Introduction	Results	Proofs	Conclusion

Distribution of Missing Sums in Sumsets

Oleg Lazarev, Princeton University Advisor: Steven Miller, Williams College SMALL Research Program 2011, Williams College

2012 Joint Meetings January 6, 2012

Introduction	Results	Proofs	Conclusion
●○○	oo	0000000	
Background			

Introduction ●○○	Results 00	Proofs	Conclusion
Background			

Definition

Sumset: $A + A = \{x + y : x, y \in A\}$

Introduction ●○○	Results oo	Proofs	Conclusion
Background			

Definition

Sumset: $A + A = \{x + y : x, y \in A\}$ Interval: $[a, b] = \{x \in \mathbb{N} : a \le x \le b\}$

Introduction	Results	Proofs	Conclusion
●○○	00	0000000	00
Background			

Definition

Sumset: $A + A = \{x + y : x, y \in A\}$ Interval: $[a, b] = \{x \in \mathbb{N} : a \le x \le b\}$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}$$

Introduction ●○○	Results oo	Proofs	Conclusion
Background			

Let
$$A \subseteq \mathbb{N} \cup \{0\}$$
.

Definition

Sumset:
$$A + A = \{x + y : x, y \in A\}$$

Interval: $[a, b] = \{x \in \mathbb{N} : a \le x \le b\}$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}$$

Why study sumsets?

Introduction	Results	Proofs	Conclusion
●○○	oo	0000000	

Background

Let
$$A \subseteq \mathbb{N} \cup \{0\}$$
.

Definition

Sumset:
$$A + A = \{x + y : x, y \in A\}$$

Interval: $[a, b] = \{x \in \mathbb{N} : a \le x \le b\}$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}$$

Why study sumsets?

- Goldbach's conjecture: $\{4, 6, 8, \cdots\} \subseteq P + P$.
- Fermat's last theorem: let A_n be the nth powers and then ask if (A_n + A_n) ∩ A_n = Ø for all n > 2.

Introduction	Results	Proofs	Conclusion
●○○	oo	0000000	

Background

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset: $A + A = \{x + y : x, y \in A\}$ Interval: $[a, b] = \{x \in \mathbb{N} : a \le x \le b\}$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}$$

Why study sumsets?

- Goldbach's conjecture: $\{4, 6, 8, \cdots\} \subseteq P + P$.
- Fermat's last theorem: let A_n be the *n*th powers and then ask if $(A_n + A_n) \cap A_n = \emptyset$ for all n > 2.

Key Question: What is the structure of A + A?

Introduction	Results	Proofs	Conclusion
○●○	00	0000000	00
Structure of Randor	n Sets		

Consider finite A ⊆ [0, n − 1] chosen randomly with uniform distribution from all subsets of [0, n − 1].

Introduction	Results	Proofs	Conclusion
○●○	oo		00
Structure of Rando	om Sets		

- Consider finite A ⊆ [0, n − 1] chosen randomly with uniform distribution from all subsets of [0, n − 1].
- Question: What is the structure of A + A for such A? What is the distribution of |A + A| for such A?

Introduction	Results	Proofs	Conclusion
○●○	oo	0000000	
Structure of Random	Sets		

- Consider finite A ⊆ [0, n − 1] chosen randomly with uniform distribution from all subsets of [0, n − 1].
- Question: What is the structure of A + A for such A? What is the distribution of |A + A| for such A?

Theorem: Martin-O'Bryant

$$E|A + A| = 2n - 1 - 10 + O((3/4)^{n/2}).$$

Introduction	Results	Proofs	Conclusion
○●○	00	0000000	
Structure of Random	n Sets		

- Consider finite A ⊆ [0, n − 1] chosen randomly with uniform distribution from all subsets of [0, n − 1].
- Question: What is the structure of A + A for such A? What is the distribution of |A + A| for such A?

Theorem: Martin-O'Bryant

$$\mathsf{E}|\mathsf{A}+\mathsf{A}| = 2n - 1 - 10 + O((3/4)^{n/2}).$$

Theorem: Zhao

For each fixed k, $P(A \subseteq [0, n-1] : |A + A| = 2n - 1 - k)$ has a limit as $n \to \infty$.

Introduction	Results	Proofs	Conclusion
○●○	oo	0000000	
Structure of Random	Sets		

- Consider finite A ⊆ [0, n − 1] chosen randomly with uniform distribution from all subsets of [0, n − 1].
- Question: What is the structure of A + A for such A? What is the distribution of |A + A| for such A?

Theorem: Martin-O'Bryant

$$\mathsf{E}|\mathsf{A}+\mathsf{A}|=2n-1-10+O((3/4)^{n/2}).$$

Theorem: Zhao

For each fixed k, $P(A \subseteq [0, n-1] : |A + A| = 2n - 1 - k)$ has a limit as $n \to \infty$.

Note: Both theorems can be more naturally stated in terms of missing sums (independent of *n*).

Introduction	Results	Proofs	Conclusion
○○●	oo	0000000	00
Structure of Random	Sets, Continued		

• Why is the expectation so high? $E|A + A| \sim 2n - 11$.

Introduction	Results	Proofs	Conclusion
○○●	00	0000000	00
Structure of Random	Sets, Continued		

- Why is the expectation so high? $E|A + A| \sim 2n 11$.
- Main characteristic of typical A + A: middle is full.

Introduction	Results	Proofs	Conclusion
000			

Structure of Random Sets, Continued

- Why is the expectation so high? $E|A + A| \sim 2n 11$.
- Main characteristic of typical A + A: middle is full.
- Many ways to write middle elements as sums

Figure: Comparison of predicted and observed number of representations of possible elements of the sumset

Introduction	Results	Proofs	Conclusion
000			

Structure of Random Sets, Continued

- Why is the expectation so high? $E|A + A| \sim 2n 11$.
- Main characteristic of typical A + A: middle is full.
- Many ways to write middle elements as sums

Figure: Comparison of predicted and observed number of representations of possible elements of the sumset

• Key fact: if
$$k < n$$
, then $P(k \notin A + A) \sim \left(\frac{3}{4}\right)^{k/2}$

Introduction	Results	Proofs	Conclusion
000	●○	0000000	
New Results			

 $0.70^k \ll P(A + A \text{ has } k \text{ missing sums}) \ll 0.81^k$.

Introduction	Results	Proofs	Conclusion
000	●○	0000000	
New Results			

 $0.70^k \ll P(A + A \text{ has } k \text{ missing sums}) \ll 0.81^k$.

Conjecture: $P(A + A \text{ has } k \text{ missing sums}) \sim 0.78^k$.

Introduction	Results	Proofs	Conclusion
000	●○	0000000	oo
New Results			

 $0.70^k \ll P(A + A \text{ has } k \text{ missing sums}) \ll 0.81^k$.

Conjecture: $P(A + A \text{ has } k \text{ missing sums}) \sim 0.78^k$.

Figure: Log P(k missing sums) seems eventually linear

Introduction	Results	Proofs	Conclusion
000	●○	0000000	oo
New Results			

 $0.70^k \ll P(A + A \text{ has } k \text{ missing sums}) \ll 0.81^k$.

Conjecture: $P(A + A \text{ has } k \text{ missing sums}) \sim 0.78^k$.

Figure: Log P(k missing sums) seems eventually linear

Our main results are about $P(A : a_1, \dots, and a_m \notin A + A)$.

Introduction	Results	Proofs	Conclusion
000	●○	000000	
New Results			

 $0.70^k \ll P(A + A \text{ has } k \text{ missing sums}) \ll 0.81^k$.

Conjecture: $P(A + A \text{ has } k \text{ missing sums}) \sim 0.78^k$.

Figure: Log P(k missing sums) seems eventually linear

Our main results are about $P(A : a_1, \dots, and a_m \notin A + A)$. Main idea: Use graph theory.

Introduction	Results	Proofs	Conclusion
	00		

More Results

Theorem: Variance (Lazarev-Miller)

$$Var|A + A| = 4 \sum_{i < j \le n-1} P(i \text{ and } j \notin A + A) - 40 \sim 35.98.$$

Theorem: Distribution of configurations (Lazarev-Miller)

For any fixed a_1, \dots, a_m , exists $\lambda_{a_1, \dots, a_m}$ such that

$$\mathsf{P}(k + a_1, k + a_2, \cdots, \text{ and } k + a_m \notin A + A) = \Theta(\lambda_{a_1, \cdots, a_m}^k).$$

Theorem: Consecutive missing sums (Lazarev-Miller)

$$P(k, k+1, \cdots, \text{ and } k+m \notin A+A) = \left(\frac{1}{2} + o(1)\right)^{(k+m)/2}$$

Introduction	Results	Proofs	Conclusion
		000000	

Weaker Upper bound: $P(A + A \text{ has } k \text{ missing sums}) < 0.93^k$. *Proof sketch:*

Introduction	Results	Proofs	Conclusion
		000000	

Weaker Upper bound: $P(A + A \text{ has } k \text{ missing sums}) < 0.93^k$. *Proof sketch:*

• Recall
$$P(k \notin A + A) = \left(\frac{3}{4}\right)^{k/2}$$
.

Introduction	Results	Proofs	Conclusion
		000000	

Weaker Upper bound: $P(A + A \text{ has } k \text{ missing sums}) < 0.93^k$. *Proof sketch:*

• Recall
$$P(k \notin A + A) = \left(\frac{3}{4}\right)^{k/2}$$
.

If k elements are missing, then missing one at least k/2 from the edges.

Introduction	Results	Proofs	Conclusion
		000000	

Weaker Upper bound: $P(A + A \text{ has } k \text{ missing sums}) < 0.93^k$. *Proof sketch:*

- Recall $P(k \notin A + A) = \left(\frac{3}{4}\right)^{k/2}$.
- If k elements are missing, then missing one at least k/2 from the edges.

missing sum more than k/2 from ends

Introduction	Results	Proofs	Conclusion
		000000	

Weaker Upper bound: $P(A + A \text{ has } k \text{ missing sums}) < 0.93^k$. *Proof sketch:*

- Recall $P(k \notin A + A) = \left(\frac{3}{4}\right)^{k/2}$.
- If k elements are missing, then missing one at least k/2 from the edges.

missing sum more than k/2 from ends

• $P(A + A \text{ has } k \text{ missing sums}) < P(k/2 \notin A + A) < (\frac{3}{4})^{k/4} \sim 0.93^k.$

Introduction	Results	Proofs	Conclusion
		000000	

Weaker Upper bound: $P(A + A \text{ has } k \text{ missing sums}) < 0.93^k$. *Proof sketch:*

- Recall $P(k \notin A + A) = \left(\frac{3}{4}\right)^{k/2}$.
- If k elements are missing, then missing one at least k/2 from the edges.

missing sum more than k/2 from ends

• $P(A + A \text{ has } k \text{ missing sums}) < P(k/2 \notin A + A) < (\frac{3}{4})^{k/4} \sim 0.93^k.$

Note: Bounds on $P(k + a_1, k + a_2, \dots, \text{ and } k + a_m \notin A + A)$ yield upper bounds on P(A + A has k missing sums).

Introduction	Results	Proofs	Conclusion
000	oo	⊙●○○○○○	oo
Problem: Depen	dent Random Var	iables	

Variances reduces to $\sum_{0 \le i,j \le 2n-2} \mathsf{P}(A : i \text{ and } j \notin A + A)$.

Introduction	Results	Proofs	Conclusion
000	oo	○●○○○○○	
Problem: Dependen	t Random Variables		

Variances reduces to $\sum_{0 \le i,j \le 2n-2} \mathsf{P}(\mathsf{A} : i \text{ and } j \notin \mathsf{A} + \mathsf{A}).$

Example: $P(A : 3 \text{ and } 7 \notin A + A)$

Introduction	Results	Proofs	Conclusion
		000000	

Problem: Dependent Random Variables

Variances reduces to $\sum_{0 \le i,j \le 2n-2} \mathsf{P}(A : i \text{ and } j \notin A + A)$.

Example: $P(A : 3 \text{ and } 7 \notin A + A)$

Conditions:

 $i = 3: \quad 0 \text{ or } 3 \notin A \qquad j = 7: \quad 0 \text{ or } 7 \notin A$ and 1 or 2 $\notin A$ and 2 or 5 $\notin A$

and 3 or $4 \notin A$.

Introduction	Results	Proofs	Conclusion
		000000	

Problem: Dependent Random Variables

Variances reduces to $\sum_{0 \le i,j \le 2n-2} \mathsf{P}(A : i \text{ and } j \notin A + A)$.

Example: $P(A : 3 \text{ and } 7 \notin A + A)$

Conditions:

 $i = 3: \quad 0 \text{ or } 3 \notin A \qquad \qquad j = 7: \quad 0 \text{ or } 7 \notin A \\ \text{and } 1 \text{ or } 2 \notin A \qquad \qquad \text{and } 1 \text{ or } 6 \notin A \\ \text{and } 2 \text{ or } 5 \notin A \\ \text{and } 3 \text{ or } 4 \notin A. \end{cases}$

• Since there are common integers in both lists, the events $3 \notin A + A$ and $7 \notin A + A$ are dependent.

Introduction	Results	Proofs	Conclusion
000	oo	⊙o●oooo	
Solution: Use Graph	s!		

• Transform the conditions into a graph!

Introduction	Results	Proofs	Conclusion
000	oo	○○●○○○○	oo
Solution: Use Gra	phs!		

- Transform the conditions into a graph!
- For each integers in [0,7], add a vertex with that integer.

Introduction	Results	Proofs	Conclusion
000	oo	○○●○○○○	00
Solution: Use 0	Graphs!		

- Transform the conditions into a graph!
- For each integers in [0,7], add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7.

Introduction	Results	Proofs	Conclusion
000	oo	○○●○○○○	00
Solution: Use Gra	phs!		

- Transform the conditions into a graph!
- For each integers in [0,7], add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7.

Introduction	Results	Proofs	Conclusion
000	oo	○○●○○○○	00
Solution: Use Gra	phs!		

- Transform the conditions into a graph!
- For each integers in [0,7], add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7.

Untangle graph \Longrightarrow

Introduction	Results	Proofs	Conclusion
000	00	○○●○○○○	
Solution: Use Gr	anhsl		

- Transform the conditions into a graph!
- For each integers in [0,7], add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7.

Introduction	Results	Proofs	Conclusion
000	00	○○●○○○○	
Solution: Use Gr	anhsl		

- Transform the conditions into a graph!
- For each integers in [0,7], add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7.

 One-to-one correspondence between conditions/edges (and integers/vertices).

Introduction	Results	Proofs	Conclusion
000	oo	○○○●○○○	00
Interpretation of	Graphs		

Introduction	Results	Proofs	Conclusion
000	oo	○○○●○○○	00
Interpretation o	f Graphs		

7-0-3-4 6-1-2-5

• Need to pick integers so that each condition is satisfied.

Introduction	Results	Proofs	Conclusion
000	oo	○○○●○○○	
Interpretation of	f Graphs		

7-0-3-4 6-1-2-5

- Need to pick integers so that each condition is satisfied.
- Therefore, need to pick vertices so that each edge has a vertex chosen.

Introduction	Results	Proofs	Conclusion
000	oo	○○○●○○○	
Interpretation of	of Graphs		

7-0-3-4 6-1-2-5

- Need to pick integers so that each condition is satisfied.
- Therefore, need to pick vertices so that each edge has a vertex chosen.
- So need to pick a vertex cover!

Introduction	Results	Proofs	Conclusion
000	oo	○○○○●○○	00
Vertex Covers			

Introduction	Results	Proofs	Conclusion
000	oo	○○○○●○○	00
Vortox Covors			

/ EI LE

Example: 7, 0, 4 and 6, 2 form a vertex cover

Introduction	Results	Proofs	Conclusion
000	oo	○○○○●○○	00
Vortox Covoro			

Example: 7,0,4 and 6,2 form a vertex cover \Leftrightarrow

If 7, 0, 4, 6, 2 \notin A, then 3, 7 \notin A + A

Introduction	Results	Proofs	Conclusion
000	oo	○○○○●○○	00
Vortox Covors			

Example: 7,0,4 and 6,2 form a vertex cover

If 7, 0, 4, 6, 2 \notin A, then 3, 7 \notin A + A

Lemma (Lazarev-Miller)

 $P(i, j \notin A + A) = P(\text{pick a vertex cover for graph}).$

Introduction	Results	Proofs	Conclusion
000	oo	○○○○○●○	

Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

Introduction	Results	Proofs	Conclusion
000	oo	○○○○○●○	

Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

• Case 1: If the first vertex is chosen:

Introduction	Results	Proofs	Conclusion
		0000000	

Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

• Case 1: If the first vertex is chosen:

Introduction	Results	Proofs	Conclusion
		0000000	

Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

• Case 1: If the first vertex is chosen:

x -? -? -? -?

Need an vertex cover for the rest of the graph: g(n-1).

Introduction	Results	Proofs	Conclusion
		0000000	

Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

• Case 1: If the first vertex is chosen:

x -? -? -? -?

Need an vertex cover for the rest of the graph: g(n-1).

• Case 2: If the first vertex is not chosen:

o – x – ? – ? – ?

Need an vertex cover for the rest of the graph: g(n-2).

Introduction	Results	Proofs	Conclusion
000	00	0000000	00

Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

• Case 1: If the first vertex is chosen:

x -? -? -? -?

Need an vertex cover for the rest of the graph: g(n-1).

• Case 2: If the first vertex is not chosen:

o - x - ? - ? - ?

Need an vertex cover for the rest of the graph: g(n-2).

Fibonacci recursive relationship!

$$g(n) = g(n-1) + g(n-2)$$

Introduction	Results	Proofs	Conclusion
		0000000	

Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

• Case 1: If the first vertex is chosen:

x -? -? -? -?

Need an vertex cover for the rest of the graph: g(n-1).

• Case 2: If the first vertex is not chosen:

o - x - ? - ? - ?

Need an vertex cover for the rest of the graph: g(n-2).

Fibonacci recursive relationship!

$$g(n) = g(n-1) + g(n-2)$$

 $\implies g(n) = F_{n+2}$

Introduction	Results	Proofs	Conclusion
000	oo	○○○○○○●	oo
General <i>i</i> . <i>i</i>			

In particular

P(3 and 7
$$\notin$$
 A + A) = $\frac{1}{2^8}F_{4+2}F_{4+2} = \frac{1}{4}$

since there were two graphs each of length 4.

Introduction	Results	Proofs	Conclusion
000	00	○○○○○●	00
General <i>i</i> i			

In particular

P(3 and 7
$$\notin$$
 A + A) = $\frac{1}{2^8}F_{4+2}F_{4+2} = \frac{1}{4}$

since there were two graphs each of length 4. For odd i < j < n:

$$P(A: i \text{ and } j \notin A + A) = \frac{1}{2^{j+1}} F_{2\left\lceil \frac{i+1}{j-i} \right\rceil + 2}^{\frac{1}{2} \left((j-i) \left\lceil \frac{i+1}{j-i} \right\rceil - (i+1) \right)} \times F_{2\left\lceil \frac{i+1}{j-i} \right\rceil + 4}^{\frac{1}{2} \left(j+1-(j-i) \left\lceil \frac{i+1}{j-i} \right\rceil \right)}$$

Introduction	Results	Proofs	Conclusion
000	oo	○○○○○●	oo
General <i>i</i> i			

In particular

P(3 and 7
$$\notin$$
 A + A) = $\frac{1}{2^8}F_{4+2}F_{4+2} = \frac{1}{4}$

since there were two graphs each of length 4. For odd i < j < n:

$$P(A: i \text{ and } j \notin A + A) = \frac{1}{2^{j+1}} F_{2\left\lceil \frac{j+1}{j-i} \right\rceil + 2}^{\frac{1}{2} \left((j-i) \left\lceil \frac{j+1}{j-i} \right\rceil - (i+1) \right)} \times F_{2\left\lceil \frac{j+1}{j-i} \right\rceil + 4}^{\frac{1}{2} \left(j+1-(j-i) \left\lceil \frac{j+1}{j-i} \right\rceil \right)}$$

In general $P(k \text{ and } k + 1 \notin A + A) < C(\phi/2)^k \sim 0.81^k$, giving upper bound.

Introduction	Results	Proofs	Conclusion
000	00		●○
Summary			

Use graph theory to study $P(a_1, \dots, and a_m \notin A + A)$.

Currently investigating:

- Is distribution of missing sums approximately exponential?
- Can A such that A + A has k missing elements be modeled by a different random variable?
- Higher moments: third moment involves P(i, j, k ∉ A + A), with more complicated graphs.
- Distribution of A A.

Introduction	Results	Proofs	Conclusion
000	oo	0000000	○●
Thanks to:			

- AMS / MAA
- Princeton University
- Williams College
- National Science Foundation

Thank you!