Virus Dynamics on Star Graphs: A Generalized Model

Thealexa Becker (tbecker@smith.edu) Smith College

Work done at 2011 SMALL REU at Williams College with Alec Greaves-Tunnell and Steven J. Miller (Williams College) and Karen Shen (Stanford University)

JMM, Boston, MA, January 7, 2012

Motivation for the Problem

- Epidemiology, networking, and other fields have questions concerning the spread of viruses.
- Using a model for infection and cure rates, look for a steady state, or critical threshold relating two rates.
- If there is a steady state, what are the characteristics?
- What other information can we get from this steady state, provided it exists?
- Generalizations?

The Model

A discrete-time SIS (Susceptible Infected Susceptible) model. Each node is either Susceptible (S) or Infected (I).

The Model

A discrete-time SIS (Susceptible Infected Susceptible) model. Each node is either Susceptible (S) or Infected (I).

Parameters

- β : probability at any time an infected node infects its neighbors.
- δ : probability at any time an infected node is cured.
- $\zeta_{i, t}$: probability node i not infected by neighbors at time t.
- $1-p_{i, t}=\left(1-p_{i, t-1}\right) \zeta_{i, t}+\delta p_{i, t} \zeta_{i, t}$.
- $\zeta_{i, t}=\prod_{j \sim i} p_{j, t-1}(1-\beta)+\left(1-p_{j, t-1}\right)=\prod_{j \sim i} 1-\beta p_{j, t-1}$, where $j \sim i$ says i and j are neighbors, connected by edge of the graph.
- $1-p_{i, t}=\left(1-p_{i, t-1}\right) \zeta_{i, t}+\delta p_{i, t} \zeta_{i, t}$.

A Different View of the Model

- Let's consider specific graph topology of a star graph, then we can alter the model to one of "hubs" and "spokes"
- Suppose a graph has $n+1$ nodes, the hub is numbered 0 and the spokes are numbered 1 through n.

$$
\binom{x_{t+1}}{y_{t+1}}=F\binom{x_{t}}{y_{t}}
$$

where

$$
\begin{aligned}
F\binom{x}{y} & =\binom{f_{1}(x, y)}{f_{2}(x, y)}=\binom{1-(1-x)(1-\beta y)^{n}-\delta x(1-\beta y)^{n}}{1-(1-y)(1-\beta x)-\delta y(1-\beta x)} \\
& =\binom{1-(1-a x)(1-b y)^{n}}{1-(1-a y)(1-b x)} .
\end{aligned}
$$

Our Main Result

Theorem (Main Result)

Let $a, b \in(0,1)$ and F as above.

- For any initial configuration, as time evolves all the spokes converge to a common behavior.
- If $b \leq(1-a) / \sqrt{n}$ then the virus dies out.
- If $b>(1-a) / \sqrt{n}$ then all points except $(0,0)$ evolve to a unique, non-trivial fixed point $\left(x_{f}, y_{f}\right)$.

Determining Fixed Points of F

Figure: Partial fixed points from ϕ_{1} and ϕ_{2} when (from left to right) $b<\frac{1-a}{\sqrt{n}}, b=\frac{1-a}{\sqrt{n}}, b>\frac{1-a}{\sqrt{n}}(b=3, n=4, a=.1, .4, .7)$.

$$
\begin{aligned}
& \phi_{1}(y)=\frac{1-(1-b y)^{n}}{1-a(1-b y)^{n}} \\
& \phi_{2}(x)=\frac{b x}{1-a+a b x} .
\end{aligned}
$$

Determining Fixed Points of F

Theorem

Consider the map F.
(1) If $b<\frac{1-a}{\sqrt{n}}$ then the trivial fixed point is the unique fixed point in $[0,1]^{2}$.
(2) If $b>\frac{1-a}{\sqrt{n}}$ then there exists a unique non-trivial fixed point in $[0,1]^{2}$.

Convergence Case $b \leq \frac{(1-a)}{\sqrt{n}}$

Theorem

Assume $b<(1-a) / \sqrt{n}$. Then iterates of any point under F converge to the trivial fixed point $(0,0)$.

Proved this with the Mean Value Theorem and an eigenvalue analysis of the resulting matrix.

Looking at partial fixed points of F divides $[0,1]^{2}$ into four regions.

Convergence: Case $b>\frac{(1-a)}{\sqrt{n}}$

Lemma

Points in Region I strictly increase in x and y on iteration by F, and points in Region III strictly decrease in x and y on iteration.

Lemma

Points in Region I iterate inside Region I under F, and points in Region III iterate inside Region III under F.

Lemma

All non-trivial points in Regions I and III converge to the non-trivial fixed point under F.

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=0$ (point in upper right for display purposes: $1 / 24$)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=1$ (point in upper right for display purposes: $2 / 24$)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=2$ (point in upper right for display purposes: 3/24)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=3$ (point in upper right for display purposes: 4/24)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=4$ (point in upper right for display purposes: 5/24)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=5$ (point in upper right for display purposes: 6/24)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=6$ (point in upper right for display purposes: 7/24)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=7$ (point in upper right for display purposes: 8/24)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=8$ (point in upper right for display purposes: 9/24)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=9$ (point in upper right for display purposes: 10/24)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=10$ (point in upper right for display purposes: 11/24)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=11$ (point in upper right for display purposes: 12/24)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=12$ (point in upper right for display purposes: 13/24)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=13$ (point in upper right for display purposes: 14/24)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=14$ (point in upper right for display purposes: 15/24)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=15$ (point in upper right for display purposes: 16/24)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=16$ (point in upper right for display purposes: 17/24)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=17$ (point in upper right for display purposes: 18/24)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=18$ (point in upper right for display purposes: 19/24)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=19$ (point in upper right for display purposes: 20/24)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=20$ (point in upper right for display purposes: 21/24)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=21$ (point in upper right for display purposes: 22/24)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=22$ (point in upper right for display purposes: 23/24)

Simulation

In the limit all spokes have same behavior. Below is a plot of the dynamics for $a=.4, b=.7$ and $n=2$.

Divide (x, y) space into a grid, each gridpoint a different initial configuration, iterate.

Figure: $t=23$ (point in upper right for display purposes: 24/24)

Theorem

Any non-trivial point in $[0,1]^{2}$ converges to the unique non-trivial fixed point under F.

Behavior Conjectures

Corollary

The amount of time it takes for all points to converge is the maximum of the time it takes $\binom{\epsilon_{1}}{\epsilon_{2}}$ and $\binom{1}{1}$ to converge, for $\epsilon_{1}, \epsilon_{2} \rightarrow 0$.

Conjecture

Points in Region II and IV exhibit one of two behaviors, dependent on a, b, n. Either:
(1) All points in Region II iterate outside Region II and all points in Region IV iterate outside Region IV ("flipping behavior"), or
(2) All points in Region II iterate outside Region IV and all points in Region IV iterate outside Region II

Conclusions

- Generalized Star Graphs
- Conclusions

Thanks to:

- AMS / MAA
- Smith College
- Williams College
- National Science Foundation
- Alexander Greaves-Tunnell, Aryeh Kontorovich, Steven J. Miller, Pradeep Ravikumar and Karen Shen.

