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n= p prime

Extends uniquely to the rest of C.



Zeros of ((s)

An Elliptic
Curve Test of
the
L-functions
Ratios
Conjecture

Riemann Hypothesis: all nontrivial zeros of ((s) have real part

Introduction



Zeros of ((s)

An Elliptic
Curve Test of
the
L-functions
Ratios
Conjecture

Riemann Hypothesis: all nontrivial zeros of ((s) have real part

Introduction ok

-40F




Zeros of L-functions

An Elliptic
Curve Test of
the
L-functions
Ratios
Conjecture

Generalized Riemann Hypothesis:
Introduction L-functions have real part %

all nontrivial zeros of “good”




Zeros of L-functions

An Elliptic
Curve Test of
the
L-functions
Ratios
Conjecture

Generalized Riemann Hypothesis: all nontrivial zeros of “good”
Introduction L-functions have real part %

Let's just go ahead and assume it.



Zeros of L-functions

An Elliptic
Curve Test of
the
L-functions
Ratios
Conjecture
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Let's just go ahead and assume it.

What does the distribution of zeros looks like?
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&: the Fourier transform of ¢; supp(qAﬁ) C (—o,0)

Have to average over family F of L-functions.
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Conjecture E: an elliptic curve of prime conductor M

R A(p): counts points on E over F, (more or less)
x: a Dirichlet character of order d

The L-functions we consider:

Le(s,x) = i W -11 (1 a A(pl);sc(p) N ¢M(/;)21<(p)2>
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Ratios Conjecture

m Recipe for doing the one-level density calculations more
easily

Introduction

m Predicts the main term of one-level density as well as
lower order terms in MANY situations

We'll focus on testing the Ratios Conjecture for families of
quadratic twists of elliptic curve L-functions
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Ratios Why Test The Ratios Conjecture?

Conjecture

m Justify using its predictions in this case

et m Better understand the conjecture in general

How to Test the Ratios Conjecture?

m Calculate the Ratios prediction (easier, already done)
m Do the explicit number theory calculation (harder)

m See if the two expressions are equal up to an error term
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Theorem

The Ratios Conjecture for quadratic twists of elliptic curve

L-functions of prime conductor is correct up to errors of size
Conclusions O(X_(l_a')/z)_
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