Intro	Previous Work	Results	Acknowledgements

Distribution of Gaps between Summands in Zeckendorf Decompositions

Olivia Beckwith

Advisor: Steven J. Miller

http://web.williams.edu/Mathematics/sjmiller/

Joint Mathematics Meetings January 6, 2012

Intro	Previous Work	Results	Acknowledgements
000			

Introduction

Intro ○●○	Previous Work	Results oooooo	Acknowledgements
A few question	S		

- How can we write a number as a sum of powers of 2?
- Example: $2012 = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 2^3 + 2^2$.
- The binary representation of 2012 is 11111011100.

Intro ○●○	Previous Work	Results 000000	Acknowledgements
A few questio	ns		

- How can we write a number as a sum of powers of 2?
- Example: $2012 = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 2^3 + 2^2$.
- The binary representation of 2012 is 11111011100.
- What about powers of 3? 5? 10?

Intro	Previous Work	Results	Acknowledgements
○●○	oo	000000	
A few questions			

- How can we write a number as a sum of powers of 2?
- Example: $2012 = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 2^3 + 2^2$.
- The binary representation of 2012 is 1111011100.
- What about powers of 3? 5? 10?
- What other sequences can we use besides powers?

Intro ○○●	Previous Work	Results 000000	Acknowledgements
The Fibona	cci Numbers		

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$;

Intro ○○●	Previous Work	Results 000000	Acknowledgements
The Fibonacci	Numbers		

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, \dots$

Intro ○○●	Previous Work	Results oooooo	Acknowledgements
The Fibonac	ci Numbers		

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, \dots$

Generating function: $g(x) := \sum_{n=0}^{\infty} F_n x^n = \frac{x}{1-x-x^2}$.

Intro ○○●	Previous Work	Results 000000	Acknowledgements
The Fibonacci	Numbers		

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, \dots$

Generating function:
$$g(x) := \sum_{n=0}^{\infty} F_n x^n = \frac{x}{1-x-x^2}$$
.

Binet's Formula:

$$F_n = rac{\phi^{n+1} - (1-\phi)^{n+1}}{\sqrt{5}},$$

where $\phi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

Intro	Previous Work	Results	Acknowledgements

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Intro	Previous Work	Results	Acknowledgements
	••		

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $2012 = 1597 + 377 + 34 + 3 = F_{16} + F_{13} + F_8 + F_3 + F_1.$

Intro	Previous Work	Results	Acknowledgements
	• •		

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $2012 = 1597 + 377 + 34 + 3 = F_{16} + F_{13} + F_8 + F_3 + F_1$. Fibonacci representation of 2012 is 1001000010000101.

Intro	Previous Work	Results	Acknowledgements
	•0		

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $2012 = 1597 + 377 + 34 + 3 = F_{16} + F_{13} + F_8 + F_3 + F_1$. Fibonacci representation of 2012 is 1001000010000101.

Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ tends to $\frac{n}{\phi^2+1} \approx .276n$, where $\phi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

Intro	Previous Work	Results	Acknowledgements
000	○●	000000	
Previous	Results		

Central Limit Type Theorem

As $n \to \infty$, the distribution of the number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ converges to a Gaussian (normal).

Intro 000	Previous Work	Results ●○○○○○	Acknowledgements
Distributio	on of Gaps		

For $F_{i_1} + F_{i_2} + \cdots + F_{i_n}$, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \cdots, i_2 - i_1$.

Intro 000	Previous Work	Results ●○○○○○	Acknowledgements
Distributio	on of Gaps		

For $F_{i_1} + F_{i_2} + \cdots + F_{i_n}$, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \cdots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 10 and 7.

For
$$F_{i_1} + F_{i_2} + \dots + F_{i_n}$$
, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 10 and 7.

Define $P_n(k)$ to be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length *k*.

For
$$F_{i_1} + F_{i_2} + \cdots + F_{i_n}$$
, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \cdots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 10 and 7.

Define $P_n(k)$ to be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length *k*.

What is $P(k) := \lim_{n \to \infty} P_n(k)$?

Intro 000	Previous Work	Results ○●○○○○	Acknowledgements
Main Results			

Zeckendorf Gap Distribution (Beckwith-Miller)

The percent of gaps of length *k* in Zeckendorf decompositions is given by $P(k) = (\phi - 1)\phi^{1-k}$.

Intro 000	Previous Work	Results ○●○○○○	Acknowledgements
Main Results			

Zeckendorf Gap Distribution (Beckwith-Miller)

The percent of gaps of length *k* in Zeckendorf decompositions is given by $P(k) = (\phi - 1)\phi^{1-k}$.

Base *B* **Distribution (Beckwith-Miller)**

The percent of gaps of length *k* in base *B* decompositions is $P(k) = c_B B^{-k}$, where $c_B = \frac{2(B-1)^2}{B^2-2}$ for $k \ge 1$, and $P(0) = \frac{B(B-2)}{B^2-2}$.

Intro	Previous Work	Results	Acknowledgements
000	oo	○○●○○○	
Proof of Fibona	cci Result		

What is the probability that a gap in a decomposition in $[F_n, F_{n+1}]$ has length *k*?

What is the probability that a gap in a decomposition in $[F_n, F_{n+1})$ has length *k*?

By Lekkerkerker, total number of gaps approximately $F_{n-1}\frac{n}{\phi^2+1}$.

What is the probability that a gap in a decomposition in $[F_n, F_{n+1})$ has length *k*?

By Lekkerkerker, total number of gaps approximately $F_{n-1}\frac{n}{\phi^2+1}$.

 $\text{Let } \textbf{\textit{x}}_{i,j} = |\{\textbf{\textit{m}} \in [\textbf{\textit{F}}_{n}, \textbf{\textit{F}}_{n+1}): \text{ decomposition of } \textbf{\textit{m}} \text{ includes } \textbf{\textit{F}}_{i}, \textbf{\textit{F}}_{j}, \text{ but not } \textbf{\textit{F}}_{q} \text{ for } i < q < j \}|$

$$P_n(k) = \frac{\sum_{i=1,n-k} x_{i,i+k}}{F_{n-1} \frac{1}{\phi^2 + 1}}$$

Intro 000	Previous Work	Results ○○○●○○	Acknowledgements
Calculating $x_{i,i+}$	k		

Intro 000	Previous Work	Results ○○○●○○	Acknowledgements
Calculating $x_{i,i+}$	k		

 $1 \le i \le n - k - 2$:

Intro 000	Previous Work	Results ○○○●○○	Acknowledgements
Calculating $x_{i,i+}$	k		

 $1 \le i \le n - k - 2$:

For the indices less than *i*: F_{i-1} choices.

For the indices greater than i + k: $F_{n-k-2-i}$ choices.

 $1 \le i \le n - k - 2$:

For the indices less than *i*: F_{i-1} choices.

For the indices greater than i + k: $F_{n-k-2-i}$ choices.

So total number of choices is $F_{n-k-2-i}F_{i-1}$.

 $1 \le i \le n - k - 2$:

For the indices less than *i*: F_{i-1} choices.

For the indices greater than i + k: $F_{n-k-2-i}$ choices.

So total number of choices is $F_{n-k-2-i}F_{i-1}$.

i = n - k - 1: 0.

i = n - k: F_{n-k-1} .

Intro 000	Previous Work	Results ○○○○●○	Acknowledgements
Proof			

$$\sum_{1 \le i \le n-k} x_{i,i+k} = F_{n-k-1} + \sum_{i=1}^{n-k-2} F_{i-1}F_{n-k-i-2}$$
$$= F_{n-k-1} + \sum_{i=0}^{n-k-3} F_iF_{n-k-i-3}$$

Intro 000	Previous Work	Results ○○○○●○	Acknowledgements
Proof			

$$\sum_{1 \le i \le n-k} x_{i,i+k} = F_{n-k-1} + \sum_{i=1}^{n-k-2} F_{i-1}F_{n-k-i-2}$$
$$= F_{n-k-1} + \sum_{i=0}^{n-k-3} F_iF_{n-k-i-3}$$

 $\sum_{i=0}^{n-k-3} F_i F_{n-k-i-3}$ is the x^{n-k-3} coefficient of $g(x)^2$.

Intro	Previous Work	Results	Acknowledgements
000	oo	○○○○●○	
Proof			

$$\sum_{1 \le i \le n-k} x_{i,i+k} = F_{n-k-1} + \sum_{i=1}^{n-k-2} F_{i-1}F_{n-k-i-2}$$
$$= F_{n-k-1} + \sum_{i=0}^{n-k-3} F_iF_{n-k-i-3}$$

$$\sum_{i=0}^{n-k-3} F_i F_{n-k-i-3} \text{ is the } x^{n-k-3} \text{ coefficient of } g(x)^2$$
$$g(x)^2 = \left(\frac{x}{1-x-x^2}\right)^2$$
$$= \frac{A}{(1-\phi x)^2} + \frac{B}{(1-x(1-\phi))^2} + \frac{C}{1-\phi x} + \frac{D}{1-(1-\phi)x}.$$

000	00	
Proof		

$$\sum_{1 \le i \le n-k} x_{i,i+k} = F_{n-k-1} + \sum_{i=1}^{n-k-2} F_{i-1}F_{n-k-i-2}$$
$$= F_{n-k-1} + \sum_{i=0}^{n-k-3} F_iF_{n-k-i-3}$$

 $\sum_{i=0}^{n-k-3} F_i F_{n-k-i-3} \text{ is the } x^{n-k-3} \text{ coefficient of } g(x)^2.$ $g(x)^2 = \left(\frac{x}{1-x-x^2}\right)^2$ $= \frac{A}{(1-\phi x)^2} + \frac{B}{(1-x(1-\phi))^2} + \frac{C}{1-\phi x} + \frac{D}{1-(1-\phi)x}.$ By the geometric series formulas, $\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$, the x^m coefficient is $A(m+1)\phi^m + B(m+1)(1-\phi)^m + C\phi^m + D(1-\phi)^m.$

Intro	Previous Work	Results	Acknowledgements
		000000	

$$\begin{aligned} \frac{P(k+1)}{P(k)} &= \lim_{n \to \infty} \frac{P_n(k+1)}{P_n(k)} \\ &= \lim_{n \to \infty} \frac{F_{n-k-2} + \sum_{i=0}^{n-k-4} F_i F_{n-k-i-4}}{F_{n-k-1} + \sum_{i=0}^{n-k-3} F_i F_{n-k-i-4}} \\ &= \lim_{n \to \infty} \frac{F_{n-k-2} + A(n-k-3)\phi^{n-k-4} + B(n-k-3)(1-\phi)^{n-k-4} + C\phi^{n-k-4} + D(1-\phi)^{n-k-4}}{F_{n-k-1} + A(n-k-2)\phi^{n-k-3} + B(n-k-2)(1-\phi)^{n-k-3} + C\phi^{n-k-3} + D(1-\phi)^{n-k-3}} \\ &= \frac{1}{\phi}. \end{aligned}$$

Intro	Previous Work	Results	Acknowledgements
		000000	

$$\begin{aligned} \frac{P(k+1)}{P(k)} &= \lim_{n \to \infty} \frac{P_n(k+1)}{P_n(k)} \\ &= \lim_{n \to \infty} \frac{F_{n-k-2} + \sum_{i=0}^{n-k-4} F_i F_{n-k-i-4}}{F_{n-k-1} + \sum_{i=0}^{n-k-3} F_i F_{n-k-i-4}} \\ &= \lim_{n \to \infty} \frac{F_{n-k-2} + A(n-k-3)\phi^{n-k-4} + B(n-k-3)(1-\phi)^{n-k-4} + C\phi^{n-k-4} + D(1-\phi)^{n-k-4}}{F_{n-k-1} + A(n-k-2)\phi^{n-k-3} + B(n-k-2)(1-\phi)^{n-k-3} + C\phi^{n-k-3} + D(1-\phi)^{n-k-3}} \\ &= \frac{1}{\phi}. \end{aligned}$$

So, the distribution is a geometric series!

Intro	Previous Work	Results	Acknowledgements
		000000	

$$\begin{aligned} \frac{P(k+1)}{P(k)} &= \lim_{n \to \infty} \frac{P_n(k+1)}{P_n(k)} \\ &= \lim_{n \to \infty} \frac{F_{n-k-2} + \sum_{i=0}^{n-k-4} F_i F_{n-k-i-4}}{F_{n-k-1} + \sum_{i=0}^{n-k-3} F_i F_{n-k-i-4}} \\ &= \lim_{n \to \infty} \frac{F_{n-k-2} + A(n-k-3)\phi^{n-k-4} + B(n-k-3)(1-\phi)^{n-k-4} + C\phi^{n-k-4} + D(1-\phi)^{n-k-4}}{F_{n-k-1} + A(n-k-2)\phi^{n-k-3} + B(n-k-2)(1-\phi)^{n-k-3} + C\phi^{n-k-3} + D(1-\phi)^{n-k-3}} \\ &= \frac{1}{\phi}. \end{aligned}$$

So, the distribution is a geometric series! Therefore there is a constant *C* so that $P(k) = C/\phi^k$.

Intro	Previous Work	Results	Acknowledgements
		000000	

$$\begin{aligned} \frac{P(k+1)}{P(k)} &= \lim_{n \to \infty} \frac{P_n(k+1)}{P_n(k)} \\ &= \lim_{n \to \infty} \frac{F_{n-k-2} + \sum_{i=0}^{n-k-4} F_i F_{n-k-i-4}}{F_{n-k-1} + \sum_{i=0}^{n-k-3} F_i F_{n-k-i-4}} \\ &= \lim_{n \to \infty} \frac{F_{n-k-2} + A(n-k-3)\phi^{n-k-4} + B(n-k-3)(1-\phi)^{n-k-4} + C\phi^{n-k-4} + D(1-\phi)^{n-k-4}}{F_{n-k-1} + A(n-k-2)\phi^{n-k-3} + B(n-k-2)(1-\phi)^{n-k-3} + C\phi^{n-k-3} + D(1-\phi)^{n-k-3}} \\ &= \frac{1}{\phi}. \end{aligned}$$

So, the distribution is a geometric series! Therefore there is a constant *C* so that $P(k) = C/\phi^k$. Thus $1 = C \sum_{k \ge 2} \phi^{-k} = C/\phi^2(1 - 1/\phi)$, so $C = \phi(\phi - 1)$, and $P(k) = (\phi - 1)/\phi^{k-1}$.

Intro 000	Previous Work	Results 000000	Acknowledgements
Acknowledgem	nents		

Thanks to:

- Williams College
- National Science Foundation
- Professor Steven Miller