An Elliptic Curve Test of the L-functions Ratios Conjecture

Duc Khiem Huynh (University of Waterloo) Steven J. Miller (Williams College)
 Ralph Morrison (UC Berkeley)

January 6, 2012

What is an L-function?

An Elliptic
Curve Test of the
L-functions Ratios Conjecture

Introduction
Comparing
Ratios and
Number
Theory
Conclusions

An L-function is a meromorphic continuation of certain "arithmetically interesting" infinite series to \mathbb{C}.

What is an L-function?

An Elliptic
Curve Test of the
L-functions Ratios
Conjecture

Introduction
Comparing
Ratios and
Number
Theory
Conclusions

An L-function is a meromorphic continuation of certain "arithmetically interesting" infinite series to \mathbb{C}.

The Riemann-Zeta Function:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p \text { prime }}\left(1-\frac{1}{p^{s}}\right)^{-1} \quad(\Re(s)>1)
$$

What is an L-function?

An L-function is a meromorphic continuation of certain "arithmetically interesting" infinite series to \mathbb{C}.

The Riemann-Zeta Function:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p \text { prime }}\left(1-\frac{1}{p^{s}}\right)^{-1} \quad(\Re(s)>1)
$$

Extends uniquely to the rest of \mathbb{C}.

Zeros of $\zeta(s)$

An Elliptic
Curve Test of the
L-functions Ratios Conjecture

Introduction
Comparing Ratios and Number
Theory
Conclusions

Riemann Hypothesis: all nontrivial zeros of $\zeta(s)$ have real part $\frac{1}{2}$.

Zeros of $\zeta(s)$

An Elliptic
Curve Test of the
L-functions Ratios Conjecture

Riemann Hypothesis: all nontrivial zeros of $\zeta(s)$ have real part $\frac{1}{2}$.

Introduction
Comparing Ratios and Number Theory

Conclusions

Zeros of L-functions

An Elliptic
Curve Test of the
L-functions Ratios Conjecture

Introduction
Comparing Ratios and Number Theory

Conclusions

Generalized Riemann Hypothesis: all nontrivial zeros of "good" L-functions have real part $\frac{1}{2}$.

Zeros of L-functions

Generalized Riemann Hypothesis: all nontrivial zeros of "good" L-functions have real part $\frac{1}{2}$.

Let's just go ahead and assume it.

Zeros of L-functions

An Elliptic
Curve Test of the
L-functions Ratios
Conjecture

Introduction
Comparing
Ratios and
Number
Theory
Conclusions

Generalized Riemann Hypothesis: all nontrivial zeros of "good" L-functions have real part $\frac{1}{2}$.

Let's just go ahead and assume it.

What does the distribution of zeros looks like?

The Big Three

An Elliptic
Curve Test of the
L-functions Ratios Conjecture

Introduction
Comparing
Ratios and
Number
Theory
Conclusions

The Statistic:
The One-Level Density

The L-functions:
Quadratic Twists of Elliptic Curve L-functions

How We Look At Them:
Ratios Conjecture

The Statistic: The One-Level Density

An Elliptic
Curve Test of the
L-functions Ratios Conjecture

Introduction
Comparing
Ratios and
Number
Theory
Conclusions
ϕ : an even Schwartz function.

The Statistic: The One-Level Density

An Elliptic
Curve Test of the
L-functions Ratios Conjecture
ϕ : an even Schwartz function.
$\frac{1}{2}+i \gamma_{f}$: the nontrivial zeros of an L-function f

The Statistic: The One-Level Density

An Elliptic
Curve Test of the
L-functions Ratios Conjecture
ϕ : an even Schwartz function.
$\frac{1}{2}+i \gamma_{f}$: the nontrivial zeros of an L-function f

Introduction
Comparing
Ratios and
Number Theory

Conclusions

$$
D(f, \phi):=\sum_{\gamma_{f}} \phi\left(\frac{\gamma_{f} L}{\pi}\right)
$$

The Statistic: The One-Level Density

An Elliptic
Curve Test of the
L-functions Ratios Conjecture

Introduction
Comparing
Ratios and
Number
Theory
Conclusions
ϕ : an even Schwartz function.
$\frac{1}{2}+i \gamma_{f}$: the nontrivial zeros of an L-function f

$$
D(f, \phi):=\sum_{\gamma_{f}} \phi\left(\frac{\gamma_{f} L}{\pi}\right)
$$

$\hat{\phi}$: the Fourier transform of ϕ; $\operatorname{supp}(\hat{\phi}) \subset(-\sigma, \sigma)$

The Statistic: The One-Level Density

ϕ : an even Schwartz function.
$\frac{1}{2}+i \gamma_{f}$: the nontrivial zeros of an L-function f

$$
D(f, \phi):=\sum_{\gamma_{f}} \phi\left(\frac{\gamma_{f} L}{\pi}\right)
$$

$\hat{\phi}$: the Fourier transform of $\phi ; \operatorname{supp}(\hat{\phi}) \subset(-\sigma, \sigma)$ Have to average over family \mathcal{F} of L-functions.

The Statistic: The One-Level Density

ϕ : an even Schwartz function.
$\frac{1}{2}+i \gamma_{f}$: the nontrivial zeros of an L-function f

$$
D(f, \phi):=\sum_{\gamma_{f}} \phi\left(\frac{\gamma_{f} L}{\pi}\right)
$$

$\hat{\phi}$: the Fourier transform of $\phi ; \operatorname{supp}(\hat{\phi}) \subset(-\sigma, \sigma)$ Have to average over family \mathcal{F} of L-functions.

$$
\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \sum_{\gamma_{f}} \phi\left(\frac{\gamma_{f} L}{\pi}\right)
$$

The Statistic: The One-Level Density

ϕ : an even Schwartz function.
$\frac{1}{2}+i \gamma_{f}$: the nontrivial zeros of an L-function f

$$
D(f, \phi):=\sum_{\gamma_{f}} \phi\left(\frac{\gamma_{f} L}{\pi}\right)
$$

$\hat{\phi}$: the Fourier transform of $\phi ; \operatorname{supp}(\hat{\phi}) \subset(-\sigma, \sigma)$ Have to average over family \mathcal{F} of L-functions.

$$
\lim _{Q \rightarrow \infty} \frac{1}{|\mathcal{F}(Q)|} \sum_{f \in \mathcal{F}(Q)} \sum_{\gamma_{f}} \phi\left(\frac{\gamma_{f} L}{\pi}\right)
$$

The L-functions We Consider: Quadratic Twists of Elliptic Curve L-functions

An Elliptic
Curve Test of the
L-functions Ratios Conjecture
E : an elliptic curve of prime conductor M

Introduction
Comparing
Ratios and
Number
Theory
Conclusions

The L-functions We Consider: Quadratic Twists of Elliptic Curve L-functions

An Elliptic
Curve Test of the
L-functions Ratios Conjecture

Introduction
Comparing
Ratios and
Number
Theory
Conclusions
E : an elliptic curve of prime conductor M
$\lambda(p)$: counts points on E over \mathbb{F}_{p} (more or less)

The L-functions We Consider: Quadratic Twists of Elliptic Curve L-functions

An Elliptic
Curve Test of the
L-functions Ratios
Conjecture

Introduction
Comparing
Ratios and
Number
Theory
Conclusions
E : an elliptic curve of prime conductor M
$\lambda(p)$: counts points on E over \mathbb{F}_{p} (more or less)
χ : a Dirichlet character of order d

The L-functions We Consider: Quadratic Twists of

 Elliptic Curve L-functionsAn Elliptic
Curve Test of the
L-functions Ratios
Conjecture

Introduction
Comparing
Ratios and
Number
Theory
Conclusions
E : an elliptic curve of prime conductor M
$\lambda(p)$: counts points on E over \mathbb{F}_{p} (more or less)
χ : a Dirichlet character of order d
The L-functions we consider:

$$
L_{E}(s, \chi)=\sum_{n=1}^{\infty} \frac{\lambda(n) \chi(n)}{n^{s}}=\prod_{p}\left(1-\frac{\lambda(p) \chi(p)}{p^{s}}+\frac{\psi_{M}(p) \chi(p)^{2}}{p^{2 s}}\right)^{-1}
$$

How We Look At Them: The Ratios Conjecture

An Elliptic

Curve Test of
the
L-functions Ratios Conjecture

How We Look At Them: The Ratios Conjecture

An Elliptic
Curve Test of the
L-functions Ratios Conjecture

Ratios Conjecture

Introduction
Comparing
Ratios and
Number
Theory
Conclusions

How We Look At Them: The Ratios Conjecture

An Elliptic
Curve Test of the
L-functions Ratios Conjecture

Introduction
Comparing
Ratios and
Number
Theory
Conclusions

Ratios Conjecture

■ Recipe for doing the one-level density calculations more easily

How We Look At Them: The Ratios Conjecture

An Elliptic
Curve Test of the
L-functions Ratios
Conjecture

Introduction
Comparing
Ratios and
Number
Theory
Conclusions

Ratios Conjecture

■ Recipe for doing the one-level density calculations more easily
■ Predicts the main term of one-level density as well as lower order terms in MANY situations

How We Look At Them: The Ratios Conjecture

Ratios Conjecture

■ Recipe for doing the one-level density calculations more easily
■ Predicts the main term of one-level density as well as lower order terms in MANY situations

We'll focus on testing the Ratios Conjecture for families of quadratic twists of elliptic curve L-functions

Testing the Ratios Conjecture for this Convolution

An Elliptic
Curve Test of the
L-functions Ratios Conjecture

Introduction
Comparing
Ratios and
Number
Theory
Conclusions

Why Test The Ratios Conjecture?

Testing the Ratios Conjecture for this Convolution

An Elliptic
Curve Test of the
L-functions Ratios Conjecture

Why Test The Ratios Conjecture?
■ Justify using its predictions in this case

Introduction
Comparing
Ratios and
Number
Theory
Conclusions

Testing the Ratios Conjecture for this Convolution

Why Test The Ratios Conjecture?

- Justify using its predictions in this case

■ Better understand the conjecture in general

Testing the Ratios Conjecture for this Convolution

L-functions Ratios Conjecture

Introduction
Comparing
Ratios and
Number
Theory
Conclusions

Why Test The Ratios Conjecture?

- Justify using its predictions in this case

■ Better understand the conjecture in general

How to Test the Ratios Conjecture?

Testing the Ratios Conjecture for this Convolution

L-functions Ratios Conjecture

Introduction
Comparing
Ratios and
Number
Theory
Conclusions

Why Test The Ratios Conjecture?

- Justify using its predictions in this case

■ Better understand the conjecture in general

How to Test the Ratios Conjecture?
■ Calculate the Ratios prediction (easier, already done)

Testing the Ratios Conjecture for this Convolution

L-functions

Why Test The Ratios Conjecture?

- Justify using its predictions in this case

■ Better understand the conjecture in general

How to Test the Ratios Conjecture?
■ Calculate the Ratios prediction (easier, already done)

■ Do the explicit number theory calculation (harder)

Testing the Ratios Conjecture for this Convolution

L-functions Ratios
Conjecture

Introduction
Comparing
Ratios and
Number
Theory
Conclusions

Why Test The Ratios Conjecture?
■ Justify using its predictions in this case
■ Better understand the conjecture in general

How to Test the Ratios Conjecture?
■ Calculate the Ratios prediction (easier, already done)

■ Do the explicit number theory calculation (harder)

■ See if the two expressions are equal up to an error term

Comparing the Two (Sans Error Terms)

An Elliptic
Curve Test of the
L-functions Ratios Conjecture

Introduction

Comparing

Ratios and

 NumberTheory
Conclusions

NT: $\quad \frac{g(0)}{2}+\frac{1}{2 L X^{*}} \int_{-\infty}^{\infty} g(\tau) \sum_{d \in \mathcal{F}(X)}\left[2 \log \left(\frac{\sqrt{M}|d|}{2 \pi}\right)+\frac{\Gamma^{\prime}}{\Gamma}\left(1+i \frac{\pi \tau}{L}\right)+\frac{\Gamma^{\prime}}{\Gamma}\left(1-i \frac{\pi \tau}{L}\right)\right] d \tau$

$$
+\frac{1}{L} \int_{-\infty}^{\infty} g(\tau)\left(-\frac{\zeta^{\prime}}{\zeta}\left(1+\frac{2 \pi i \tau}{L}\right)+\frac{L_{E}^{\prime}}{L_{E}}\left(\operatorname{sym}^{2}, 1+\frac{2 \pi i \tau}{L}\right)-\sum_{\ell=1}^{\infty} \frac{\left(M^{\ell}-1\right) \log M}{M^{\left(2+\frac{2 \pi i \tau}{L}\right) \ell}}\right) d \tau
$$

$$
-\frac{1}{L} \sum_{k=0}^{\infty} \int_{-\infty}^{\infty} g(\tau) \frac{\log M}{M^{(k+1)\left(1+\frac{\pi i \tau}{L}\right)}} d \tau+\frac{1}{L} \int_{-\infty}^{\infty} g(\tau) \sum_{p \nmid M} \frac{\log p}{(p+1)} \sum_{k=0}^{\infty} \frac{\lambda\left(p^{2 k+2}\right)-\lambda\left(p^{2 k}\right)}{p^{(k+1)\left(1+\frac{2 \pi i \tau}{L}\right)}} d \tau
$$

Ratios:

$$
\begin{aligned}
& \frac{g(0)}{2}+\frac{1}{2 L X^{*}} \int_{-\infty}^{\infty} g(\tau) \sum_{d \in \mathcal{F}(X)}\left[2 \log \left(\frac{\sqrt{M}|d|}{2 \pi}\right)+\frac{\Gamma^{\prime}}{\Gamma}\left(1+i \frac{\pi \tau}{L}\right)+\frac{\Gamma^{\prime}}{\Gamma}\left(1-i \frac{\pi \tau}{L}\right)\right] d \tau \\
& +\frac{1}{L} \int_{-\infty}^{\infty} g(\tau)\left(-\frac{\zeta^{\prime}}{\zeta}\left(1+\frac{2 \pi i \tau}{L}\right)+\frac{L_{E}^{\prime}}{L_{E}}\left(\operatorname{sym}^{2}, 1+\frac{2 \pi i \tau}{L}\right)-\sum_{\ell=1}^{\infty} \frac{\left(M^{\ell}-1\right) \log M}{M^{\left(2+\frac{2 \pi i \tau}{L}\right) \ell}}\right) d \tau \\
& -\frac{1}{L} \sum_{k=0}^{\infty} \int_{-\infty}^{\infty} g(\tau) \frac{\log M}{M^{(k+1)\left(1+\frac{\pi i \tau}{L}\right)}} d \tau+\frac{1}{L} \int_{-\infty}^{\infty} g(\tau) \sum_{p \nmid M} \frac{\log p}{(p+1)} \sum_{k=0}^{\infty} \frac{\lambda\left(p^{2 k+2}\right)-\lambda\left(p^{2 k}\right)}{p^{(k+1)\left(1+\frac{2 \pi i \tau}{L}\right)}} d \tau \\
& -\frac{1}{L X^{*}} \int_{-\infty}^{\infty} g(\tau) \sum_{d \in \mathcal{F}(X)}\left[\left(\frac{\sqrt{M}|d|}{2 \pi}\right)^{-2 i \pi \tau / L} \frac{\Gamma\left(1-\frac{i \pi \tau}{L}\right)}{\Gamma\left(1+\frac{i \pi \tau}{L}\right)} \frac{\zeta\left(1+\frac{2 i \pi \tau}{L}\right) L_{E}\left(\mathrm{sym}^{2}, 1-\frac{2 i \pi \tau}{L}\right)}{L_{E}\left(\mathrm{sym}^{2}, 1\right)}\right. \\
& \left.\times A_{E}\left(-\frac{i \pi \tau}{L}, \frac{i \pi \tau}{L}\right)\right] d \tau
\end{aligned}
$$

Comparing the Two (Sans Error Terms)

An Elliptic
Curve Test of the
L-functions Ratios Conjecture

Introduction
Comparing Ratios and Number Theory

Conclusions

$$
\begin{aligned}
A_{E}(\alpha, \gamma)= & \frac{\zeta(1+\alpha+\gamma) L_{E}\left(\operatorname{sym}^{2}, 1+\alpha+\gamma\right)}{\zeta(1+2 \gamma) L_{E}\left(\operatorname{sym}^{2}, 1+2 \alpha\right)} \times \prod_{p \mid M}\left(\sum_{m=0}^{\infty}\left(\frac{\lambda\left(p^{m}\right) \omega_{E}^{m}}{p^{m(1 / 2+\alpha)}}-\frac{\lambda(p)}{p^{1 / 2+\gamma}} \frac{\lambda\left(p^{m}\right) \omega_{E}^{m+1}}{p^{m(1 / 2+\alpha)}}\right)\right. \\
& \times \prod_{p \nmid M}\left(1+\frac{p}{p+1}\left(\sum_{m=1}^{\infty} \frac{\lambda\left(p^{2 m}\right)}{p^{m(1+2 \alpha)}}-\frac{\lambda(p)}{p^{1+\alpha+\gamma}} \sum_{m=0}^{\infty} \frac{\lambda\left(p^{2 m+1}\right)}{p^{m(1+2 \alpha)}}+\frac{1}{p^{1+2 \gamma}} \sum_{m=0}^{\infty} \frac{\lambda\left(p^{2 m}\right)}{p^{m(1+2 \alpha)}}\right)\right.
\end{aligned}
$$

Comparing the Two (Sans Error Terms)

An Elliptic
Curve Test of the
L-functions Ratios Conjecture

Introduction

Comparing

Ratios and

 NumberTheory
Conclusions

NT: $\quad \frac{g(0)}{2}+\frac{1}{2 L X^{*}} \int_{-\infty}^{\infty} g(\tau) \sum_{d \in \mathcal{F}(X)}\left[2 \log \left(\frac{\sqrt{M}|d|}{2 \pi}\right)+\frac{\Gamma^{\prime}}{\Gamma}\left(1+i \frac{\pi \tau}{L}\right)+\frac{\Gamma^{\prime}}{\Gamma}\left(1-i \frac{\pi \tau}{L}\right)\right] d \tau$

$$
+\frac{1}{L} \int_{-\infty}^{\infty} g(\tau)\left(-\frac{\zeta^{\prime}}{\zeta}\left(1+\frac{2 \pi i \tau}{L}\right)+\frac{L_{E}^{\prime}}{L_{E}}\left(\operatorname{sym}^{2}, 1+\frac{2 \pi i \tau}{L}\right)-\sum_{\ell=1}^{\infty} \frac{\left(M^{\ell}-1\right) \log M}{M^{\left(2+\frac{2 \pi i \tau}{L}\right) \ell}}\right) d \tau
$$

$$
-\frac{1}{L} \sum_{k=0}^{\infty} \int_{-\infty}^{\infty} g(\tau) \frac{\log M}{M^{(k+1)\left(1+\frac{\pi i \tau}{L}\right)}} d \tau+\frac{1}{L} \int_{-\infty}^{\infty} g(\tau) \sum_{p \nmid M} \frac{\log p}{(p+1)} \sum_{k=0}^{\infty} \frac{\lambda\left(p^{2 k+2}\right)-\lambda\left(p^{2 k}\right)}{p^{(k+1)\left(1+\frac{2 \pi i \tau}{L}\right)}} d \tau
$$

Ratios:

$$
\begin{aligned}
& \frac{g(0)}{2}+\frac{1}{2 L X^{*}} \int_{-\infty}^{\infty} g(\tau) \sum_{d \in \mathcal{F}(X)}\left[2 \log \left(\frac{\sqrt{M}|d|}{2 \pi}\right)+\frac{\Gamma^{\prime}}{\Gamma}\left(1+i \frac{\pi \tau}{L}\right)+\frac{\Gamma^{\prime}}{\Gamma}\left(1-i \frac{\pi \tau}{L}\right)\right] d \tau \\
& +\frac{1}{L} \int_{-\infty}^{\infty} g(\tau)\left(-\frac{\zeta^{\prime}}{\zeta}\left(1+\frac{2 \pi i \tau}{L}\right)+\frac{L_{E}^{\prime}}{L_{E}}\left(\operatorname{sym}^{2}, 1+\frac{2 \pi i \tau}{L}\right)-\sum_{\ell=1}^{\infty} \frac{\left(M^{\ell}-1\right) \log M}{M^{\left(2+\frac{2 \pi i \tau}{L}\right) \ell}}\right) d \tau \\
& -\frac{1}{L} \sum_{k=0}^{\infty} \int_{-\infty}^{\infty} g(\tau) \frac{\log M}{M^{(k+1)\left(1+\frac{\pi i \tau}{L}\right)}} d \tau+\frac{1}{L} \int_{-\infty}^{\infty} g(\tau) \sum_{p \nmid M} \frac{\log p}{(p+1)} \sum_{k=0}^{\infty} \frac{\lambda\left(p^{2 k+2}\right)-\lambda\left(p^{2 k}\right)}{p^{(k+1)\left(1+\frac{2 \pi i \tau}{L}\right)}} d \tau \\
& -\frac{1}{L X^{*}} \int_{-\infty}^{\infty} g(\tau) \sum_{d \in \mathcal{F}(X)}\left[\left(\frac{\sqrt{M}|d|}{2 \pi}\right)^{-2 i \pi \tau / L} \frac{\Gamma\left(1-\frac{i \pi \tau}{L}\right)}{\Gamma\left(1+\frac{i \pi \tau}{L}\right)} \frac{\zeta\left(1+\frac{2 i \pi \tau}{L}\right) L_{E}\left(\mathrm{sym}^{2}, 1-\frac{2 i \pi \tau}{L}\right)}{L_{E}\left(\mathrm{sym}^{2}, 1\right)}\right. \\
& \left.\times A_{E}\left(-\frac{i \pi \tau}{L}, \frac{i \pi \tau}{L}\right)\right] d \tau
\end{aligned}
$$

Comparing the Two (Sans Error Terms)

An Elliptic
Curve Test of the
L-functions Ratios Conjecture

Introduction

Comparing

Ratios and

 NumberTheory
Conclusions

NT: $\quad \frac{g(0)}{2}+\frac{1}{2 L X^{*}} \int_{-\infty}^{\infty} g(\tau) \sum_{d \in \mathcal{F}(X)}\left[2 \log \left(\frac{\sqrt{M}|d|}{2 \pi}\right)+\frac{\Gamma^{\prime}}{\Gamma}\left(1+i \frac{\pi \tau}{L}\right)+\frac{\Gamma^{\prime}}{\Gamma}\left(1-i \frac{\pi \tau}{L}\right)\right] d \tau$

$$
+\frac{1}{L} \int_{-\infty}^{\infty} g(\tau)\left(-\frac{\zeta^{\prime}}{\zeta}\left(1+\frac{2 \pi i \tau}{L}\right)+\frac{L_{E}^{\prime}}{L_{E}}\left(\operatorname{sym}^{2}, 1+\frac{2 \pi i \tau}{L}\right)-\sum_{\ell=1}^{\infty} \frac{\left(M^{\ell}-1\right) \log M}{M^{\left(2+\frac{2 \pi i \tau}{L}\right) \ell}}\right) d \tau
$$

$$
-\frac{1}{L} \sum_{k=0}^{\infty} \int_{-\infty}^{\infty} g(\tau) \frac{\log M}{M^{(k+1)\left(1+\frac{\pi i \tau}{L}\right)}} d \tau+\frac{1}{L} \int_{-\infty}^{\infty} g(\tau) \sum_{p \nmid M} \frac{\log p}{(p+1)} \sum_{k=0}^{\infty} \frac{\lambda\left(p^{2 k+2}\right)-\lambda\left(p^{2 k}\right)}{p^{(k+1)\left(1+\frac{2 \pi i \tau}{L}\right)}} d \tau
$$

Ratios:

$$
\begin{aligned}
& \frac{g(0)}{2}+\frac{1}{2 L X^{*}} \int_{-\infty}^{\infty} g(\tau) \sum_{d \in \mathcal{F}(X)}\left[2 \log \left(\frac{\sqrt{M}|d|}{2 \pi}\right)+\frac{\Gamma^{\prime}}{\Gamma}\left(1+i \frac{\pi \tau}{L}\right)+\frac{\Gamma^{\prime}}{\Gamma}\left(1-i \frac{\pi \tau}{L}\right)\right] d \tau \\
& +\frac{1}{L} \int_{-\infty}^{\infty} g(\tau)\left(-\frac{\zeta^{\prime}}{\zeta}\left(1+\frac{2 \pi i \tau}{L}\right)+\frac{L_{E}^{\prime}}{L_{E}}\left(\operatorname{sym}^{2}, 1+\frac{2 \pi i \tau}{L}\right)-\sum_{\ell=1}^{\infty} \frac{\left(M^{\ell}-1\right) \log M}{M^{\left(2+\frac{2 \pi i \tau}{L}\right) \ell}}\right) d \tau \\
& -\frac{1}{L} \sum_{k=0}^{\infty} \int_{-\infty}^{\infty} g(\tau) \frac{\log M}{M^{(k+1)\left(1+\frac{\pi i \tau}{L}\right)}} d \tau+\frac{1}{L} \int_{-\infty}^{\infty} g(\tau) \sum_{p \nmid M} \frac{\log p}{(p+1)} \sum_{k=0}^{\infty} \frac{\lambda\left(p^{2 k+2}\right)-\lambda\left(p^{2 k}\right)}{p^{(k+1)\left(1+\frac{2 \pi i \tau}{L}\right)}} d \tau \\
& -\frac{1}{L X^{*}} \int_{-\infty}^{\infty} g(\tau) \sum_{d \in \mathcal{F}(X)}\left[\left(\frac{\sqrt{M}|d|}{2 \pi}\right)^{-2 i \pi \tau / L} \frac{\Gamma\left(1-\frac{i \pi \tau}{L}\right)}{\Gamma\left(1+\frac{i \pi \tau}{L}\right)} \frac{\zeta\left(1+\frac{2 i \pi \tau}{L}\right) L_{E}\left(\mathrm{sym}^{2}, 1-\frac{2 i \pi \tau}{L}\right)}{L_{E}\left(\mathrm{sym}^{2}, 1\right)}\right. \\
& \left.\times A_{E}\left(-\frac{i \pi \tau}{L}, \frac{i \pi \tau}{L}\right)\right] d \tau
\end{aligned}
$$

Comparing the Two (Sans Error Terms)

An Elliptic
Curve Test of the
L-functions Ratios Conjecture

Introduction

Comparing

Ratios and

 NumberTheory
Conclusions

NT: $\quad \frac{g(0)}{2}+\frac{1}{2 L X^{*}} \int_{-\infty}^{\infty} g(\tau) \sum_{d \in \mathcal{F}(X)}\left[2 \log \left(\frac{\sqrt{M}|d|}{2 \pi}\right)+\frac{\Gamma^{\prime}}{\Gamma}\left(1+i \frac{\pi \tau}{L}\right)+\frac{\Gamma^{\prime}}{\Gamma}\left(1-i \frac{\pi \tau}{L}\right)\right] d \tau$

$$
+\frac{1}{L} \int_{-\infty}^{\infty} g(\tau)\left(-\frac{\zeta^{\prime}}{\zeta}\left(1+\frac{2 \pi i \tau}{L}\right)+\frac{L_{E}^{\prime}}{L_{E}}\left(\operatorname{sym}^{2}, 1+\frac{2 \pi i \tau}{L}\right)-\sum_{\ell=1}^{\infty} \frac{\left(M^{\ell}-1\right) \log M}{M^{\left(2+\frac{2 \pi i \tau}{L}\right) \ell}}\right) d \tau
$$

$$
-\frac{1}{L} \sum_{k=0}^{\infty} \int_{-\infty}^{\infty} g(\tau) \frac{\log M}{M^{(k+1)\left(1+\frac{\pi i \tau}{L}\right)}} d \tau+\frac{1}{L} \int_{-\infty}^{\infty} g(\tau) \sum_{p \nmid M} \frac{\log p}{(p+1)} \sum_{k=0}^{\infty} \frac{\lambda\left(p^{2 k+2}\right)-\lambda\left(p^{2 k}\right)}{p^{(k+1)\left(1+\frac{2 \pi i \tau}{L}\right)}} d \tau
$$

Ratios:

$$
\begin{aligned}
& \frac{g(0)}{2}+\frac{1}{2 L X^{*}} \int_{-\infty}^{\infty} g(\tau) \sum_{d \in \mathcal{F}(X)}\left[2 \log \left(\frac{\sqrt{M|d|}}{2 \pi}\right)+\frac{\Gamma^{\prime}}{\Gamma}\left(1+i \frac{\pi \tau}{L}\right)+\frac{\Gamma^{\prime}}{\Gamma}\left(1-i \frac{\pi \tau}{L}\right)\right] d \tau \\
& +\frac{1}{L} \int_{-\infty}^{\infty} g(\tau)\left(-\frac{\zeta^{\prime}}{\zeta}\left(1+\frac{2 \pi i \tau}{L}\right)+\frac{L_{E}^{\prime}}{L_{E}}\left(\operatorname{sym}^{2}, 1+\frac{2 \pi i \tau}{L}\right)-\sum_{\ell=1}^{\infty} \frac{\left(M^{\ell}-1\right) \log M}{\left.M^{\left(2+\frac{2 \pi i \tau}{L}\right) \ell}\right) d \tau}\right. \\
& -\frac{1}{L} \sum_{k=0}^{\infty} \int_{-\infty}^{\infty} g(\tau) \frac{\log M}{M^{(k+1)\left(1+\frac{\pi i \tau}{L}\right)} d \tau+\frac{1}{L} \int_{-\infty}^{\infty} g(\tau) \sum_{p \nmid M} \frac{\log p}{(p+1)} \sum_{k=0}^{\infty} \frac{\lambda\left(p^{2 k+2}\right)-\lambda\left(p^{2 k}\right)}{p^{(k+1)\left(1+\frac{2 \pi i \tau}{L}\right)} d \tau}} \begin{array}{l}
-\frac{1}{L X^{*}} \int_{-\infty}^{\infty} g(\tau) \\
\times \sum_{d \in \mathcal{F}(X)}\left[\left(\frac{\sqrt{M}|d|}{2 \pi}\right)^{-2 i \pi \tau / L} \frac{\Gamma\left(1-\frac{i \pi \tau}{L}\right)}{\Gamma\left(1+\frac{i \pi \tau}{L}\right)} \frac{\zeta\left(1+\frac{2 i \pi \tau}{L}\right) L_{E}\left(\mathrm{sym}^{2}, 1-\frac{2 i \pi \tau}{L}\right)}{L_{E}\left(\mathrm{sym}^{2}, 1\right)}\right. \\
\left.\left.{ }^{2 \pi}, \frac{i \pi \tau}{L}\right)\right] d \tau
\end{array}
\end{aligned}
$$

Big Result

Theorem

Comparing
The Ratios Conjecture for quadratic twists of elliptic curve L-functions of prime conductor is correct up to errors of size $O\left(X^{-(1-\sigma) / 2}\right)$.

Thanks

An Elliptic
Curve Test of the
L-functions Ratios Conjecture

- AMS/MAA

Introduction
Comparing
Ratios and
Number
Theory
Conclusions
■ Steven J. Miller and Duc Khiem Huynh

- Williams College and UC Berkeley

■ Y'all

