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Prime Numbers

Any integer can be written as a unique product of
prime numbers (Fundamental Theorem of Arithmetic).

π(x) ∼ x
log x (Prime Number Theorem).

We expect linearly increasing intervals, (cx , x ], to
contain an increasing amount of primes.
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Historical Introduction

Bertrand’s Postulate (1845)
For all integers x ≥ 2, there exists at least one prime in
(x/2, x ].
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Ramanujan Primes

Definition
The n-th Ramanujan prime Rn: smallest integer such that
for any x ≥ Rn, at least n primes in (x/2, x ].

Theorem
Ramanujan: For each integer n, Rn exists.
Sondow: Rn ∼ p2n.
Sondow: As n→∞, 50% of primes are Ramanujan.

6



Introduction Results Distribution Acknowledgments

Ramanujan Primes

Definition
The n-th Ramanujan prime Rn: smallest integer such that
for any x ≥ Rn, at least n primes in (x/2, x ].

Theorem
Ramanujan: For each integer n, Rn exists.

Sondow: Rn ∼ p2n.
Sondow: As n→∞, 50% of primes are Ramanujan.

7



Introduction Results Distribution Acknowledgments

Ramanujan Primes

Definition
The n-th Ramanujan prime Rn: smallest integer such that
for any x ≥ Rn, at least n primes in (x/2, x ].

Theorem
Ramanujan: For each integer n, Rn exists.
Sondow: Rn ∼ p2n.

Sondow: As n→∞, 50% of primes are Ramanujan.

8



Introduction Results Distribution Acknowledgments

Ramanujan Primes

Definition
The n-th Ramanujan prime Rn: smallest integer such that
for any x ≥ Rn, at least n primes in (x/2, x ].

Theorem
Ramanujan: For each integer n, Rn exists.
Sondow: Rn ∼ p2n.
Sondow: As n→∞, 50% of primes are Ramanujan.

9



Introduction Results Distribution Acknowledgments

c-Ramanujan Primes

Definition
The n-th c-Ramanujan prime Rc,n: smallest integer such
that for any x ≥ Rc,n have at least n primes in (cx , x ] for
c ∈ (0,1).
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Preliminaries

The logarithmic integral function Li(x) is defined by

Li(x) =
∫ x

2

1
log t

dt .

The Prime Number Theorem gives us

π(x) = Li(x) + O
(

x
log2 x

)
,

i.e., there is a C > 0 such that for all x sufficiently large

−C
x

log x
≤ π(x)− Li(x) ≤ C

x
log x

.
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Existence of Rc,n

Theorem (ABMRS 2011)
For all n ∈ Z and all c ∈ (0,1), the n-th c-Ramanujan
prime Rc,n exists.

Proof:
The number of primes in (cx , x ] is π(x)− π(cx).
Using the Prime Number Theorem and Mean Value
Theorem, there exists a bc ∈ [0,− log c],

π(x)− π(cx) =
(1− c)x

log x − bc
+ O

(
x

log2 x

)
.

For sufficiently large x , π(x)− π(cx) is strictly
increasing and π(x)− π(cx) ≥ n, for all integers n.
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Frequency of c-Ramanujan Primes

Theorem (ABMRS 2011)
In the limit, the probability of a generic prime being a
c-Ramanujan prime is 1− c.

Theorem (ABMRS 2011)
For any fixed c ∈ (0,1), the n-th c-Ramanujan prime is
asymptotic to the n

1−c -th prime as n→∞.
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Prime Numbers

2 3 5 7 11 13 17
19 23 29 31 37 41 43
47 53 59 61 67 71 73
79 83 89 97 101 103 107
109 113 127 131 137 139 149
151 157 163 167 173 179 181
191 193 197 199 211 223 227
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Ramanujan Primes (c = 1/2)

2 3 5 7 11 13 17
19 23 29 31 37 41 43
47 53 59 61 67 71 73
79 83 89 97 101 103 107
109 113 127 131 137 139 149
151 157 163 167 173 179 181
191 193 197 199 211 223 227
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Distribution of generalized Ramanujan primes

Length of the longest run in [105,106] of
c-Ramanujan primes Non-c-Ramanujan primes

c Expected Actual Expected Actual

0.50 14 20 16 36
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Distribution of generalized c-Ramanujan primes

Length of the longest run in [105,106] of
c-Ramanujan primes Non-c-Ramanujan primes

c Expected Actual Expected Actual
0.10 70 58 5 3
0.20 38 36 7 7
0.30 25 25 10 12
0.40 18 21 13 16
0.50 14 20 16 36
0.60 11 17 22 42
0.70 9 14 30 78
0.80 7 9 46 154
0.90 5 11 91 345
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