Intro	Results	Conjectures	Conclusion

Virus Dynamics on Star Graphs: A Generalized Model

Thealexa Becker (tbecker@smith.edu) Smith College

Work done at 2011 SMALL REU at Williams College with Alec Greaves-Tunnell and Steven J. Miller (Williams College) and Karen Shen (Stanford University)

JMM, Boston, MA, January 7, 2012

Intro	Results	Conjectures	Conclusion
●○○○○○○○	oo	o	
Motivation for th	e Problem		

- Epidemiology, networking, and other fields have questions concerning the spread of viruses.
- Using a model for infection and cure rates, look for a steady state, or critical threshold relating two rates.
- If there is a steady state, what are the characteristics?
- What other information can we get from this steady state, provided it exists?
- Generalizations?

Intro	Results	Conjectures	Conclusion
o●ooooooo	oo	o	
The Model			

A discrete-time SIS (Susceptible Infected Susceptible) model. Each node is either Susceptible (S) or Infected (I).

Intro	Results	Conjectures	Conclusion
o●ooooooo	oo	o	
The Model			

A discrete-time SIS (Susceptible Infected Susceptible) model. Each node is either Susceptible (S) or Infected (I).

Parameters

- β : probability at any time an infected node infects its neighbors.
- δ : probability at any time an infected node is cured.
- $\zeta_{i,t}$: probability node *i* not infected by neighbors at time *t*.

•
$$1 - p_{i,t} = (1 - p_{i,t-1}) \zeta_{i,t} + \delta p_{i,t} \zeta_{i,t}.$$

• $\zeta_{i,t} = \prod_{j \sim i} p_{j,t-1} (1 - \beta) + (1 - p_{j,t-1}) = \prod_{j \sim i} 1 - \beta p_{j,t-1}$, where $j \sim i$ says *i* and *j* are neighbors, connected by edge of the graph.

•
$$1 - p_{i,t} = (1 - p_{i,t-1})\zeta_{i,t} + \delta p_{i,t}\zeta_{i,t}$$
.

- Let's consider specific graph topology of a star graph, then we can alter the model to one of "hubs" and "spokes"
- Suppose a graph has n + 1 nodes, the hub is numbered 0 and the spokes are numbered 1 through n.

$$\left(\begin{array}{c} \mathbf{x}_{t+1} \\ \mathbf{y}_{t+1} \end{array}\right) = \mathbf{F} \left(\begin{array}{c} \mathbf{x}_t \\ \mathbf{y}_t \end{array}\right)$$

where

$$F\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} f_1(x,y)\\ f_2(x,y) \end{pmatrix} = \begin{pmatrix} 1-(1-x)(1-\beta y)^n - \delta x (1-\beta y)^n\\ 1-(1-y)(1-\beta x) - \delta y (1-\beta x) \end{pmatrix}$$
$$= \begin{pmatrix} 1-(1-ax)(1-by)^n\\ 1-(1-ay)(1-bx) \end{pmatrix}.$$

Intro ○○○●○○○○○	Results oo	Conjectures o	Conclusion
Results			
Our Main Result			

Theorem (Main Result)

Let $a, b \in (0, 1)$ and F as above.

- For any initial configuration, as time evolves all the spokes converge to a common behavior.
- If $b \le (1 a)/\sqrt{n}$ then the virus dies out.
- If b > (1 − a)/√n then all points except (0,0) evolve to a unique, non-trivial fixed point (x_f, y_f).

Intro	Results	Conjectures	Conclusion
00000000			

Determining Fixed Points of F

Figure: Partial fixed points from ϕ_1 and ϕ_2 when (from left to right) $b < \frac{1-a}{\sqrt{n}}, b = \frac{1-a}{\sqrt{n}}, b > \frac{1-a}{\sqrt{n}}$ (b = 3, n = 4, a = .1, .4, .7).

$$\phi_1(y) = \frac{1 - (1 - by)^n}{1 - a(1 - by)^n}$$

$$\phi_2(x) = \frac{bx}{1 - a + abx}.$$

Intro	Results	Conjectures	Conclusion
000000000			

Determining Fixed Points of F

Theorem

Consider the map F.

- If $b < \frac{1-a}{\sqrt{n}}$ then the trivial fixed point is the unique fixed point in $[0, 1]^2$.
- If b > ^{1-a}/_{√n} then there exists a unique non-trivial fixed point in [0, 1]².

Intro	Results	Conjectures	Conclusion
○○○○○●○○	oo	o	
Convergence Cas	se b $\leq rac{(1-a)}{\sqrt{n}}$		

Theorem

Assume $b < (1 - a)/\sqrt{n}$. Then iterates of any point under *F* converge to the trivial fixed point (0,0).

Proved this with the Mean Value Theorem and an eigenvalue analysis of the resulting matrix.

Intro	Results	Conjectures	Conclusion
000000000			

Looking at partial fixed points of F divides $[0, 1]^2$ into four regions.

Intro	Results	Conjectures	Conclusion
Convergence: Ca	ise $b > \frac{(1-a)}{\sqrt{n}}$		

Lemma

Points in Region I strictly increase in x and y on iteration by F, and points in Region III strictly decrease in x and y on iteration.

Lemma

Points in Region I iterate inside Region I under F, and points in Region III iterate inside Region III under F.

Lemma

All non-trivial points in Regions I and III converge to the non-trivial fixed point under *F*.

Intro	Results	Conjectures	Conclusion
00000000	●○	o	
Simulation			

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 0 (point in upper right for display purposes: 1/24)

Intro	Results	Conjectures	Conclusion
000000000	●○	o	
Simulation			

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 1 (point in upper right for display purposes: 2/24)

Intro	Results	Conjectures	Conclusion
ooooooooo	●○	o	
Simulation			

Figure: t = 2 (point in upper right for display purposes: 3/24)

Intro	Results	Conjectures	Conclusion
ooooooooo	●○	o	
Simulation			

Figure: t = 3 (point in upper right for display purposes: 4/24)

Intro	Results	Conjectures	Conclusion
ooooooooo	●○	o	
Simulation			

Figure: t = 4 (point in upper right for display purposes: 5/24)

Intro	Results	Conjectures	Conclusion
ooooooooo	●○	o	
Simulation			

Figure: t = 5 (point in upper right for display purposes: 6/24)

Intro	Results	Conjectures	Conclusion
ooooooooo	●○	o	
Simulation			

Figure: t = 6 (point in upper right for display purposes: 7/24)

Intro	Results	Conjectures	Conclusion
ooooooooo	●○	o	
Simulation			

Figure: t = 7 (point in upper right for display purposes: 8/24)

Intro	Results	Conjectures	Conclusion
ooooooooo	●○	o	
Simulation			

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 8 (point in upper right for display purposes: 9/24)

Intro	Results	Conjectures	Conclusion
ooooooooo	●○	o	
Simulation			

Figure: t = 9 (point in upper right for display purposes: 10/24)

Intro	Results	Conjectures	Conclusion
ooooooooo	●○	o	
Simulation			

Figure: t = 10 (point in upper right for display purposes: 11/24)

Intro	Results	Conjectures	Conclusion
ooooooooo	●○	o	
Simulation			

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 11 (point in upper right for display purposes: 12/24)

Intro	Results	Conjectures	Conclusion
ooooooooo	●○	o	
Simulation			

Figure: t = 12 (point in upper right for display purposes: 13/24)

Intro	Results	Conjectures	Conclusion
ooooooooo	●○	o	
Simulation			

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 13 (point in upper right for display purposes: 14/24)

Intro	Results	Conjectures	Conclusion
ooooooooo	●○	o	
Simulation			

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 14 (point in upper right for display purposes: 15/24)

Intro	Results	Conjectures	Conclusion
00000000	●○	o	
Simulation			

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 15 (point in upper right for display purposes: 16/24)

Intro	Results	Conjectures	Conclusion
00000000	●○	o	
Simulation			

Figure: t = 16 (point in upper right for display purposes: 17/24)

Intro	Results	Conjectures	Conclusion
00000000	●○	o	
Simulation			

Figure: t = 17 (point in upper right for display purposes: 18/24)

Intro	Results	Conjectures	Conclusion
00000000	●○	o	
Simulation			

Figure: t = 18 (point in upper right for display purposes: 19/24)

Intro	Results	Conjectures	Conclusion
00000000	●○	o	
Simulation			

Figure: t = 19 (point in upper right for display purposes: 20/24)

Intro	Results	Conjectures	Conclusion
00000000	●○	o	
Simulation			

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 20 (point in upper right for display purposes: 21/24)

Intro	Results	Conjectures	Conclusion
00000000	●○	o	
Simulation			

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: t = 21 (point in upper right for display purposes: 22/24)

Intro	Results	Conjectures	Conclusion
ooooooooo	●○	o	
Simulation			

Figure: t = 22 (point in upper right for display purposes: 23/24)

Intro	Results	Conjectures	Conclusion
00000000	●○	o	
Simulation			

Figure: t = 23 (point in upper right for display purposes: 24/24)

Intro	Results	Conjectures	Conclusion
	0•		

Theorem

Any non-trivial point in $[0, 1]^2$ converges to the unique non-trivial fixed point under *F*.

Intro	Results	Conjectures	Conclusion
00000000	oo	•	00
Behavior Conject	ures		

Corollary

The amount of time it takes for all points to converge is the maximum of the time it takes $\begin{pmatrix} \epsilon_1 \\ \epsilon_2 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ to converge, for $\epsilon_1, \epsilon_2 \rightarrow 0$.

Conjecture

Points in Region II and IV exhibit one of two behaviors, dependent on a, b, n. Either:

- All points in Region II iterate outside Region II and all points in Region IV iterate outside Region IV ("flipping behavior"), or
- All points in Region II iterate outside Region IV and all points in Region IV iterate outside Region II

Intro	Results	Conjectures	Conclusion
00000000	oo	o	●○
Conclusions			

• Generalized Star Graphs

Conclusions

Intro	Results	Conjectures	Conclusion
00000000	00	o	○●
Thanks to:			

- AMS / MAA
- Smith College
- Williams College
- National Science Foundation
- Alexander Greaves-Tunnell, Aryeh Kontorovich, Steven J. Miller, Pradeep Ravikumar and Karen Shen.