcd(x,c)=1} e^{2\pi i (nx + mx^*)/c}$$

$$J_{ir}(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m! \Gamma(m+ir+1)} \left(\frac{1}{2}x\right)^{2m+ir}.$$

Maass Form

Results ○○○○○○●○○○

Conclusion

Kuznetsov Formula

$$\sum_{j} \frac{h(t_{j})}{\|u_{j}\|^{2}} \lambda_{j}(m) \overline{\lambda_{j}(n)} + \frac{1}{4\pi} \int_{\mathbb{R}} \overline{\tau(m,r)} \tau(n,r) \frac{h(r)}{\cosh(\pi r)} dr = \frac{\delta_{n,m}}{\pi^{2}} \int_{\mathbb{R}} r \tanh(r) h(r) dr + \frac{2i}{\pi} \sum_{c \ge 1} \frac{S(n,m;c)}{c} \int_{\mathbb{R}} J_{ir} \left(\frac{4\pi\sqrt{mn}}{c}\right) \frac{h(r)r}{\cosh(\pi r)} dr$$

Maass Forms

Results

Conclusion

Result: 1-level density

Theorem (AILMZ, 2011)

If $h_T = h_{2,T}$, $T \to \infty$, and $\sigma < 2/3$ then 1-level density is

$$\frac{1}{\sum_{j} \frac{h_{\mathcal{T}}(t_{j})}{\|u_{j}\|^{2}}} \sum_{j} \frac{h_{\mathcal{T}}(t_{j})}{\|u_{j}\|^{2}} D(u_{j};\phi) = \frac{\phi(0)}{2} + \widehat{\phi}(0) + O\left(\frac{\log\log R}{\log R}\right)$$
$$+ O(T^{\sigma(3/2+\epsilon)-\eta}).$$

Maass Forms

Results

Conclusion

Result: 1-level density

Theorem (AILMZ, 2011)

If $h_T = h_{2,T}$, $T \to \infty$, and $\sigma < 2/3$ then 1-level density is

$$\frac{1}{\sum_{j} \frac{h_{\mathcal{T}}(t_{j})}{\|u_{j}\|^{2}}} \sum_{j} \frac{h_{\mathcal{T}}(t_{j})}{\|u_{j}\|^{2}} D(u_{j};\phi) = \frac{\phi(0)}{2} + \widehat{\phi}(0) + O\left(\frac{\log\log R}{\log R}\right) + O(T^{\sigma(3/2+\epsilon)-\eta}).$$

 This matches with the orthogonal family density as predicted by Katz-Sarnak.

Introduction	Maass Forms	Results ○○○○○○○○●○	Conclusion
Support			

Can distinguish unitary and symplectic from the 3 orthogonal groups, but 1-level density cannot distinguish the orthogonal groups from each other if support in (-1, 1).

Suppor

Introd	ucti	on

Support

Can distinguish unitary and symplectic from the 3 orthogonal groups, but 1-level density cannot distinguish the orthogonal groups from each other if support in (-1, 1).

2-level density can distinguish orthogonal groups with arbitrarily small support; additional term depending on distribution of signs of functional equations.

Results

Result: 2-level density

Theorem (AILMZ, 2011)

Same conditions as before, for $\sigma < 1/3$ have

$$D_{2,\mathcal{F}}^{*} = \prod_{i=1}^{2} \left[\frac{\phi_{i}(0)}{2} + \widehat{\phi_{i}}(0) \right] + \frac{1}{2} \int_{-\infty}^{\infty} |z| \widehat{\phi_{1}}(z) \widehat{\phi_{2}}(z) dz \\ -\phi_{1}(0) \phi_{1}(0) - 2 \widehat{\phi_{1}} \widehat{\phi_{2}}(0) + (\phi_{1} \phi_{2})(0) \mathcal{N}(-1) \\ + O\left(\frac{\log \log R}{\log R} \right).$$

Note that $\mathcal{N}(-1)$ is the weighted percent that have odd sign in functional equation.

Conclusion

36

Introduction	Maass Forms	Results	Conclusion
Recap			

- We calculated 1-level for $\sigma < 2/3$.
- Calculated 2-level densities for *σ* < 1/3 in order to distinguish the orthogonal families.
- We showed agreement with Katz-Sarnak conjecture.

Thank you!