Distribution of Missing Sums in Sumsets

Oleg Lazarev, Princeton University
Advisor: Steven Miller, Williams College
SMALL Research Program 2011, Williams College

2012 Joint Meetings
January 6, 2012

Background

Let $A \subseteq \mathbb{N} \cup\{0\}$.

Background

Let $A \subseteq \mathbb{N} \cup\{0\}$.

Definition

Sumset: $A+A=\{x+y: x, y \in A\}$

Background

Let $A \subseteq \mathbb{N} \cup\{0\}$.

Definition

Sumset: $A+A=\{x+y: x, y \in A\}$ Interval: $[a, b]=\{x \in \mathbb{N}: a \leq x \leq b\}$

Background

Let $A \subseteq \mathbb{N} \cup\{0\}$.

Definition

Sumset: $A+A=\{x+y: x, y \in A\}$ Interval: $[a, b]=\{x \in \mathbb{N}: a \leq x \leq b\}$

Example: if $A=\{1,2,5\}$, then

$$
A+A=\{2,3,4,6,7,10\}
$$

Background

Let $A \subseteq \mathbb{N} \cup\{0\}$.

Definition

Sumset: $A+A=\{x+y: x, y \in A\}$
Interval: $[a, b]=\{x \in \mathbb{N}: a \leq x \leq b\}$
Example: if $A=\{1,2,5\}$, then

$$
A+A=\{2,3,4,6,7,10\}
$$

Why study sumsets?

Background

Let $A \subseteq \mathbb{N} \cup\{0\}$.

Definition

Sumset: $A+A=\{x+y: x, y \in A\}$
Interval: $[a, b]=\{x \in \mathbb{N}: a \leq x \leq b\}$
Example: if $A=\{1,2,5\}$, then

$$
A+A=\{2,3,4,6,7,10\}
$$

Why study sumsets?

- Goldbach's conjecture: $\{4,6,8, \cdots\} \subseteq P+P$.
- Fermat's last theorem: let A_{n} be the nth powers and then ask if $\left(A_{n}+A_{n}\right) \cap A_{n}=\emptyset$ for all $n>2$.

Background

Let $A \subseteq \mathbb{N} \cup\{0\}$.

Definition

Sumset: $A+A=\{x+y: x, y \in A\}$
Interval: $[a, b]=\{x \in \mathbb{N}: a \leq x \leq b\}$
Example: if $A=\{1,2,5\}$, then

$$
A+A=\{2,3,4,6,7,10\}
$$

Why study sumsets?

- Goldbach's conjecture: $\{4,6,8, \cdots\} \subseteq P+P$.
- Fermat's last theorem: let A_{n} be the nth powers and then ask if $\left(A_{n}+A_{n}\right) \cap A_{n}=\emptyset$ for all $n>2$.
Key Question: What is the structure of $A+A$?

Structure of Random Sets

- Consider finite $A \subseteq[0, n-1]$ chosen randomly with uniform distribution from all subsets of $[0, n-1]$.

Structure of Random Sets

- Consider finite $A \subseteq[0, n-1]$ chosen randomly with uniform distribution from all subsets of $[0, n-1]$.
- Question: What is the structure of $A+A$ for such A ? What is the distribution of $|A+A|$ for such A ?

Structure of Random Sets

- Consider finite $A \subseteq[0, n-1]$ chosen randomly with uniform distribution from all subsets of $[0, n-1]$.
- Question: What is the structure of $A+A$ for such A ? What is the distribution of $|A+A|$ for such A ?

Theorem: Martin-O'Bryant

$\mathrm{E}|A+A|=2 n-1-10+O\left((3 / 4)^{n / 2}\right)$.

Structure of Random Sets

- Consider finite $A \subseteq[0, n-1]$ chosen randomly with uniform distribution from all subsets of $[0, n-1]$.
- Question: What is the structure of $A+A$ for such A ? What is the distribution of $|A+A|$ for such A ?

Theorem: Martin-O'Bryant

$$
E|A+A|=2 n-1-10+O\left((3 / 4)^{n / 2}\right) .
$$

Theorem: Zhao

For each fixed $k, \mathrm{P}(A \subseteq[0, n-1]:|A+A|=2 n-1-k)$ has a limit as $n \rightarrow \infty$.

Structure of Random Sets

- Consider finite $A \subseteq[0, n-1]$ chosen randomly with uniform distribution from all subsets of $[0, n-1]$.
- Question: What is the structure of $A+A$ for such A ? What is the distribution of $|A+A|$ for such A ?

Theorem: Martin-O'Bryant

$$
E|A+A|=2 n-1-10+O\left((3 / 4)^{n / 2}\right) .
$$

Theorem: Zhao

For each fixed $k, \mathrm{P}(A \subseteq[0, n-1]:|A+A|=2 n-1-k)$ has a limit as $n \rightarrow \infty$.

Note: Both theorems can be more naturally stated in terms of missing sums (independent of n).

Structure of Random Sets, Continued

- Why is the expectation so high? $E|A+A| \sim 2 n-11$.

Structure of Random Sets, Continued

- Why is the expectation so high? $E|A+A| \sim 2 n-11$.
- Main characteristic of typical $A+A$: middle is full.

Structure of Random Sets, Continued

- Why is the expectation so high? $E|A+A| \sim 2 n-11$.
- Main characteristic of typical $A+A$: middle is full.
- Many ways to write middle elements as sums

Figure: Comparison of predicted and observed number of representations of possible elements of the sumset

Structure of Random Sets, Continued

- Why is the expectation so high? $E|A+A| \sim 2 n-11$.
- Main characteristic of typical $A+A$: middle is full.
- Many ways to write middle elements as sums

Figure: Comparison of predicted and observed number of representations of possible elements of the sumset

- Key fact: if $k<n$, then $\mathrm{P}(k \notin A+A) \sim\left(\frac{3}{4}\right)^{k / 2}$.

New Results

Theorem: Bounds on the distribution (Lazarev-Miller, 2011) $0.70^{k} \ll P(A+A$ has k missing sums $) \ll 0.81^{k}$.

New Results

Theorem: Bounds on the distribution (Lazarev-Miller, 2011)

$$
0.70^{k} \ll P(A+A \text { has } k \text { missing sums }) \ll 0.81^{k} .
$$

Conjecture: $P(A+A$ has k missing sums $) \sim 0.78^{k}$.

New Results

Theorem: Bounds on the distribution (Lazarev-Miller, 2011)

$$
0.70^{k} \ll P(A+A \text { has } k \text { missing sums }) \ll 0.81^{k} .
$$

Conjecture: $P(A+A$ has k missing sums $) \sim 0.78^{k}$.

Figure: Log P (k missing sums) seems eventually linear

New Results

Theorem: Bounds on the distribution (Lazarev-Miller, 2011)

$$
0.70^{k} \ll P(A+A \text { has } k \text { missing sums }) \ll 0.81^{k}
$$

Conjecture: $P(A+A$ has k missing sums $) \sim 0.78^{k}$.

Figure: Log P (k missing sums) seems eventually linear
Our main results are about $P\left(A: a_{1}, \cdots\right.$, and $\left.a_{m} \notin A+A\right)$.

New Results

Theorem: Bounds on the distribution (Lazarev-Miller, 2011)

$$
0.70^{k} \ll P(A+A \text { has } k \text { missing sums }) \ll 0.81^{k}
$$

Conjecture: $P(A+A$ has k missing sums $) \sim 0.78^{k}$.

Figure: Log P (k missing sums) seems eventually linear
Our main results are about $P\left(A: a_{1}, \cdots\right.$, and $\left.a_{m} \notin A+A\right)$. Main idea: Use graph theory.

More Results

Theorem: Variance (Lazarev-Miller)

$$
\operatorname{Var}|A+A|=4 \sum_{i<j \leq n-1} P(i \text { and } j \notin A+A)-40 \sim 35.98
$$

Theorem: Distribution of configurations (Lazarev-Miller)

For any fixed a_{1}, \cdots, a_{m}, exists $\lambda_{a_{1}, \cdots, a_{m}}$ such that

$$
P\left(k+a_{1}, k+a_{2}, \cdots, \text { and } k+a_{m} \notin A+A\right)=\Theta\left(\lambda_{a_{1}, \cdots, a_{m}}^{k}\right) \text {. }
$$

Theorem: Consecutive missing sums (Lazarev-Miller)

$$
P(k, k+1, \cdots, \text { and } k+m \notin A+A)=\left(\frac{1}{2}+o(1)\right)^{(k+m) / 2} .
$$

Bound on Distribution: Upper Bound

Weaker Upper bound: $P(A+A$ has k missing sums $)<0.93^{k}$. Proof sketch:

Bound on Distribution: Upper Bound

Weaker Upper bound: $P(A+A$ has k missing sums $)<0.93^{k}$. Proof sketch:

- Recall $P(k \notin A+A)=\left(\frac{3}{4}\right)^{k / 2}$.

Bound on Distribution: Upper Bound

Weaker Upper bound: $P(A+A$ has k missing sums $)<0.93^{k}$. Proof sketch:

- Recall $P(k \notin A+A)=\left(\frac{3}{4}\right)^{k / 2}$.
- If k elements are missing, then missing one at least $k / 2$ from the edges.

Bound on Distribution: Upper Bound

Weaker Upper bound: $P(A+A$ has k missing sums $)<0.93^{k}$. Proof sketch:

- Recall $P(k \notin A+A)=\left(\frac{3}{4}\right)^{k / 2}$.
- If k elements are missing, then missing one at least $k / 2$ from the edges.

missing sum more than $k / 2$ from ends

Bound on Distribution: Upper Bound

Weaker Upper bound: $P(A+A$ has k missing sums $)<0.93^{k}$. Proof sketch:

- Recall $P(k \notin A+A)=\left(\frac{3}{4}\right)^{k / 2}$.
- If k elements are missing, then missing one at least $k / 2$ from the edges.

missing sum more than $k / 2$ from ends
- $P(A+A$ has k missing sums $)<P(k / 2 \notin A+A)<$ $\left(\frac{3}{4}\right)^{k / 4} \sim 0.93^{k}$.

Bound on Distribution: Upper Bound

Weaker Upper bound: $P(A+A$ has k missing sums $)<0.93^{k}$.
Proof sketch:

- Recall $P(k \notin A+A)=\left(\frac{3}{4}\right)^{k / 2}$.
- If k elements are missing, then missing one at least $k / 2$ from the edges.

missing sum more than $k / 2$ from ends
- $P(A+A$ has k missing sums $)<P(k / 2 \notin A+A)<$ $\left(\frac{3}{4}\right)^{k / 4} \sim 0.93^{k}$.
Note: Bounds on $P\left(k+a_{1}, k+a_{2}, \cdots\right.$, and $\left.k+a_{m} \notin A+A\right)$ yield upper bounds on $P(A+A$ has k missing sums $)$.

Problem: Dependent Random Variables

Variances reduces to $\sum_{0 \leq i, j \leq 2 n-2} \mathrm{P}(A$: i and $j \notin A+A)$.

Problem: Dependent Random Variables

Variances reduces to $\sum_{0 \leq i, j \leq 2 n-2} \mathrm{P}(A: i$ and $j \notin A+A)$.
Example: $\mathrm{P}(A: 3$ and $7 \notin A+A)$

Problem: Dependent Random Variables

Variances reduces to $\sum_{0 \leq i, j \leq 2 n-2} \mathrm{P}(A$: i and $j \notin A+A)$.
Example: $\mathrm{P}(A$: 3 and $7 \notin A+A)$

- Conditions:

$$
\begin{array}{lll}
i=3: & 0 \text { or } 3 \notin A & j=7: \\
& \text { and } 1 \text { or } 7 \notin A \\
& \text { and } 1 \text { or } 6 \notin A \\
& & \text { and } 2 \text { or } 5 \notin A \\
& & \text { and } 3 \text { or } 4 \notin A .
\end{array}
$$

Problem: Dependent Random Variables

Variances reduces to $\sum_{0 \leq i, j \leq 2 n-2} \mathrm{P}(A: i$ and $j \notin A+A)$.
Example: $\mathrm{P}(A: 3$ and $7 \notin A+A)$

- Conditions:

$$
\begin{array}{lll}
i=3: & 0 \text { or } 3 \notin A & j=7: \\
& 0 \text { or } 7 \notin A \\
& \text { and } 1 \text { or } 2 \notin A & \\
& & \text { and } 2 \text { or } 6 \notin A \\
& & \text { and } 3 \text { or } 4 \notin A
\end{array}
$$

- Since there are common integers in both lists, the events $3 \notin A+A$ and $7 \notin A+A$ are dependent.

Solution: Use Graphs!

- Transform the conditions into a graph!

Solution: Use Graphs!

- Transform the conditions into a graph!
- For each integers in [0, 7], add a vertex with that integer.

Solution: Use Graphs!

- Transform the conditions into a graph!
- For each integers in $[0,7]$, add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7 .

Solution: Use Graphs!

- Transform the conditions into a graph!
- For each integers in [0, 7], add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7 .

Example $i=3, j=7$:

Solution: Use Graphs!

- Transform the conditions into a graph!
- For each integers in [0, 7], add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7 .

Example $i=3, j=7$:

Untangle graph \Rightarrow

Solution: Use Graphs!

- Transform the conditions into a graph!
- For each integers in [0, 7], add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7 .

Example $i=3, j=7$:

Untangle graph \Rightarrow

$$
\begin{aligned}
& 7-0-3-4 \\
& 6-1-2-5
\end{aligned}
$$

Solution: Use Graphs!

- Transform the conditions into a graph!
- For each integers in $[0,7]$, add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7 .

Example $i=3, j=7$:

Untangle graph \Rightarrow

$$
\begin{aligned}
& 7-0-3-4 \\
& 6-1-2-5
\end{aligned}
$$

- One-to-one correspondence between conditions/edges (and integers/vertices).

Interpretation of Graphs

Transformed into:

$$
7-0-3-4
$$

$$
6-1-2-5
$$

Interpretation of Graphs

Transformed into:

$$
\begin{array}{ll}
7-0-3-4 & 6-1-2-5
\end{array}
$$

- Need to pick integers so that each condition is satisfied.

Interpretation of Graphs

Transformed into:

$$
7-0-3-4
$$

$$
6-1-2-5
$$

- Need to pick integers so that each condition is satisfied.
- Therefore, need to pick vertices so that each edge has a vertex chosen.

Interpretation of Graphs

Transformed into:

$$
7-0-3-4
$$

$$
6-1-2-5
$$

- Need to pick integers so that each condition is satisfied.
- Therefore, need to pick vertices so that each edge has a vertex chosen.
- So need to pick a vertex cover!

Vertex Covers

Have:

$$
7-0-3-4
$$

$$
6-1-2-5
$$

Vertex Covers

Have:

$$
7-0-3-4
$$

6
1
2
5

Example:
7,0,4 and 6,2 form a vertex cover

Vertex Covers

Have:

$6-1-2-5$
Example:
7,0,4 and 6,2 form a vertex cover
If $7,0,4,6,2 \notin A$, then $3,7 \notin A+A$

Vertex Covers

Have:

$$
7-0-3-4 \quad 6-1-2-5
$$

Example:
7,0,4 and 6,2 form a vertex cover

If $7,0,4,6,2 \notin A$, then $3,7 \notin A+A$

Lemma (Lazarev-Miller)

$$
P(i, j \notin A+A)=P(\text { pick a vertex cover for graph }) .
$$

Number of Vertex Covers

Condition graphs are always 'segment' graphs. So we just need $g(n)$, the number of vertex covers for a 'segment' graph with n vertices.

Number of Vertex Covers

Condition graphs are always 'segment' graphs. So we just need $g(n)$, the number of vertex covers for a 'segment' graph with n vertices.

- Case 1: If the first vertex is chosen:

Number of Vertex Covers

Condition graphs are always 'segment' graphs. So we just need $g(n)$, the number of vertex covers for a 'segment' graph with n vertices.

- Case 1: If the first vertex is chosen:

$$
x-?-?-?-?
$$

Number of Vertex Covers

Condition graphs are always 'segment' graphs. So we just need $g(n)$, the number of vertex covers for a 'segment' graph with n vertices.

- Case 1: If the first vertex is chosen:

Need an vertex cover for the rest of the graph: $g(n-1)$.

Number of Vertex Covers

Condition graphs are always 'segment' graphs. So we just need $g(n)$, the number of vertex covers for a 'segment' graph with n vertices.

- Case 1: If the first vertex is chosen:

Need an vertex cover for the rest of the graph: $g(n-1)$.

- Case 2: If the first vertex is not chosen:

Need an vertex cover for the rest of the graph: $g(n-2)$.

Number of Vertex Covers

Condition graphs are always 'segment' graphs. So we just need $g(n)$, the number of vertex covers for a 'segment' graph with n vertices.

- Case 1: If the first vertex is chosen:

Need an vertex cover for the rest of the graph: $g(n-1)$.

- Case 2: If the first vertex is not chosen:

Need an vertex cover for the rest of the graph: $g(n-2)$.

- Fibonacci recursive relationship!

$$
g(n)=g(n-1)+g(n-2)
$$

Number of Vertex Covers

Condition graphs are always 'segment' graphs. So we just need $g(n)$, the number of vertex covers for a 'segment' graph with n vertices.

- Case 1: If the first vertex is chosen:

Need an vertex cover for the rest of the graph: $g(n-1)$.

- Case 2: If the first vertex is not chosen:

Need an vertex cover for the rest of the graph: $g(n-2)$.

- Fibonacci recursive relationship!

$$
\begin{aligned}
& g(n)=g(n-1)+g(n-2) \\
& \Longrightarrow g(n)=F_{n+2}
\end{aligned}
$$

General i, j

In particular

$$
\mathrm{P}(3 \text { and } 7 \notin A+A)=\frac{1}{2^{8}} F_{4+2} F_{4+2}=\frac{1}{4}
$$

since there were two graphs each of length 4.

General i, j

In particular

$$
\mathrm{P}(3 \text { and } 7 \notin A+A)=\frac{1}{2^{8}} F_{4+2} F_{4+2}=\frac{1}{4}
$$

since there were two graphs each of length 4.
For odd $i<j<n$:

$$
\begin{aligned}
& P(A: i \text { and } j \notin A+A) \\
& =\frac{1}{2 j+1} F_{2\left[\frac{1}{2}\left((j-i)\left\lceil\frac{i+1}{j-1}\right]-(i+1)\right)\right.}^{2-1]+2} \times F_{2\left[\frac{1}{j-1}\right]+4}^{\frac{1}{2}\left(j+1-(j-i)\left[\frac{i+1}{j-1}\right\rceil\right)}
\end{aligned}
$$

General i, j

In particular

$$
\mathrm{P}(3 \text { and } 7 \notin A+A)=\frac{1}{2^{8}} F_{4+2} F_{4+2}=\frac{1}{4}
$$

since there were two graphs each of length 4.
For odd $i<j<n$:

$$
\begin{aligned}
& P(A: i \text { and } j \notin A+A) \\
& \left.\left.=\frac{1}{2 j+1} F_{2}^{\frac{1}{2}\left((j-i)\left\lceil\frac{i+1}{j-1}\right]-(i+1)\right)} \times F_{2\left[\frac{1+1}{j-1}\right]+2}^{\frac{1}{2}\left(j+1-(j-i)\left[\frac{i+1}{j-1}\right]+4\right.}{ }^{j-1}\right]\right)
\end{aligned}
$$

In general $P(k$ and $k+1 \notin A+A)<C(\phi / 2)^{k} \sim 0.81^{k}$, giving upper bound.

Summary

Use graph theory to study $P\left(a_{1}, \cdots\right.$, and $\left.a_{m} \notin A+A\right)$.
Currently investigating:

- Is distribution of missing sums approximately exponential?
- Can A such that $A+A$ has k missing elements be modeled by a different random variable?
- Higher moments: third moment involves $P(i, j, k \notin A+A)$, with more complicated graphs.
- Distribution of $A-A$.

Thanks to:

- AMS / MAA
- Princeton University
- Williams College
- National Science Foundation

Thank you!

