Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles

Olivia Beckwith ${ }^{1}$, Steven J. Miller ${ }^{2}$, and Karen Shen ${ }^{3}$

${ }^{1}$ Harvey Mudd College ${ }^{2}$ Williams College ${ }^{3}$ Stanford University
Joint Meetings of the AMS/MAA
Boston, January 2012

Random Matrices and their Limiting Spectral Measure

random matrix: a matrix whose entries are chosen randomly according to some probability distribution where

$$
\mathbb{E}\left(a_{i j}\right)=0 \text { and } \operatorname{Var}\left(a_{i j}\right)=1
$$

Random Matrices and their Limiting Spectral Measure

random matrix: a matrix whose entries are chosen randomly according to some probability distribution where

$$
\mathbb{E}\left(a_{i j}\right)=0 \text { and } \operatorname{Var}\left(a_{i j}\right)=1
$$

Interested in the distribution of eigenvalues $\mu_{A, N}(x)$ of an $N \times N$ random matrix A as $N \rightarrow \infty$

Random Matrices and their Limiting Spectral Measure

random matrix: a matrix whose entries are chosen randomly according to some probability distribution where

$$
\mathbb{E}\left(a_{i j}\right)=0 \text { and } \operatorname{Var}\left(a_{i j}\right)=1
$$

Interested in the distribution of eigenvalues $\mu_{A, N}(x)$ of an $N \times N$ random matrix A as $N \rightarrow \infty$

Applications:

- Nuclear Physics
- Number Theory

Random Matrix Ensembles

Question: What happens when we impose structure on the entries of a matrix?

Random Matrix Ensembles

Question: What happens when we impose structure on the entries of a matrix?

To answer, study "families" or "ensembles" of random matrices:

Random Matrix Ensembles

Question: What happens when we impose structure on the entries of a matrix?

To answer, study "families" or "ensembles" of random matrices:

Real Symmetric

Semicircle
[Wigner, 1955]

Random Matrix Ensembles

Question: What happens when we impose structure on the entries of a matrix?

To answer, study "families" or "ensembles" of random matrices:

Real Symmetric

Semicircle [Wigner, 1955]

Toeplitz

Almost Gaussian
[HM, '05, BDJ '06]

Random Matrix Ensembles

Question: What happens when we impose structure on the entries of a matrix?

To answer, study "families" or "ensembles" of random matrices:

Semicircle [Wigner, 1955]

Toeplitz

Almost Gaussian
[HM, '05, BDJ '06]

Palindromic Toeplitz

Gaussian
[MMS, '07]

Our Ensemble: Signed Toeplitz and Palindromic Toeplitz Matrices

Multiply each entry of a (Palindromic) Toeplitz matrix by
$\epsilon_{i j}=\epsilon_{j i}=\left\{\begin{array}{ll}1 & \text { with prob. p } \\ -1 & \text { with prob. 1-p }\end{array}\right.$ so $a_{i j}=a_{j i}=\epsilon_{i j} \boldsymbol{b}_{|i-j|}$

Our Ensemble: Signed Toeplitz and Palindromic Toeplitz Matrices

Multiply each entry of a (Palindromic) Toeplitz matrix by
$\epsilon_{i j}=\epsilon_{j i}=\left\{\begin{array}{ll}1 & \text { with prob. p } \\ -1 & \text { with prob. 1-p }\end{array}\right.$ so $a_{i j}=a_{j i}=\epsilon_{i j} b_{|i-j|}$
Varying p allows us to continuously interpolate between:

- Real Symmetric at $p=\frac{1}{2}$ (less structured)
- Toeplitz/Palindromic Toeplitz at $p=1$ (more structured)

Our Ensemble: Signed Toeplitz and Palindromic Toeplitz Matrices

Multiply each entry of a (Palindromic) Toeplitz matrix by
$\epsilon_{i j}=\epsilon_{j i}=\left\{\begin{array}{ll}1 & \text { with prob. p } \\ -1 & \text { with prob. 1-p }\end{array}\right.$ so $a_{i j}=a_{j i}=\epsilon_{i j} b_{|i-j|}$
Varying p allows us to continuously interpolate between:

- Real Symmetric at $p=\frac{1}{2}$ (less structured)
- Toeplitz/Palindromic Toeplitz at $p=1$ (more structured)

What is the eigenvalue distribution of these signed ensembles?

Markov's Method of Moments

- We show $\mu_{A, N}(x)$ converges on average to a probability distribution P by controlling convergence of average moments of the measures to the moments of P.

Markov's Method of Moments

- We show $\mu_{A, N}(x)$ converges on average to a probability distribution P by controlling convergence of average moments of the measures to the moments of P.
- By putting a unit point mass $\delta\left(x-x_{0}\right)$ at x_{0} so $\int f(x) \delta\left(x-x_{0}\right) d x=f\left(x_{0}\right)$, we have:

$$
\mu_{A, N}(x)=\frac{1}{N} \sum_{i=1}^{N} \delta\left(x-\frac{\lambda_{i}(A)}{2 \sqrt{N}}\right)
$$

Markov's Method of Moments

- We show $\mu_{\mathrm{A}, \mathrm{N}}(x)$ converges on average to a probability distribution P by controlling convergence of average moments of the measures to the moments of P.
- By putting a unit point mass $\delta\left(x-x_{0}\right)$ at x_{0} so $\int f(x) \delta\left(x-x_{0}\right) d x=f\left(x_{0}\right)$, we have:

$$
\mu_{A, N}(x)=\frac{1}{N} \sum_{i=1}^{N} \delta\left(x-\frac{\lambda_{i}(A)}{2 \sqrt{N}}\right)
$$

which will then have $k^{\text {th }}$ moment:

$$
\int x^{k} \mu_{A, N}(x) d x=\frac{1}{N} \sum_{i=1}^{N} \frac{\lambda_{i}(A)^{k}}{(2 \sqrt{N})^{k}}
$$

Markov's Method of Moments

- We show $\mu_{\mathrm{A}, \mathrm{N}}(x)$ converges on average to a probability distribution P by controlling convergence of average moments of the measures to the moments of P.
- By putting a unit point mass $\delta\left(x-x_{0}\right)$ at x_{0} so $\int f(x) \delta\left(x-x_{0}\right) d x=f\left(x_{0}\right)$, we have:

$$
\mu_{A, N}(x)=\frac{1}{N} \sum_{i=1}^{N} \delta\left(x-\frac{\lambda_{i}(A)}{2 \sqrt{N}}\right)
$$

which will then have $k^{\text {th }}$ moment:

$$
\int x^{k} \mu_{A, N}(x) d x=\frac{1}{N} \sum_{i=1}^{N} \frac{\lambda_{i}(A)^{k}}{(2 \sqrt{N})^{k}}=\frac{\operatorname{Trace}\left(A^{k}\right)}{2^{k} N^{\frac{k}{2}+1}}
$$

The average $k^{\text {th }}$ moment, $M_{k}(N)=\mathbb{E}\left[M_{N, k}\left(A_{N}\right)\right]$ is thus:

$$
\frac{1}{N^{\frac{\kappa}{2}+1}} \sum_{1 \leq i_{1}, \ldots, i_{k} \leq N} \mathbb{E}\left(\epsilon_{i_{1} i_{2}} b_{\left|i_{1}-i_{2}\right|} \epsilon_{i_{2} i_{3}} b_{\left|i_{2}-i_{3}\right|} \ldots \epsilon_{i_{k i} i_{1}} b_{\left|\left.\right|_{k}-i_{1}\right|}\right)
$$

- We look at groups of the N^{k} terms in the sum, "configurations," that all have the same contribution.

The average $k^{\text {th }}$ moment, $M_{k}(N)=\mathbb{E}\left[M_{N, k}\left(A_{N}\right)\right]$ is thus:

$$
\frac{1}{N^{\frac{\kappa}{2}+1}} \sum_{1 \leq i_{1}, \ldots, i_{k} \leq N} \mathbb{E}\left(\epsilon_{i_{1} i_{2}} b_{\left|i_{1}-i_{2}\right|} \epsilon_{i_{2} i_{3}} b_{\left|i_{2}-i_{3}\right|} \ldots \epsilon_{i_{k} i_{1}} b_{\left|\left.\right|_{k}-i_{1}\right|}\right)
$$

- We look at groups of the N^{k} terms in the sum, "configurations," that all have the same contribution.
- What is their contribution?
- How many terms have this configuration?

The average $k^{\text {th }}$ moment, $M_{k}(N)=\mathbb{E}\left[M_{N, k}\left(A_{N}\right)\right]$ is thus:

$$
\frac{1}{N^{\frac{\kappa}{2}+1}} \sum_{1 \leq i_{1}, \ldots, i_{k} \leq N} \mathbb{E}\left(\epsilon_{i_{1} i_{2}} b_{\left|i_{1}-i_{2}\right|} \epsilon_{i_{2} i_{3}} b_{\left|i_{2}-i_{3}\right|} \ldots \epsilon_{i_{k} i_{1}} b_{\left|\left.\right|_{k}-i_{1}\right|}\right)
$$

- We look at groups of the N^{k} terms in the sum, "configurations," that all have the same contribution.
- What is their contribution?
- How many terms have this configuration?

Preliminary Result:

The b's must be matched in pairs to contribute in the limit.

Thus:

Thus:

- Odd moments vanish.

Thus:

- Odd moments vanish.
- For the even moments $M_{2 k}$ we can represent each contributing term as a pairing of $2 k$ vertices on a circle as follows:

Weighted Contributions

Theorem:

Each configuration contributes its unsigned case contribution weighted by $(2 p-1)^{2 m}$, where $2 m$ is the number of vertices involved in at least one "crossing."

Weighted Contributions

Theorem:

Each configuration contributes its unsigned case contribution weighted by $(2 p-1)^{2 m}$, where $2 m$ is the number of vertices involved in at least one "crossing."

Example:

Weighted Contributions

Theorem:

Each configuration contributes its unsigned case contribution weighted by $(2 p-1)^{2 m}$, where $2 m$ is the number of vertices involved in at least one "crossing."

Example:

Semicircle: Only non-crossing configurations contribute 1 Gaussian: All configurations contribute 1

Counting Crossing Configurations

Problem: Out of the $(2 k-1)$!! ways to pair $2 k$ vertices, how many will have $2 m$ vertices crossing $\left(\operatorname{Cross}_{2 k, 2 m}\right)$?

Counting Crossing Configurations

Problem: Out of the $(2 k-1)$!! ways to pair $2 k$ vertices, how many will have $2 m$ vertices crossing $\left(\operatorname{Cross}_{2 k, 2 m}\right)$?

Example: Cross $_{8,4}=28$

Counting Crossing Configurations

Problem: Out of the $(2 k-1)$!! ways to pair $2 k$ vertices, how many will have $2 m$ vertices crossing (Cross $_{2 k, 2 m}$)?

Example: Cross $_{8,4}=28$

Fact:

Cross $_{2 k, 0}=C_{k}$, the $k^{\text {th }}$ Catalan number.

Counting Crossing Configurations

Problem: Out of the $(2 k-1)$!! ways to pair $2 k$ vertices, how many will have $2 m$ vertices crossing (Cross $_{2 k, 2 m}$)?

Example: Cross $_{8,4}=28$

Fact:

Cross $_{2 \mathrm{k}, 0}=C_{k}$, the $k^{\text {th }}$ Catalan number.
What about for higher m ?

Counting Crossing Configurations: Non-Crossing Regions

Theorem:

Suppose $2 m$ vertices are already paired in some configuration. The number of ways to pair and place the remaining $2 k-2 m$ vertices such that none of them are involved in a crossing is $\binom{2 k}{k-m}$.

Counting Crossing Configurations: Non-Crossing Regions

Theorem:

Suppose $2 m$ vertices are already paired in some configuration. The number of ways to pair and place the remaining $2 k-2 m$ vertices such that none of them are involved in a crossing is $\binom{2 k}{k-m}$.

Counting Crossing Configurations: Non-Crossing Regions

Theorem:

Suppose $2 m$ vertices are already paired in some configuration. The number of ways to pair and place the remaining $2 k-2 m$ vertices such that none of them are involved in a crossing is $\binom{2 k}{k-m}$.

Proof: $\sum_{s_{1}+\cdots+s_{2 m}=2 k-2 m} C_{s_{1}} C_{s_{2}} \cdots C_{s_{2} m}=\binom{2 k}{k-m}$.

Counting Crossing Configurations

Open Question: If we require $2 m$ crossing vertices, how many ways can we divide up the $2 k$ vertices into non-crossing regions?

Counting Crossing Configurations

Open Question: If we require $2 m$ crossing vertices, how many ways can we divide up the $2 k$ vertices into non-crossing regions?

We solved for small m, then applying our Non-Crossing Regions Theorem gives:

- Cross $_{2 k, 4}=\binom{2 k}{k-2}$
- Cross $_{2 k, 6}=4\binom{2 k}{k-3}$
- $\operatorname{Cross}_{2 k, 8}=31\binom{2 k}{k-4}+\frac{1}{2} \sum_{i=0}^{k-5}\binom{2 k}{i}(2 k-2 i)$
- $\operatorname{Cross}_{2 k, 10}=288\binom{2 k}{k-5}+4 \sum_{i=0}^{k-6}\binom{2 k}{i}(2 k-2 i)$

Summary of Results

- $p=\frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support

Summary of Results

- $p=\frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support
- Some progress toward exact moment formulas:

Summary of Results

- $p=\frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support
- Some progress toward exact moment formulas:
- Weight of each configuration as a function of p and the number of vertices in a crossing ($2 m$): $(2 p-1)^{2 m}$

Summary of Results

- $p=\frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support
- Some progress toward exact moment formulas:
- Weight of each configuration as a function of p and the number of vertices in a crossing ($2 m$): $(2 p-1)^{2 m}$
- Formulas for the number of configurations with $2 m$ vertices crossing for small m

Summary of Results

- $p=\frac{1}{2}$: Semicircle Distribution (Bounded Support)
$p \neq \frac{1}{2}$: Unbounded Support
- Some progress toward exact moment formulas:
- Weight of each configuration as a function of p and the number of vertices in a crossing ($2 m$): $(2 p-1)^{2 m}$
- Formulas for the number of configurations with $2 m$ vertices crossing for small m
- Limiting behavior of the mean and variance of the moments, giving bounds for the moments

Many thanks to:

- AMS/MAA
- Williams College, SMALL 2011
- National Science Foundation
- Olivia Beckwith, Professor Steven J Miller

