Intro	Preliminaries	Results	Conclusion

Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles

Olivia Beckwith¹, Steven J. Miller², and Karen Shen³

¹Harvey Mudd College ²Williams College ³Stanford University

Joint Meetings of the AMS/MAA Boston, January 2012

Intro	Preliminaries	Results	Conclusion
•••			

Random Matrices and their Limiting Spectral Measure

random matrix: a matrix whose entries are chosen randomly according to some probability distribution where

$$\mathbb{E}\left(a_{ij}
ight)=0$$
 and $Var\left(a_{ij}
ight)=1$

Intro	Preliminaries	Results	Conclusion
•••			

Random Matrices and their Limiting Spectral Measure

random matrix: a matrix whose entries are chosen randomly according to some probability distribution where

$$\mathbb{E}\left(a_{ij}
ight)=0$$
 and $Var\left(a_{ij}
ight)=1$

Interested in the **distribution of eigenvalues** $\mu_{A,N}(x)$ of an $N \times N$ random matrix A as $N \to \infty$

Intro	Preliminaries	Results	Conclusion
•••			

Random Matrices and their Limiting Spectral Measure

random matrix: a matrix whose entries are chosen randomly according to some probability distribution where

$$\mathbb{E}\left(a_{ij}
ight)=0$$
 and $Var\left(a_{ij}
ight)=1$

Interested in the **distribution of eigenvalues** $\mu_{A,N}(x)$ of an $N \times N$ random matrix A as $N \to \infty$

Applications:

- Nuclear Physics
- Number Theory

Intro	Preliminaries	Results	Conclusion
○●○	000	0000	
Random Matrix	Ensembles		

Intro ⊙●○	Preliminaries	Results oooo	Conclusion
Random Matrix E	nsembles		

Intro ○●○	Preliminaries	Results 0000	Conclusion
Random Matrix E	nsembles		

Intro	Preliminaries	Results	Conclusion
⊙●○	000	0000	
Random Matrix E	Insembles		

Intro ○●○	Preliminaries	Results 0000	Conclusion
Random Matrix E	insembles		

Intro	Preliminaries	Results	Conclusion
000			

Our Ensemble: Signed Toeplitz and Palindromic Toeplitz Matrices

Multiply each entry of a (Palindromic) Toeplitz matrix by $\epsilon_{ij} = \epsilon_{ji} = \begin{cases} 1 & \text{with prob. p} \\ -1 & \text{with prob. 1-p} \end{cases}$ so $a_{ij} = a_{ji} = \epsilon_{ij}b_{|i-j|}$

Intro	Preliminaries	Results	Conclusion
000			

Our Ensemble: Signed Toeplitz and Palindromic Toeplitz Matrices

Multiply each entry of a (Palindromic) Toeplitz matrix by

$$\epsilon_{ij} = \epsilon_{ji} = \begin{cases} 1 & \text{with prob. p} \\ -1 & \text{with prob. 1-p} \end{cases}$$
 so $a_{ij} = a_{ji} = \epsilon_{ij}b_{|i-j|}$

Varying *p* allows us to *continuously* interpolate between:

- Real Symmetric at $p = \frac{1}{2}$ (less structured)
- Toeplitz/Palindromic Toeplitz at p = 1 (more structured)

Intro	Preliminaries	Results	Conclusion
000			

Our Ensemble: Signed Toeplitz and Palindromic Toeplitz Matrices

Multiply each entry of a (Palindromic) Toeplitz matrix by

$$\epsilon_{ij} = \epsilon_{ji} = \begin{cases} 1 & \text{with prob. p} \\ -1 & \text{with prob. 1-p} \end{cases}$$
 so $a_{ij} = a_{ji} = \epsilon_{ij}b_{|i-j|}$

Varying *p* allows us to *continuously* interpolate between:

- Real Symmetric at $p = \frac{1}{2}$ (less structured)
- Toeplitz/Palindromic Toeplitz at p = 1 (more structured)

What is the eigenvalue distribution of these signed ensembles?

Intro	Preliminaries	Results	Conclusion
000	●00	0000	
Markov's Metho	d of Moments		

 We show μ_{A,N} (x) converges on average to a probability distribution P by controlling convergence of average moments of the measures to the moments of P.

Intro	Preliminaries	Results	Conclusion
000	●00	0000	
Markov'a M	lothed of Momente		

- We show μ_{A,N} (x) converges on average to a probability distribution P by controlling convergence of average moments of the measures to the moments of P.
- By putting a unit point mass $\delta(x x_0)$ at x_0 so $\int f(x)\delta(x x_0)dx = f(x_0)$, we have:

$$\mu_{A,N}(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \delta\left(\mathbf{x} - \frac{\lambda_i(A)}{2\sqrt{N}}\right)$$

Intro	Preliminaries	Results	Conclusion
000	●oo	0000	oo
Markav'a M	lathed of Momente		

- We show μ_{A,N} (x) converges on average to a probability distribution P by controlling convergence of average moments of the measures to the moments of P.
- By putting a unit point mass $\delta(x x_0)$ at x_0 so $\int f(x)\delta(x x_0)dx = f(x_0)$, we have:

$$\mu_{A,N}(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \delta\left(\mathbf{x} - \frac{\lambda_i(A)}{2\sqrt{N}}\right)$$

which will then have k^{th} moment:

$$\int x^{k} \mu_{A,N}(x) dx = \frac{1}{N} \sum_{i=1}^{N} \frac{\lambda_{i}(A)^{k}}{\left(2\sqrt{N}\right)^{k}}$$

Intro	Preliminaries	Results	Conclusion
000	●oo	0000	
Markov's M	lethod of Moments		

- We show μ_{A,N} (x) converges on average to a probability distribution P by controlling convergence of average moments of the measures to the moments of P.
- By putting a unit point mass $\delta(x x_0)$ at x_0 so $\int f(x)\delta(x x_0)dx = f(x_0)$, we have:

$$\mu_{A,N}(x) = \frac{1}{N} \sum_{i=1}^{N} \delta\left(x - \frac{\lambda_i(A)}{2\sqrt{N}}\right)$$

which will then have k^{th} moment:

$$\int x^{k} \mu_{A,N}(x) dx = \frac{1}{N} \sum_{i=1}^{N} \frac{\lambda_{i}(A)^{k}}{\left(2\sqrt{N}\right)^{k}} = \frac{\operatorname{Trace}\left(A^{k}\right)}{2^{k} N^{\frac{k}{2}+1}}$$

Intro	Preliminaries	Results	Conclusion
	000		

The average k^{th} moment, $M_k(N) = \mathbb{E}[M_{N,k}(A_N)]$ is thus:

$$\frac{1}{N^{\frac{k}{2}+1}} \sum_{1 \le i_1, \dots, i_k \le N} \mathbb{E} \left(\epsilon_{i_1 i_2} b_{|i_1 - i_2|} \epsilon_{i_2 i_3} b_{|i_2 - i_3|} \dots \epsilon_{i_k i_1} b_{|i_k - i_1|} \right)$$

• We look at groups of the *N^k* terms in the sum, "configurations," that all have the same contribution.

Intro	Preliminaries	Results	Conclusion
	000		

The average k^{th} moment, $M_k(N) = \mathbb{E}[M_{N,k}(A_N)]$ is thus:

$$\frac{1}{N^{\frac{k}{2}+1}} \sum_{1 \le i_1, \dots, i_k \le N} \mathbb{E} \left(\epsilon_{i_1 i_2} b_{|i_1 - i_2|} \epsilon_{i_2 i_3} b_{|i_2 - i_3|} \dots \epsilon_{i_k i_1} b_{|i_k - i_1|} \right)$$

- We look at groups of the N^k terms in the sum, "configurations," that all have the same contribution.
 - What is their contribution?
 - How many terms have this configuration?

Intro	Preliminaries	Results	Conclusion
	000		

The average k^{th} moment, $M_k(N) = \mathbb{E}[M_{N,k}(A_N)]$ is thus:

$$\frac{1}{N^{\frac{k}{2}+1}} \sum_{1 \le i_1, \dots, i_k \le N} \mathbb{E} \left(\epsilon_{i_1 i_2} b_{|i_1 - i_2|} \epsilon_{i_2 i_3} b_{|i_2 - i_3|} \dots \epsilon_{i_k i_1} b_{|i_k - i_1|} \right)$$

- We look at groups of the N^k terms in the sum, "configurations," that all have the same contribution.
 - What is their contribution?
 - How many terms have this configuration?

Preliminary Result:

The b's must be matched in pairs to contribute in the limit.

Intro	Preliminaries	Results	Conclusion
000	000	0000	00

Thus:

Intro	Preliminaries	Results	Conclusion
000	oo●	0000	

Thus:

• Odd moments vanish.

Intro 000	Preliminaries oo●	Results 0000	Conclusion

Thus:

- Odd moments vanish.
- For the even moments M_{2k} we can represent each contributing term as a pairing of 2k vertices on a circle as follows:

Intro 000	Preliminaries	Results ●○○○	Conclusion
Weighted Contri	butions		

Theorem:

Each configuration contributes its unsigned case contribution weighted by $(2p - 1)^{2m}$, where 2m is the number of vertices involved in at least one "crossing."

Intro	Preliminaries	Results	Conclusion
000	000	●○○○	
Weighted Cont	ributions		

Theorem:

Each configuration contributes its unsigned case contribution weighted by $(2p - 1)^{2m}$, where 2m is the number of vertices involved in at least one "crossing."

Example:

Intro 000	Preliminaries	Results ●○○○	Conclusion
Weighted Contri	butions		

Theorem:

Each configuration contributes its unsigned case contribution weighted by $(2p - 1)^{2m}$, where 2m is the number of vertices involved in at least one "crossing."

Example:

Semicircle: Only non-crossing configurations contribute 1 *Gaussian:* All configurations contribute 1

Intro	Preliminaries	Results	Conclusion
000	000	○●○○	
Counting Crossir	ng Configurations		

Problem: Out of the (2k - 1)!! ways to pair 2k vertices, how many will have 2m vertices crossing ($Cross_{2k,2m}$)?

Intro	Preliminaries	Results	Conclusion
		0000	

Counting Crossing Configurations

Problem: Out of the (2k - 1)!! ways to pair 2k vertices, how many will have 2m vertices crossing $(Cross_{2k,2m})$?

Example: $Cross_{8,4} = 28$

Intro	Preliminaries	Results	Conclusion
		0000	

Counting Crossing Configurations

Problem: Out of the (2k - 1)!! ways to pair 2k vertices, how many will have 2m vertices crossing $(Cross_{2k,2m})$?

Example: $Cross_{8,4} = 28$

Fact:

 $Cross_{2k,0} = C_k$, the k^{th} Catalan number.

Intro	Preliminaries	Results	Conclusion
		0000	

Counting Crossing Configurations

Problem: Out of the (2k - 1)!! ways to pair 2k vertices, how many will have 2m vertices crossing $(Cross_{2k,2m})$?

Example: $Cross_{8,4} = 28$

Fact:

 $Cross_{2k,0} = C_k$, the k^{th} Catalan number.

What about for higher m?

Intro	Preliminaries	Results	Conclusion
		0000	

Counting Crossing Configurations: Non-Crossing Regions

Theorem:

Suppose 2m vertices are already paired in some configuration. The number of ways to pair and place the remaining 2k - 2m vertices such that none of them are involved in a crossing is $\binom{2k}{k-m}$.

Intro	Preliminaries	Results	Conclusion
		0000	

Counting Crossing Configurations: Non-Crossing Regions

Theorem:

Suppose 2m vertices are already paired in some configuration. The number of ways to pair and place the remaining 2k - 2m vertices such that none of them are involved in a crossing is $\binom{2k}{k-m}$.

Intro	Preliminaries	Results	Conclusion
		0000	

Counting Crossing Configurations: Non-Crossing Regions

Theorem:

Suppose 2m vertices are already paired in some configuration. The number of ways to pair and place the remaining 2k - 2m vertices such that none of them are involved in a crossing is $\binom{2k}{k-m}$.

Intro 000	Preliminaries	Results ○○○●	Conclusion
Counting Cross	sing Configurations		

Open Question: If we require 2m crossing vertices, how many ways can we divide up the 2k vertices into non-crossing regions?

Intro 000	Preliminaries	Results ○○○●	Conclusion
Counting Cross	sing Configurations		

Open Question: If we require 2m crossing vertices, how many ways can we divide up the 2k vertices into non-crossing regions?

We solved for small *m*, then applying our Non-Crossing Regions Theorem gives:

• Cross_{2k,4} =
$$\binom{2k}{k-2}$$

• Cross_{2k,6} =
$$4\binom{2k}{k-3}$$

• Cross_{2k,8} = $31\binom{2k}{k-4} + \frac{1}{2}\sum_{i=0}^{k-5}\binom{2k}{i}(2k-2i)$

•
$$\operatorname{Cross}_{2k,10} = 288\binom{2k}{k-5} + 4\sum_{i=0}^{k-6}\binom{2k}{i}(2k-2i)$$

Intro	Preliminaries	Results	Conclusion
000		0000	●○
Summary of	Results		

• $p = \frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support

Intro	Preliminaries	Results	Conclusion
000	000	0000	●○
Summary of	Results		

- $p = \frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support
- Some progress toward exact moment formulas:

Intro 000	Preliminaries	Results	Conclusion ●○		
Summary of Reculte					

- $p = \frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support
- Some progress toward exact moment formulas:
 - Weight of each configuration as a function of p and the number of vertices in a crossing (2m): (2p 1)^{2m}

Intro 000	Preliminaries	Results	Conclusion ●○
Cummon of	Deculto		

Summary of Results

- $p = \frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support
- Some progress toward exact moment formulas:
 - Weight of each configuration as a function of p and the number of vertices in a crossing (2m): $(2p 1)^{2m}$
 - Formulas for the number of configurations with 2*m* vertices crossing for small *m*

Intro 000	Preliminaries	Results	Conclusion ●○
Summany	Beaulte		

Summary of Results

- $p = \frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support
- Some progress toward exact moment formulas:
 - Weight of each configuration as a function of p and the number of vertices in a crossing (2m): $(2p 1)^{2m}$
 - Formulas for the number of configurations with 2*m* vertices crossing for small *m*
- Limiting behavior of the mean and variance of the moments, giving bounds for the moments

Intro	Preliminaries	Results	Conclusion
000	000	0000	○●
Many thanks t	0:		

- AMS/MAA
- Williams College, SMALL 2011
- National Science Foundation
- Olivia Beckwith, Professor Steven J Miller