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Introduction
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A few questions

How can we write a number as a sum of powers of 2?

Example: 2012 = 210 + 29 + 28 + 27 + 26 + 24 + 23 + 22.

The binary representation of 2012 is 11111011100.
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A few questions

How can we write a number as a sum of powers of 2?

Example: 2012 = 210 + 29 + 28 + 27 + 26 + 24 + 23 + 22.

The binary representation of 2012 is 11111011100.

What about powers of 3? 5? 10?
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A few questions

How can we write a number as a sum of powers of 2?

Example: 2012 = 210 + 29 + 28 + 27 + 26 + 24 + 23 + 22.

The binary representation of 2012 is 11111011100.

What about powers of 3? 5? 10?

What other sequences can we use besides powers?
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The Fibonacci Numbers

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
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The Fibonacci Numbers

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .
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The Fibonacci Numbers

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Generating function: g(x) :=
∑∞

n=0 Fnxn = x
1−x−x2 .
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The Fibonacci Numbers

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Generating function: g(x) :=
∑∞

n=0 Fnxn = x
1−x−x2 .

Binet’s Formula:

Fn =
φn+1 − (1 − φ)n+1

√
5

,

where φ = 1+
√

5
2 is the golden mean.
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Previous Results

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Previous Results

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 = F16 + F13 + F8 + F3 + F1.
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Previous Results

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 = F16 + F13 + F8 + F3 + F1.
Fibonacci representation of 2012 is 1001000010000101.
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Previous Results

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 = F16 + F13 + F8 + F3 + F1.
Fibonacci representation of 2012 is 1001000010000101.

Lekkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

φ2+1 ≈ .276n,

where φ = 1+
√

5
2 is the golden mean.
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Previous Results

Central Limit Type Theorem

As n → ∞, the distribution of the number of summands in the
Zeckendorf decomposition for integers in [Fn,Fn+1) converges
to a Gaussian (normal).
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, · · · , i2 − i1.
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, · · · , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 10 and 7.
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, · · · , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 10 and 7.

Define Pn(k) to be the probability that a gap for a
decomposition in [Fn,Fn+1) is of length k .
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, · · · , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 10 and 7.

Define Pn(k) to be the probability that a gap for a
decomposition in [Fn,Fn+1) is of length k .

What is P(k) := limn→∞ Pn(k)?
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Main Results

Zeckendorf Gap Distribution (Beckwith-Miller)

The percent of gaps of length k in Zeckendorf decompositions
is given by P(k) = (φ− 1)φ1−k .
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Main Results

Zeckendorf Gap Distribution (Beckwith-Miller)

The percent of gaps of length k in Zeckendorf decompositions
is given by P(k) = (φ− 1)φ1−k .

Base B Distribution (Beckwith-Miller)

The percent of gaps of length k in base B decompositions is

P(k) = cBB−k , where cB = 2(B−1)2

B2−2 for k ≥ 1, and

P(0) = B(B−2)
B2−2 .
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Proof of Fibonacci Result

What is the probability that a gap in a decomposition in
[Fn,Fn+1) has length k?
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Proof of Fibonacci Result

What is the probability that a gap in a decomposition in
[Fn,Fn+1) has length k?

By Lekkerkerker, total number of gaps approximately Fn−1
n

φ2+1 .
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Proof of Fibonacci Result

What is the probability that a gap in a decomposition in
[Fn,Fn+1) has length k?

By Lekkerkerker, total number of gaps approximately Fn−1
n

φ2+1 .

Let xi ,j = |{m ∈ [Fn,Fn+1): decomposition of m includes Fi , Fj , but not Fq for i < q < j }|

Pn(k) =

∑
i=1,n−k xi ,i+k

Fn−1
1

φ2+1
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Calculating xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?
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Calculating xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

1 ≤ i ≤ n − k − 2:
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Calculating xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

1 ≤ i ≤ n − k − 2:

For the indices less than i : Fi−1 choices.

For the indices greater than i + k : Fn−k−2−i choices.
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Calculating xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

1 ≤ i ≤ n − k − 2:

For the indices less than i : Fi−1 choices.

For the indices greater than i + k : Fn−k−2−i choices.

So total number of choices is Fn−k−2−iFi−1.
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Calculating xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

1 ≤ i ≤ n − k − 2:

For the indices less than i : Fi−1 choices.

For the indices greater than i + k : Fn−k−2−i choices.

So total number of choices is Fn−k−2−iFi−1.

i = n − k − 1: 0.

i = n − k : Fn−k−1.
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Proof

∑

1≤i≤n−k

xi ,i+k = Fn−k−1 +

n−k−2∑

i=1

Fi−1Fn−k−i−2

= Fn−k−1 +

n−k−3∑

i=0

FiFn−k−i−3
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Proof

∑

1≤i≤n−k

xi ,i+k = Fn−k−1 +

n−k−2∑

i=1

Fi−1Fn−k−i−2

= Fn−k−1 +

n−k−3∑

i=0

FiFn−k−i−3

∑n−k−3
i=0 FiFn−k−i−3 is the xn−k−3 coefficient of g(x)2.
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Proof

∑

1≤i≤n−k

xi ,i+k = Fn−k−1 +

n−k−2∑

i=1

Fi−1Fn−k−i−2

= Fn−k−1 +

n−k−3∑

i=0

FiFn−k−i−3

∑n−k−3
i=0 FiFn−k−i−3 is the xn−k−3 coefficient of g(x)2.

g(x)2 = ( x
1−x−x2 )

2

= A
(1−φx)2 + B

(1−x(1−φ))2 + C
1−φx + D

1−(1−φ)x .
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Proof

∑

1≤i≤n−k

xi ,i+k = Fn−k−1 +

n−k−2∑

i=1

Fi−1Fn−k−i−2

= Fn−k−1 +

n−k−3∑

i=0

FiFn−k−i−3

∑n−k−3
i=0 FiFn−k−i−3 is the xn−k−3 coefficient of g(x)2.

g(x)2 = ( x
1−x−x2 )

2

= A
(1−φx)2 + B

(1−x(1−φ))2 + C
1−φx + D

1−(1−φ)x .

By the geometric series formulas,
∑∞

n=0 rn = 1
1−r , the xm

coefficient is
A(m + 1)φm + B(m + 1)(1 − φ)m + Cφm + D(1 − φ)m.
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Consider the ratio:

P(k + 1)

P(k)
= lim

n→∞

Pn(k + 1)

Pn(k)

= lim
n→∞

Fn−k−2 +
∑n−k−4

i=0 Fi Fn−k−i−4

Fn−k−1 +
∑n−k−3

i=0 Fi Fn−k−i−4

= lim
n→∞

Fn−k−2 + A(n − k − 3)φn−k−4 + B(n − k − 3)(1 − φ)n−k−4 + Cφn−k−4 + D(1 − φ)n−k−4

Fn−k−1 + A(n − k − 2)φn−k−3 + B(n − k − 2)(1 − φ)n−k−3 + Cφn−k−3 + D(1 − φ)n−k−3

=
1

φ
.
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Consider the ratio:

P(k + 1)

P(k)
= lim

n→∞

Pn(k + 1)

Pn(k)

= lim
n→∞

Fn−k−2 +
∑n−k−4

i=0 Fi Fn−k−i−4

Fn−k−1 +
∑n−k−3

i=0 Fi Fn−k−i−4

= lim
n→∞

Fn−k−2 + A(n − k − 3)φn−k−4 + B(n − k − 3)(1 − φ)n−k−4 + Cφn−k−4 + D(1 − φ)n−k−4

Fn−k−1 + A(n − k − 2)φn−k−3 + B(n − k − 2)(1 − φ)n−k−3 + Cφn−k−3 + D(1 − φ)n−k−3

=
1

φ
.

So, the distribution is a geometric series!

34



Intro Previous Work Results Acknowledgements

Consider the ratio:

P(k + 1)

P(k)
= lim

n→∞

Pn(k + 1)

Pn(k)

= lim
n→∞

Fn−k−2 +
∑n−k−4

i=0 Fi Fn−k−i−4

Fn−k−1 +
∑n−k−3

i=0 Fi Fn−k−i−4

= lim
n→∞

Fn−k−2 + A(n − k − 3)φn−k−4 + B(n − k − 3)(1 − φ)n−k−4 + Cφn−k−4 + D(1 − φ)n−k−4

Fn−k−1 + A(n − k − 2)φn−k−3 + B(n − k − 2)(1 − φ)n−k−3 + Cφn−k−3 + D(1 − φ)n−k−3

=
1

φ
.

So, the distribution is a geometric series!
Therefore there is a constant C so that P(k) = C/φk .
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Consider the ratio:

P(k + 1)

P(k)
= lim

n→∞

Pn(k + 1)

Pn(k)

= lim
n→∞

Fn−k−2 +
∑n−k−4

i=0 Fi Fn−k−i−4

Fn−k−1 +
∑n−k−3

i=0 Fi Fn−k−i−4

= lim
n→∞

Fn−k−2 + A(n − k − 3)φn−k−4 + B(n − k − 3)(1 − φ)n−k−4 + Cφn−k−4 + D(1 − φ)n−k−4

Fn−k−1 + A(n − k − 2)φn−k−3 + B(n − k − 2)(1 − φ)n−k−3 + Cφn−k−3 + D(1 − φ)n−k−3

=
1

φ
.

So, the distribution is a geometric series!
Therefore there is a constant C so that P(k) = C/φk .
Thus 1 = C

∑
k≥2 φ

−k = C/φ2(1 − 1/φ), so C = φ(φ− 1), and
P(k) = (φ− 1)/φk−1.
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