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Background

Let A ⊆ N ∪ {0}.

Definition
Sumset: A + A = {x + y : x , y ∈ A}
Interval: [a,b] = {x ∈ N : a ≤ x ≤ b}

Example: if A = {1,2,5}, then

A + A = {2,3,4,6,7,10}

Why study sumsets?

Goldbach’s conjecture: {4,6,8, · · · } ⊆ P + P.

Fermat’s last theorem: let An be the nth powers and then
ask if (An + An) ∩ An = ∅ for all n > 2.
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Background

Let A ⊆ N ∪ {0}.

Definition
Sumset: A + A = {x + y : x , y ∈ A}
Interval: [a,b] = {x ∈ N : a ≤ x ≤ b}

Example: if A = {1,2,5}, then

A + A = {2,3,4,6,7,10}

Why study sumsets?

Goldbach’s conjecture: {4,6,8, · · · } ⊆ P + P.

Fermat’s last theorem: let An be the nth powers and then
ask if (An + An) ∩ An = ∅ for all n > 2.

Key Question: What is the structure of A + A?
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Consider finite A ⊆ [0,n − 1] chosen randomly with uniform
distribution from all subsets of [0,n − 1].

Question: What is the structure of A + A for such A? What
is the distribution of |A + A| for such A?

Theorem: Martin-O’Bryant

E|A + A| = 2n − 1 − 10 + O((3/4)n/2).
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is the distribution of |A + A| for such A?

Theorem: Martin-O’Bryant

E|A + A| = 2n − 1 − 10 + O((3/4)n/2).

Theorem: Zhao
For each fixed k , P(A ⊆ [0,n − 1] : |A + A| = 2n − 1 − k) has a
limit as n → ∞.
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Structure of Random Sets

Consider finite A ⊆ [0,n − 1] chosen randomly with uniform
distribution from all subsets of [0,n − 1].

Question: What is the structure of A + A for such A? What
is the distribution of |A + A| for such A?

Theorem: Martin-O’Bryant

E|A + A| = 2n − 1 − 10 + O((3/4)n/2).

Theorem: Zhao
For each fixed k , P(A ⊆ [0,n − 1] : |A + A| = 2n − 1 − k) has a
limit as n → ∞.

Note: Both theorems can be more naturally stated in terms of
missing sums (independent of n).
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Why is the expectation so high? E |A + A| ∼ 2n − 11.

Main characteristic of typical A + A: middle is full.

Many ways to write middle elements as sums
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Structure of Random Sets, Continued

Why is the expectation so high? E |A + A| ∼ 2n − 11.

Main characteristic of typical A + A: middle is full.

Many ways to write middle elements as sums
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Figure: Comparison of predicted and observed number of
representations of possible elements of the sumset

Key fact: if k < n, then P(k 6∈ A + A) ∼
(3

4

)k/2
.
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New Results

Theorem: Bounds on the distribution (Lazarev-Miller, 2011 )

0.70k ≪ P(A + A has k missing sums) ≪ 0.81k .
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New Results

Theorem: Bounds on the distribution (Lazarev-Miller, 2011 )

0.70k ≪ P(A + A has k missing sums) ≪ 0.81k .

Conjecture: P(A + A has k missing sums) ∼ 0.78k .

Figure: Log P(k missing sums) seems eventually linear

Our main results are about P(A : a1, · · · , and am 6∈ A + A).
Main idea: Use graph theory.
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More Results

Theorem: Variance (Lazarev-Miller)

Var|A + A| = 4
∑

i<j≤n−1

P(i and j 6∈ A + A)− 40 ∼ 35.98.

Theorem: Distribution of configurations (Lazarev-Miller)

For any fixed a1, · · · ,am, exists λa1,··· ,am such that

P(k + a1, k + a2, · · · , and k + am 6∈ A + A) = Θ(λk
a1,··· ,am

).

Theorem: Consecutive missing sums (Lazarev-Miller)

P(k , k + 1, · · · , and k + m 6∈ A + A) =
(

1
2
+ o(1)

)(k+m)/2

.

23



Introduction Results Proofs Conclusion

Bound on Distribution: Upper Bound

Weaker Upper bound: P(A + A has k missing sums) < 0.93k .
Proof sketch:

24



Introduction Results Proofs Conclusion

Bound on Distribution: Upper Bound

Weaker Upper bound: P(A + A has k missing sums) < 0.93k .
Proof sketch:

Recall P(k 6∈ A + A) =
(3

4

)k/2
.

25



Introduction Results Proofs Conclusion

Bound on Distribution: Upper Bound

Weaker Upper bound: P(A + A has k missing sums) < 0.93k .
Proof sketch:

Recall P(k 6∈ A + A) =
(3

4

)k/2
.

If k elements are missing, then missing one at least k/2
from the edges.
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Bound on Distribution: Upper Bound

Weaker Upper bound: P(A + A has k missing sums) < 0.93k .
Proof sketch:

Recall P(k 6∈ A + A) =
(3

4

)k/2
.

If k elements are missing, then missing one at least k/2
from the edges.

P(A + A has k missing sums) < P(k/2 6∈ A + A) <
(3

4

)k/4
∼ 0.93k .
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Bound on Distribution: Upper Bound

Weaker Upper bound: P(A + A has k missing sums) < 0.93k .
Proof sketch:

Recall P(k 6∈ A + A) =
(3

4

)k/2
.

If k elements are missing, then missing one at least k/2
from the edges.

P(A + A has k missing sums) < P(k/2 6∈ A + A) <
(3

4

)k/4
∼ 0.93k .

Note: Bounds on P(k + a1, k + a2, · · · , and k + am 6∈ A + A)
yield upper bounds on P(A + A has k missing sums).

29



Introduction Results Proofs Conclusion

Problem: Dependent Random Variables

Variances reduces to
∑

0≤i ,j≤2n−2 P(A : i and j 6∈ A + A).
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Problem: Dependent Random Variables

Variances reduces to
∑

0≤i ,j≤2n−2 P(A : i and j 6∈ A + A).

Example: P(A : 3 and 7 6∈ A + A)

Conditions:

i = 3 : 0 or 3 6∈ A j = 7 : 0 or 7 6∈ A
and 1 or 2 6∈ A and 1 or 6 6∈ A

and 2 or 5 6∈ A
and 3 or 4 6∈ A.
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Problem: Dependent Random Variables

Variances reduces to
∑

0≤i ,j≤2n−2 P(A : i and j 6∈ A + A).

Example: P(A : 3 and 7 6∈ A + A)

Conditions:

i = 3 : 0 or 3 6∈ A j = 7 : 0 or 7 6∈ A
and 1 or 2 6∈ A and 1 or 6 6∈ A

and 2 or 5 6∈ A
and 3 or 4 6∈ A.

Since there are common integers in both lists, the events
3 6∈ A + A and 7 6∈ A + A are dependent.
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Solution: Use Graphs!

Transform the conditions into a graph!

For each integers in [0,7], add a vertex with that integer.

Then connect two vertices if add up to 3 or 7.

Example i = 3, j = 7:

0
1

2

3
4

5

6

7

7 0 3 4

6 1 2 5

One-to-one correspondence between conditions/edges
(and integers/vertices).
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Interpretation of Graphs

Transformed into:

7 0 3 4 6 1 2 5
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7 0 3 4 6 1 2 5

Need to pick integers so that each condition is satisfied.

Therefore, need to pick vertices so that each edge has a
vertex chosen.
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Interpretation of Graphs

Transformed into:

7 0 3 4 6 1 2 5

Need to pick integers so that each condition is satisfied.

Therefore, need to pick vertices so that each edge has a
vertex chosen.

So need to pick a vertex cover!
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Have:
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Example:
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Vertex Covers

Have:

7 0 3 4 6 1 2 5

Example:
7,0,4 and 6,2 form a vertex cover
⇐⇒
If 7,0,4,6,2 6∈ A, then 3,7 6∈ A + A

Lemma (Lazarev-Miller)

P(i , j 6∈ A + A) = P(pick a vertex cover for graph).
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Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need
g(n), the number of vertex covers for a ‘segment’ graph with n
vertices.
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Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need
g(n), the number of vertex covers for a ‘segment’ graph with n
vertices.

Case 1: If the first vertex is chosen:
x ? ? ? ?
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Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need
g(n), the number of vertex covers for a ‘segment’ graph with n
vertices.

Case 1: If the first vertex is chosen:
x ? ? ? ?

Need an vertex cover for the rest of the graph: g(n − 1).
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Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need
g(n), the number of vertex covers for a ‘segment’ graph with n
vertices.

Case 1: If the first vertex is chosen:
x ? ? ? ?

Need an vertex cover for the rest of the graph: g(n − 1).
Case 2: If the first vertex is not chosen:

o x ? ? ?

Need an vertex cover for the rest of the graph: g(n − 2).
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Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need
g(n), the number of vertex covers for a ‘segment’ graph with n
vertices.

Case 1: If the first vertex is chosen:
x ? ? ? ?

Need an vertex cover for the rest of the graph: g(n − 1).
Case 2: If the first vertex is not chosen:

o x ? ? ?

Need an vertex cover for the rest of the graph: g(n − 2).
Fibonacci recursive relationship!

g(n) = g(n − 1) + g(n − 2)
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Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need
g(n), the number of vertex covers for a ‘segment’ graph with n
vertices.

Case 1: If the first vertex is chosen:
x ? ? ? ?

Need an vertex cover for the rest of the graph: g(n − 1).
Case 2: If the first vertex is not chosen:

o x ? ? ?

Need an vertex cover for the rest of the graph: g(n − 2).
Fibonacci recursive relationship!

g(n) = g(n − 1) + g(n − 2)

=⇒ g(n) = Fn+2
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General i , j

In particular

P(3 and 7 6∈ A + A) =
1
28 F4+2F4+2 =

1
4

since there were two graphs each of length 4.

56



Introduction Results Proofs Conclusion

General i , j

In particular

P(3 and 7 6∈ A + A) =
1
28 F4+2F4+2 =

1
4

since there were two graphs each of length 4.
For odd i < j < n:

P(A : i and j 6∈ A + A)

=
1

2j+1 F
1
2

(

(j−i)
⌈

i+1
j−i

⌉

−(i+1)
)

2
⌈

i+1
j−i

⌉

+2
× F

1
2

(

j+1−(j−i)
⌈

i+1
j−i

⌉)

2
⌈

i+1
j−i

⌉

+4
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In particular

P(3 and 7 6∈ A + A) =
1
28 F4+2F4+2 =

1
4

since there were two graphs each of length 4.
For odd i < j < n:

P(A : i and j 6∈ A + A)

=
1

2j+1 F
1
2

(

(j−i)
⌈

i+1
j−i

⌉

−(i+1)
)

2
⌈

i+1
j−i

⌉

+2
× F

1
2

(

j+1−(j−i)
⌈

i+1
j−i

⌉)

2
⌈

i+1
j−i

⌉

+4

In general P(k and k + 1 6∈ A + A) < C(φ/2)k ∼ 0.81k , giving
upper bound.
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Summary

Use graph theory to study P(a1, · · · , and am 6∈ A + A).

Currently investigating:

Is distribution of missing sums approximately exponential?

Can A such that A+A has k missing elements be modeled
by a different random variable?

Higher moments: third moment involves P(i , j , k 6∈ A + A),
with more complicated graphs.

Distribution of A − A.
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Thanks to:

AMS / MAA

Princeton University

Williams College

National Science Foundation

Thank you!
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