Distribution of Gaps between Summands in Zeckendorf Decompositions

Olivia Beckwith

Advisor: Steven J. Miller
http://web.williams.edu/Mathematics/sjmiller/

Joint Mathematics Meetings January 6, 2012

Introduction

A few questions

- How can we write a number as a sum of powers of 2?
- Example: $2012=2^{10}+2^{9}+2^{8}+2^{7}+2^{6}+2^{4}+2^{3}+2^{2}$.
- The binary representation of 2012 is 11111011100 .

A few questions

- How can we write a number as a sum of powers of 2 ?
- Example: $2012=2^{10}+2^{9}+2^{8}+2^{7}+2^{6}+2^{4}+2^{3}+2^{2}$.
- The binary representation of 2012 is 11111011100 .
- What about powers of 3 ? 5 ? 10 ?

A few questions

- How can we write a number as a sum of powers of 2 ?
- Example: $2012=2^{10}+2^{9}+2^{8}+2^{7}+2^{6}+2^{4}+2^{3}+2^{2}$.
- The binary representation of 2012 is 11111011100 .
- What about powers of 3 ? 5 ? 10 ?
- What other sequences can we use besides powers?

The Fibonacci Numbers

Fibonacci Numbers: $F_{n+1}=F_{n}+F_{n-1}$;

The Fibonacci Numbers

Fibonacci Numbers: $F_{n+1}=F_{n}+F_{n-1}$;
$F_{1}=1, F_{2}=2, F_{3}=3, F_{4}=5, \ldots$

The Fibonacci Numbers

Fibonacci Numbers: $F_{n+1}=F_{n}+F_{n-1}$;
$F_{1}=1, F_{2}=2, F_{3}=3, F_{4}=5, \ldots$
Generating function: $g(x):=\sum_{n=0}^{\infty} F_{n} x^{n}=\frac{x}{1-x-x^{2}}$.

The Fibonacci Numbers

Fibonacci Numbers: $F_{n+1}=F_{n}+F_{n-1}$;
$F_{1}=1, F_{2}=2, F_{3}=3, F_{4}=5, \ldots$.
Generating function: $g(x):=\sum_{n=0}^{\infty} F_{n} x^{n}=\frac{x}{1-x-x^{2}}$.
Binet's Formula:

$$
F_{n}=\frac{\phi^{n+1}-(1-\phi)^{n+1}}{\sqrt{5}}
$$

where $\phi=\frac{1+\sqrt{5}}{2}$ is the golden mean.

Previous Results

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Previous Results

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $2012=1597+377+34+3=F_{16}+F_{13}+F_{8}+F_{3}+F_{1}$.

Previous Results

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $2012=1597+377+34+3=F_{16}+F_{13}+F_{8}+F_{3}+F_{1}$. Fibonacci representation of 2012 is 1001000010000101.

Previous Results

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $2012=1597+377+34+3=F_{16}+F_{13}+F_{8}+F_{3}+F_{1}$. Fibonacci representation of 2012 is 1001000010000101.

Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $\left[F_{n}, F_{n+1}\right.$) tends to $\frac{n}{\phi^{2}+1} \approx .276 n$, where $\phi=\frac{1+\sqrt{5}}{2}$ is the golden mean.

Previous Results

Central Limit Type Theorem

As $n \rightarrow \infty$, the distribution of the number of summands in the Zeckendorf decomposition for integers in $\left[F_{n}, F_{n+1}\right)$ converges to a Gaussian (normal).

Distribution of Gaps

For $F_{i_{1}}+F_{i_{2}}+\cdots+F_{i_{n}}$, the gaps are the differences
$i_{n}-i_{n-1}, i_{n-1}-i_{n-2}, \cdots, i_{2}-i_{1}$.

Distribution of Gaps

For $F_{i_{1}}+F_{i_{2}}+\cdots+F_{i_{n}}$, the gaps are the differences
$i_{n}-i_{n-1}, i_{n-1}-i_{n-2}, \cdots, i_{2}-i_{1}$.
Example: For $F_{1}+F_{8}+F_{18}$, the gaps are 10 and 7 .

Distribution of Gaps

For $F_{i_{1}}+F_{i_{2}}+\cdots+F_{i_{n}}$, the gaps are the differences
$i_{n}-i_{n-1}, i_{n-1}-i_{n-2}, \cdots, i_{2}-i_{1}$.
Example: For $F_{1}+F_{8}+F_{18}$, the gaps are 10 and 7 .
Define $P_{n}(k)$ to be the probability that a gap for a decomposition in $\left[F_{n}, F_{n+1}\right)$ is of length k.

Distribution of Gaps

For $F_{i_{1}}+F_{i_{2}}+\cdots+F_{i_{n}}$, the gaps are the differences
$i_{n}-i_{n-1}, i_{n-1}-i_{n-2}, \cdots, i_{2}-i_{1}$.

Example: For $F_{1}+F_{8}+F_{18}$, the gaps are 10 and 7 .
Define $P_{n}(k)$ to be the probability that a gap for a decomposition in $\left[F_{n}, F_{n+1}\right)$ is of length k.

What is $P(k):=\lim _{n \rightarrow \infty} P_{n}(k) ?$

Main Results

Zeckendorf Gap Distribution (Beckwith-Miller)

The percent of gaps of length k in Zeckendorf decompositions is given by $P(k)=(\phi-1) \phi^{1-k}$.

Main Results

Zeckendorf Gap Distribution (Beckwith-Miller)

The percent of gaps of length k in Zeckendorf decompositions is given by $P(k)=(\phi-1) \phi^{1-k}$.

Base B Distribution (Beckwith-Miller)

The percent of gaps of length k in base B decompositions is $P(k)=c_{B} B^{-k}$, where $c_{B}=\frac{2(B-1)^{2}}{B^{2}-2}$ for $k \geq 1$, and $P(0)=\frac{B(B-2)}{B^{2}-2}$.

Proof of Fibonacci Result

What is the probability that a gap in a decomposition in
[F_{n}, F_{n+1}) has length k ?

Proof of Fibonacci Result

What is the probability that a gap in a decomposition in
[F_{n}, F_{n+1}) has length k ?
By Lekkerkerker, total number of gaps approximately $F_{n-1} \frac{n}{\phi^{2}+1}$.

Proof of Fibonacci Result

What is the probability that a gap in a decomposition in [F_{n}, F_{n+1}) has length k ?

By Lekkerkerker, total number of gaps approximately $F_{n-1} \frac{n}{\phi^{2}+1}$.
Let $x_{i, j}=\mid\left\{m \in\left[F_{n}, F_{n+1}\right)\right.$: decomposition of m inculudes $F_{i,} F_{j}$, but not F_{q} tor $\left.i<q<j\right\} \mid$

$$
P_{n}(k)=\frac{\sum_{i=1, n-k} x_{i, i+k}}{F_{n-1} \frac{1}{\phi^{2}+1}}
$$

Calculating $x_{i, i+k}$

How many decompositions contain a gap from F_{i} to F_{i+k} ?

Calculating $x_{i, i+k}$

How many decompositions contain a gap from F_{i} to F_{i+k} ?
$1 \leq i \leq n-k-2:$

Calculating $x_{i, i+k}$

How many decompositions contain a gap from F_{i} to F_{i+k} ?
$1 \leq i \leq n-k-2:$
For the indices less than i : F_{i-1} choices.

For the indices greater than $i+k: F_{n-k-2-i}$ choices.

Calculating $x_{i, i+k}$

How many decompositions contain a gap from F_{i} to F_{i+k} ?
$1 \leq i \leq n-k-2:$
For the indices less than i : F_{i-1} choices.
For the indices greater than $i+k: F_{n-k-2-i}$ choices.
So total number of choices is $F_{n-k-2-i} F_{i-1}$.

Calculating $x_{i, i+k}$

How many decompositions contain a gap from F_{i} to F_{i+k} ?
$1 \leq i \leq n-k-2:$
For the indices less than i : F_{i-1} choices.

For the indices greater than $i+k: F_{n-k-2-i}$ choices.
So total number of choices is $F_{n-k-2-i} F_{i-1}$.
$i=n-k-1: 0$.
$i=n-k: F_{n-k-1}$.

Proof

$$
\begin{aligned}
\sum_{1 \leq i \leq n-k} x_{i, i+k} & =F_{n-k-1}+\sum_{i=1}^{n-k-2} F_{i-1} F_{n-k-i-2} \\
& =F_{n-k-1}+\sum_{i=0}^{n-k-3} F_{i} F_{n-k-i-3}
\end{aligned}
$$

Proof

$$
\begin{aligned}
\sum_{1 \leq i \leq n-k} x_{i, i+k} & =F_{n-k-1}+\sum_{i=1}^{n-k-2} F_{i-1} F_{n-k-i-2} \\
& =F_{n-k-1}+\sum_{i=0}^{n-k-3} F_{i} F_{n-k-i-3}
\end{aligned}
$$

$\sum_{i=0}^{n-k-3} F_{i} F_{n-k-i-3}$ is the x^{n-k-3} coefficient of $g(x)^{2}$.

Proof

$$
\begin{aligned}
\sum_{1 \leq i \leq n-k} x_{i, i+k} & =F_{n-k-1}+\sum_{i=1}^{n-k-2} F_{i-1} F_{n-k-i-2} \\
& =F_{n-k-1}+\sum_{i=0}^{n-k-3} F_{i} F_{n-k-i-3}
\end{aligned}
$$

$\sum_{i=0}^{n-k-3} F_{i} F_{n-k-i-3}$ is the x^{n-k-3} coefficient of $g(x)^{2}$. $g(x)^{2}=\left(\frac{x}{1-x-x^{2}}\right)^{2}$
$=\frac{A}{(1-\phi x)^{2}}+\frac{B}{(1-x(1-\phi))^{2}}+\frac{C}{1-\phi x}+\frac{D}{1-(1-\phi) x}$.

Proof

$$
\begin{aligned}
\sum_{1 \leq i \leq n-k} x_{i, i+k} & =F_{n-k-1}+\sum_{i=1}^{n-k-2} F_{i-1} F_{n-k-i-2} \\
& =F_{n-k-1}+\sum_{i=0}^{n-k-3} F_{i} F_{n-k-i-3}
\end{aligned}
$$

$\sum_{i=0}^{n-k-3} F_{i} F_{n-k-i-3}$ is the x^{n-k-3} coefficient of $g(x)^{2}$.
$g(x)^{2}=\left(\frac{x}{1-x-x^{2}}\right)^{2}$
$=\frac{A}{(1-\phi x)^{2}}+\frac{B}{(1-x(1-\phi))^{2}}+\frac{C}{1-\phi x}+\frac{D}{1-(1-\phi) x}$.
By the geometric series formulas, $\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}$, the x^{m} coefficient is
$A(m+1) \phi^{m}+B(m+1)(1-\phi)^{m}+\boldsymbol{C} \phi^{m}+D(1-\phi)^{m}$.

Consider the ratio:

$$
\begin{aligned}
& \frac{P(k+1)}{P(k)}=\lim _{n \rightarrow \infty} \frac{P_{n}(k+1)}{P_{n}(k)} \\
& =\lim _{n \rightarrow \infty} \frac{F_{n-k-2}+\sum_{i=0}^{n-k-4} F_{i} F_{n-k-i-4}}{F_{n-k-1}+\sum_{i=0}^{n-k-3} F_{i} F_{n-k-i-4}} \\
& =\lim _{n \rightarrow \infty} \frac{F_{n-k-2}+A(n-k-3) \phi^{n-k-4}+B(n-k-3)(1-\phi)^{n-k-4}+C \phi^{n-k-4}+D(1-\phi)^{n-k-4}}{F_{n-k-1}+A(n-k-2) \phi^{n-k-3}+B(n-k-2)(1-\phi)^{n-k-3}+C \phi^{n-k-3}+D(1-\phi)^{n-k-3}} \\
& =\frac{1}{\phi} .
\end{aligned}
$$

Consider the ratio:

$$
\begin{aligned}
& \frac{P(k+1)}{P(k)}=\lim _{n \rightarrow \infty} \frac{P_{n}(k+1)}{P_{n}(k)} \\
& =\lim _{n \rightarrow \infty} \frac{F_{n-k-2}+\sum_{i=0}^{n-k-4} F_{i} F_{n-k-i-4}}{F_{n-k-1}+\sum_{i=0}^{n-k-3} F_{i} F_{n-k-i-4}} \\
& =\lim _{n \rightarrow \infty} \frac{F_{n-k-2}+A(n-k-3) \phi^{n-k-4}+B(n-k-3)(1-\phi)^{n-k-4}+C \phi^{n-k-4}+D(1-\phi)^{n-k-4}}{F_{n-k-1}+A(n-k-2) \phi^{n-k-3}+B(n-k-2)(1-\phi)^{n-k-3}+C \phi^{n-k-3}+D(1-\phi)^{n-k-3}} \\
& =\frac{1}{\phi} .
\end{aligned}
$$

So, the distribution is a geometric series!

Consider the ratio:

$$
\begin{aligned}
& \frac{P(k+1)}{P(k)}=\lim _{n \rightarrow \infty} \frac{P_{n}(k+1)}{P_{n}(k)} \\
& =\lim _{n \rightarrow \infty} \frac{F_{n-k-2}+\sum_{i=0}^{n-k-4} F_{i} F_{n-k-i-4}}{F_{n-k-1}+\sum_{i=0}^{n-k-3} F_{i} F_{n-k-i-4}} \\
& =\lim _{n \rightarrow \infty} \frac{F_{n-k-2}+A(n-k-3) \phi^{n-k-4}+B(n-k-3)(1-\phi)^{n-k-4}+C \phi^{n-k-4}+D(1-\phi)^{n-k-4}}{F_{n-k-1}+A(n-k-2) \phi^{n-k-3}+B(n-k-2)(1-\phi)^{n-k-3}+C \phi^{n-k-3}+D(1-\phi)^{n-k-3}} \\
& =\frac{1}{\phi} .
\end{aligned}
$$

So, the distribution is a geometric series!
Therefore there is a constant C so that $P(k)=C / \phi^{k}$.

Consider the ratio:

$$
\begin{aligned}
& \frac{P(k+1)}{P(k)}=\lim _{n \rightarrow \infty} \frac{P_{n}(k+1)}{P_{n}(k)} \\
& =\lim _{n \rightarrow \infty} \frac{F_{n-k-2}+\sum_{i=0}^{n-k-4} F_{i} F_{n-k-i-4}}{F_{n-k-1}+\sum_{i=0}^{n-k-3} F_{i} F_{n-k-i-4}} \\
& =\lim _{n \rightarrow \infty} \frac{F_{n-k-2}+A(n-k-3) \phi^{n-k-4}+B(n-k-3)(1-\phi)^{n-k-4}+C \phi^{n-k-4}+D(1-\phi)^{n-k-4}}{F_{n-k-1}+A(n-k-2) \phi^{n-k-3}+B(n-k-2)(1-\phi)^{n-k-3}+C \phi^{n-k-3}+D(1-\phi)^{n-k-3}} \\
& =\frac{1}{\phi} .
\end{aligned}
$$

So, the distribution is a geometric series!
Therefore there is a constant C so that $P(k)=C / \phi^{k}$.
Thus $1=C \sum_{k \geq 2} \phi^{-k}=C / \phi^{2}(1-1 / \phi)$, so $C=\phi(\phi-1)$, and $P(k)=(\phi-1) / \phi^{k-1}$.

Acknowledgements

Thanks to:

- Williams College
- National Science Foundation
- Professor Steven Miller

