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Applications:
@ Nuclear Physics
@ Number Theory
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Random Matrix Ensembles

Question: What happens when we impose structure on
the entries of a matrix?

To answer, study "families" or "ensembles" of random
matrices:

Real Symmetric Toeplitz Palindromic Toeplitz

Semicircle Almost Gaussian Gaussian
[Wigner, 1955]  [HM, '05, BDJ '06] [MMS, "07]
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Our Ensemble: Signed Toeplitz and Palindromic Toeplitz Matrices

Multiply each entry of a (Palindromic) Toeplitz matrix by
1 with prob. p
= €ji = : SO aj = ajj = €jjb);
G= —1  with prob. 1-p i = = iR
Varying p allows us to continuously interpolate between:
@ Real Symmetricat p = % (less structured)

@ Toeplitz/Palindromic Toeplitz at p = 1 (more
structured)

What is the eigenvalue distribution of these signed
ensembles?
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1 o~ A(A)  Trace (A
/Xk,UA,N(X) dx = NZ ( ) = ra;cek(+1)
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The average k™ moment, My (N) = E [My« (An)] is thus:

]
X > E (€nibi—ni€iibli—is] - - - €ici Di—ir])

5+
Nty e

e We look at groups of the N* terms in the sum,
"configurations," that all have the same contribution.
o What is their contribution?
@ How many terms have this configuration?

Preliminary Result:
The b’'s must be matched in pairs to contribute in the limit.
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Thus:
@ Odd moments vanish.

e For the even moments M., we can represent each
contributing term as a pairing of 2k vertices on a
circle as follows:

lis—ig| lig—11l

lig—is| li1—io]
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Weighted Contributions

Each configuration contributes its unsigned case
contribution weighted by (2p — 1)2™, where 2m is the
number of vertices involved in at least one “crossing.”

VTS AN

2m=8

Example:

Semicircle: Only non-crossing configurations contribute 1
Gaussian: All configurations contribute 1
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Problem: Out of the (2k — 1)!! ways to pair 2k vertices,
how many will have 2m vertices crossing (Crossax.om)?

Example: Crossg 4 = 28

o
\ LA I \
SAEVNRARRNG,
Crossy o = Ck, the k™ Catalan number.

What about for higher m?
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remaining 2k — 2m vertices such that none of them are
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Counting Crossing Configurations: Non-Crossing Regions

Suppose 2m vertices are already paired in some
configuration. The number of ways to pair and place the
remaining 2k — 2m vertices such that none of them are
involved in a crossing is (> ).

. _ [ 2k
Proof. Zs1+~~-+32m:2k—2m CS1 CSz T Cszm - (kfm)'
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Counting Crossing Configurations

Open Question: If we require 2m crossing vertices, how
many ways can we divide up the 2k vertices into
non-crossing regions?

We solved for small m, then applying our Non-Crossing
Regions Theorem gives:

@ Crosspk 4 = (szz)

@ Crosspkp = 4(k2f3)

@ Crossag = 31(%%) + 3 3010 (%) (2k — 2i)

@ Crosszx,10 = 288(2%) + 4315 (%) (2k — 2i)
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Summary of Results

@ p = 5: Semicircle Distribution (Bounded Support)
p # 5. Unbounded Support

@ Some progress toward exact moment formulas:
o Weight of each configuration as a function of p and the
number of vertices in a crossing (2m): (2p — 1)2’"

e Formulas for the number of configurations with 2m vertices
crossing for small m

N[ =N =

e Limiting behavior of the mean and variance of the
moments, giving bounds for the moments
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