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Intro Preliminaries Results Conclusion

Random Matrices and their Limiting Spectral Measure

random matrix: a matrix whose entries are chosen
randomly according to some probability distribution where

E (aij) = 0 and Var (aij) = 1

Interested in the distribution of eigenvalues µA,N (x) of
an N × N random matrix A as N →∞

Applications:
Nuclear Physics
Number Theory
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Intro Preliminaries Results Conclusion

Random Matrix Ensembles

Question: What happens when we impose structure on
the entries of a matrix?

To answer, study "families" or "ensembles" of random
matrices:

Real Symmetric Toeplitz Palindromic Toeplitz
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Our Ensemble: Signed Toeplitz and Palindromic Toeplitz Matrices

Multiply each entry of a (Palindromic) Toeplitz matrix by

εij = εji =

{
1 with prob. p
−1 with prob. 1-p

so aij = aji = εijb|i−j|

Varying p allows us to continuously interpolate between:
Real Symmetric at p = 1

2 (less structured)
Toeplitz/Palindromic Toeplitz at p = 1 (more
structured)

What is the eigenvalue distribution of these signed
ensembles?
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Markov’s Method of Moments

We show µA,N (x) converges on average to a
probability distribution P by controlling convergence
of average moments of the measures to the moments
of P.

By putting a unit point mass δ(x − x0) at x0 so∫
f (x)δ(x − x0)dx = f (x0), we have:

µA,N(x) =
1
N

N∑
i=1

δ

(
x − λi(A)

2
√

N

)
which will then have k th moment:∫

xkµA,N (x)dx =
1
N

N∑
i=1

λi (A)
k(

2
√

N
)k =

Trace
(
Ak
)

2kN
k
2+1
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The average k th moment, Mk (N) = E [MN,k (AN)] is thus:

1

N
k
2+1

∑
1≤i1,...,ik≤N

E
(
εi1i2b|i1−i2|εi2i3b|i2−i3| . . . εik i1b|ik−i1|

)
We look at groups of the Nk terms in the sum,
"configurations," that all have the same contribution.

What is their contribution?
How many terms have this configuration?

Preliminary Result:
The b’s must be matched in pairs to contribute in the limit.
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Thus:

Odd moments vanish.
For the even moments M2k we can represent each
contributing term as a pairing of 2k vertices on a
circle as follows:

Èi1-i2È

Èi2-i3ÈÈi3-i4È

Èi4-i5È

Èi5-i6È Èi6-i1È
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Weighted Contributions

Theorem:
Each configuration contributes its unsigned case
contribution weighted by (2p − 1)2m, where 2m is the
number of vertices involved in at least one “crossing.”

Example:

2m = 4 2m=6 2m=8

Semicircle: Only non-crossing configurations contribute 1
Gaussian: All configurations contribute 1
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Counting Crossing Configurations

Problem: Out of the (2k − 1)!! ways to pair 2k vertices,
how many will have 2m vertices crossing (Cross2k ,2m)?

Example: Cross8,4 = 28

x 8 x 4 x 8 x 8

Fact:
Cross2k,0 = Ck , the k th Catalan number.

What about for higher m?

26



Intro Preliminaries Results Conclusion

Counting Crossing Configurations

Problem: Out of the (2k − 1)!! ways to pair 2k vertices,
how many will have 2m vertices crossing (Cross2k ,2m)?

Example: Cross8,4 = 28

x 8 x 4 x 8 x 8

Fact:
Cross2k,0 = Ck , the k th Catalan number.

What about for higher m?

27



Intro Preliminaries Results Conclusion

Counting Crossing Configurations

Problem: Out of the (2k − 1)!! ways to pair 2k vertices,
how many will have 2m vertices crossing (Cross2k ,2m)?

Example: Cross8,4 = 28

x 8 x 4 x 8 x 8

Fact:
Cross2k,0 = Ck , the k th Catalan number.

What about for higher m?

28



Intro Preliminaries Results Conclusion

Counting Crossing Configurations

Problem: Out of the (2k − 1)!! ways to pair 2k vertices,
how many will have 2m vertices crossing (Cross2k ,2m)?

Example: Cross8,4 = 28

x 8 x 4 x 8 x 8

Fact:
Cross2k,0 = Ck , the k th Catalan number.

What about for higher m?
29



Intro Preliminaries Results Conclusion

Counting Crossing Configurations: Non-Crossing Regions

Theorem:
Suppose 2m vertices are already paired in some
configuration. The number of ways to pair and place the
remaining 2k − 2m vertices such that none of them are
involved in a crossing is

( 2k
k−m

)
.

s1

s2

s3

s4

s5

s6

Proof:
∑

s1+···+s2m=2k−2m Cs1Cs2 · · ·Cs2m =
( 2k

k−m

)
.
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Counting Crossing Configurations

Open Question: If we require 2m crossing vertices, how
many ways can we divide up the 2k vertices into
non-crossing regions?

We solved for small m, then applying our Non-Crossing
Regions Theorem gives:

Cross2k ,4 =
( 2k

k−2

)
Cross2k ,6 = 4

( 2k
k−3

)
Cross2k ,8 = 31

( 2k
k−4

)
+ 1

2

∑k−5
i=0

(2k
i

)
(2k − 2i)

Cross2k ,10 = 288
( 2k

k−5

)
+ 4

∑k−6
i=0

(2k
i

)
(2k − 2i)
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Summary of Results

p = 1
2 : Semicircle Distribution (Bounded Support)

p 6= 1
2 : Unbounded Support

Some progress toward exact moment formulas:
Weight of each configuration as a function of p and the
number of vertices in a crossing (2m): (2p − 1)2m

Formulas for the number of configurations with 2m vertices
crossing for small m

Limiting behavior of the mean and variance of the
moments, giving bounds for the moments
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