The Distribution of Generalized Ramanujan Primes

Nadine Amersi, Olivia Beckwith, Ryan Ronan
Advisors: Steven J. Miller, Jonathan Sondow
http://web.williams.edu/Mathematics/sjmiller/

Joint Mathematics Meetings January 6, 2012

Prime Numbers

- Any integer can be written as a unique product of prime numbers (Fundamental Theorem of Arithmetic).

Prime Numbers

- Any integer can be written as a unique product of prime numbers (Fundamental Theorem of Arithmetic).
- $\pi(x) \sim \frac{x}{\log x}$ (Prime Number Theorem).

Prime Numbers

- Any integer can be written as a unique product of prime numbers (Fundamental Theorem of Arithmetic).
- $\pi(x) \sim \frac{x}{\log x}$ (Prime Number Theorem).
- We expect linearly increasing intervals, (cx, x], to contain an increasing amount of primes.

Historical Introduction

Bertrand's Postulate (1845)

For all integers $x \geq 2$, there exists at least one prime in ($x / 2, x]$.

Ramanujan Primes

Definition

The n-th Ramanujan prime R_{n} : smallest integer such that for any $x \geq R_{n}$, at least n primes in ($\left.x / 2, x\right]$.

Ramanujan Primes

Definition

The n-th Ramanujan prime R_{n} : smallest integer such that for any $x \geq R_{n}$, at least n primes in ($\left.x / 2, x\right]$.

Theorem

- Ramanujan: For each integer n, R_{n} exists.

Ramanujan Primes

Definition

The n-th Ramanujan prime R_{n} : smallest integer such that for any $x \geq R_{n}$, at least n primes in ($\left.x / 2, x\right]$.

Theorem

- Ramanujan: For each integer n, R_{n} exists.
- Sondow: $R_{n} \sim p_{2 n}$.

Ramanujan Primes

Definition

The n-th Ramanujan prime R_{n} : smallest integer such that for any $x \geq R_{n}$, at least n primes in ($\left.x / 2, x\right]$.

Theorem

- Ramanujan: For each integer n, R_{n} exists.
- Sondow: $R_{n} \sim p_{2 n}$.
- Sondow: As $n \rightarrow \infty, 50 \%$ of primes are Ramanujan.

c-Ramanujan Primes

Definition

The n-th c-Ramanujan prime $R_{c, n}$: smallest integer such that for any $x \geq R_{c, n}$ have at least n primes in ($\left.c x, x\right]$ for $c \in(0,1)$.

Preliminaries

The logarithmic integral function $\operatorname{Li}(x)$ is defined by

$$
\operatorname{Li}(x)=\int_{2}^{x} \frac{1}{\log t} d t
$$

Preliminaries

The logarithmic integral function $\operatorname{Li}(x)$ is defined by

$$
\operatorname{Li}(x)=\int_{2}^{x} \frac{1}{\log t} d t
$$

The Prime Number Theorem gives us

$$
\pi(x)=\mathrm{Li}(x)+O\left(\frac{x}{\log ^{2} x}\right)
$$

i.e., there is a $C>0$ such that for all x sufficiently large

$$
-C \frac{x}{\log x} \leq \pi(x)-\operatorname{Li}(x) \leq C \frac{x}{\log x} .
$$

Existence of $R_{c, n}$

Theorem (ABMRS 2011)

For all $n \in \mathbb{Z}$ and all $c \in(0,1)$, the n-th c-Ramanujan prime $R_{c, n}$ exists.

Existence of $R_{c, n}$

Theorem (ABMRS 2011)

For all $n \in \mathbb{Z}$ and all $c \in(0,1)$, the n-th c-Ramanujan prime $R_{c, n}$ exists.

Proof:

Existence of $R_{c, n}$

Theorem (ABMRS 2011)

For all $n \in \mathbb{Z}$ and all $c \in(0,1)$, the n-th c-Ramanujan prime $R_{c, n}$ exists.

Proof:

- The number of primes in $(c x, x]$ is $\pi(x)-\pi(c x)$.

Existence of $R_{c, n}$

Theorem (ABMRS 2011)

For all $n \in \mathbb{Z}$ and all $c \in(0,1)$, the n-th c-Ramanujan prime $R_{c, n}$ exists.

Proof:

- The number of primes in $(c x, x]$ is $\pi(x)-\pi(c x)$.
- Using the Prime Number Theorem and Mean Value Theorem, there exists a $b_{c} \in[0,-\log c]$,

$$
\pi(x)-\pi(c x)=\frac{(1-c) x}{\log x-b_{c}}+O\left(\frac{x}{\log ^{2} x}\right) .
$$

Existence of $R_{c, n}$

Theorem (ABMRS 2011)

For all $n \in \mathbb{Z}$ and all $c \in(0,1)$, the n-th c-Ramanujan prime $R_{c, n}$ exists.

Proof:

- The number of primes in $(c x, x]$ is $\pi(x)-\pi(c x)$.
- Using the Prime Number Theorem and Mean Value Theorem, there exists a $b_{c} \in[0,-\log c]$,

$$
\pi(x)-\pi(c x)=\frac{(1-c) x}{\log x-b_{c}}+O\left(\frac{x}{\log ^{2} x}\right) .
$$

- For sufficiently large $x, \pi(x)-\pi(c x)$ is strictly increasing and $\pi(x)-\pi(c x) \geq n$, for all integers n.

Frequency of c-Ramanujan Primes

Theorem (ABMRS 2011)

In the limit, the probability of a generic prime being a c-Ramanujan prime is 1 - c.

Frequency of c-Ramanujan Primes

Theorem (ABMRS 2011)

In the limit, the probability of a generic prime being a c-Ramanujan prime is 1 - c.

Theorem (ABMRS 2011)

For any fixed $c \in(0,1)$, the n-th c-Ramanujan prime is asymptotic to the $\frac{n}{1-c}$-th prime as $n \rightarrow \infty$.

Prime Numbers

$$
\begin{array}{ccccccc}
2 & 3 & 5 & 7 & 11 & 13 & 17 \\
19 & 23 & 29 & 31 & 37 & 41 & 43 \\
47 & 53 & 59 & 61 & 67 & 71 & 73 \\
79 & 83 & 89 & 97 & 101 & 103 & 107 \\
109 & 113 & 127 & 131 & 137 & 139 & 149 \\
151 & 157 & 163 & 167 & 173 & 179 & 181 \\
191 & 193 & 197 & 199 & 211 & 223 & 227
\end{array}
$$

Ramanujan Primes ($c=1 / 2$)

$$
\begin{array}{ccccccc}
2 & 3 & 5 & 7 & 11 & 13 & 17 \\
19 & 23 & 29 & 31 & 37 & 41 & 43 \\
47 & 53 & 59 & 61 & 67 & 71 & 73 \\
79 & 83 & 89 & 97 & 101 & 103 & 107 \\
109 & 113 & 127 & 131 & 137 & 139 & 149 \\
151 & 157 & 163 & 167 & 173 & 179 & 181 \\
191 & 193 & 197 & 199 & 211 & 223 & 227
\end{array}
$$

Distribution of generalized Ramanujan primes

C	Length of the longest run in [10 $\left.{ }^{5}, 10^{6}\right]$ of			
	Expected	Actual	Expected	Actual
0.50	14	20	16	36

Distribution of generalized c-Ramanujan primes

	Length of the longest run in $\left[10^{5}, 10^{6}\right]$ of			
c	c-Ramanujan primes			
Expected	Actual	Non-c-Ramanujan primes Expected	Actual	
0.10	70	58	5	3
0.20	38	36	7	7
0.30	25	25	10	12
0.40	18	21	13	16
0.50	14	20	16	36
0.60	11	17	22	42
0.70	9	14	30	78
0.80	7	9	46	154
0.90	5	11	91	345

Acknowledgments

This work was supported by the NSF, Williams College, University College London.

We would like to thank our advisors Steven J. Miller and Jonathan Sondow, as well as our colleagues from the 2011 REU at Williams College.

