Introduction

Oleg Lazarev, Princeton University Steven J. Miller, Williams College

> CANT 2012 May 23, 2012

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset: $A + A = \{x + y : x, y \in A\}$

Introduction

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset: $A + A = \{x + y : x, y \in A\}$

Interval: $[a, b] = \{x \in \mathbb{N} : a \le x \le b\}$

Introduction

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset: $A + A = \{x + y : x, y \in A\}$

Interval: $[a,b] = \{x \in \mathbb{N} : a \le x \le b\}$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}.$$

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset:
$$A + A = \{x + y : x, y \in A\}$$

Interval: $[a, b] = \{x \in \mathbb{N} : a \le x \le b\}$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}.$$

Why study sumsets?

Introduction

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset:
$$A + A = \{x + y : x, y \in A\}$$

Interval: $[a, b] = \{x \in \mathbb{N} : a \le x \le b\}$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}.$$

Why study sumsets?

- Goldbach's conjecture: $\{4, 6, 8, \dots\} \subseteq P + P$.
- Fermat's last theorem: let A_n be the nth powers and then ask if $(A_n + A_n) \cap A_n = \emptyset$ for all n > 2.

Introduction

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset:
$$A + A = \{x + y : x, y \in A\}$$

Interval: $[a, b] = \{x \in \mathbb{N} : a \le x \le b\}$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}.$$

Why study sumsets?

- Goldbach's conjecture: $\{4, 6, 8, \dots\} \subseteq P + P$.
- Fermat's last theorem: let A_n be the *n*th powers and then ask if $(A_n + A_n) \cap A_n = \emptyset$ for all n > 2.

Key Question: What is the structure of A + A?

Structure of Random Sets

• Consider finite $A \subseteq [0, n-1]$ chosen randomly with uniform distribution from all subsets of [0, n-1].

Structure of Random Sets

- Consider finite $A \subseteq [0, n-1]$ chosen randomly with uniform distribution from all subsets of [0, n-1].
- Question: What is the structure of A + A for such A? What is the distribution of |A + A| for such A?

Structure of Random Sets

- Consider finite $A \subseteq [0, n-1]$ chosen randomly with uniform distribution from all subsets of [0, n-1].
- Question: What is the structure of A + A for such A? What is the distribution of |A + A| for such A?

Theorem: Martin-O'Bryant (2006)

$$E|A + A| = 2n - 1 - 10 + O((3/4)^{n/2}).$$

Introduction

- Consider finite $A \subseteq [0, n-1]$ chosen randomly with uniform distribution from all subsets of [0, n-1].
- Question: What is the structure of A + A for such A? What is the distribution of |A + A| for such A?

Theorem: Martin-O'Bryant (2006)

$$E|A + A| = 2n - 1 - 10 + O((3/4)^{n/2}).$$

Theorem: Zhao (2011)

For each fixed k, $P(A \subseteq [0, n-1] : |A+A| = 2n-1-k)$ has a limit as $n \to \infty$.

Introduction

- Consider finite $A \subseteq [0, n-1]$ chosen randomly with uniform distribution from all subsets of [0, n-1].
- Question: What is the structure of A + A for such A? What is the distribution of |A + A| for such A?

Theorem: Martin-O'Bryant (2006)

$$E|A + A| = 2n - 1 - 10 + O((3/4)^{n/2}).$$

Theorem: Zhao (2011)

For each fixed k, $P(A \subseteq [0, n-1] : |A+A| = 2n-1-k)$ has a limit as $n \to \infty$.

Note: Both theorems can be more naturally stated in terms of missing sums (independent of n).

Consecutive Missing Sums

Structure of Random Sets, Continued

• Why is the expectation so high? $E|A+A| \sim 2n-11$.

- Why is the expectation so high? $E|A+A| \sim 2n-11$.
- Main characteristic of typical *A* + *A*: middle is full.

Introduction

Structure of Random Sets, Continued

- Why is the expectation so high? $E|A+A| \sim 2n-11$.
- Main characteristic of typical A + A: middle is full.
- Many ways to write middle elements as sums.

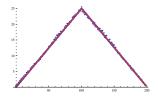


Figure: Comparison of predicted and observed number of representations of possible elements of the sumset.

• Why is the expectation so high? $E|A+A| \sim 2n-11$.

- Main characteristic of typical A + A: middle is full.
- Many ways to write middle elements as sums.

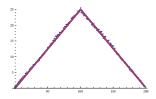


Figure: Comparison of predicted and observed number of representations of possible elements of the sumset.

• Key fact: if k < n, then $P(k \notin A + A) \sim \left(\frac{3}{4}\right)^{k/2}$.

Introduction

Results

Theorem: Bounds on the distribution (Lazarev-Miller, 2011)

 $0.70^k \ll P(A+A \text{ has } k \text{ missing sums}) \ll 0.81^k$.

Theorem: Bounds on the distribution (Lazarev-Miller, 2011)

 $0.70^k \ll P(A+A \text{ has } k \text{ missing sums}) \ll 0.81^k$.

Conjecture: $P(A + A \text{ has } k \text{ missing sums}) \sim 0.78^k$.

Theorem: Bounds on the distribution (Lazarev-Miller, 2011)

 $0.70^k \ll P(A+A \text{ has } k \text{ missing sums}) \ll 0.81^k$.

Conjecture: $P(A + A \text{ has } k \text{ missing sums}) \sim 0.78^k$.

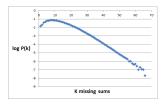


Figure: Log P(k missing sums) seems eventually linear.

Introduction

Results

Theorem: Bounds on the distribution (Lazarev-Miller, 2011)

$$0.70^k \ll P(A+A \text{ has } k \text{ missing sums}) \ll 0.81^k$$
.

Conjecture: $P(A + A \text{ has } k \text{ missing sums}) \sim 0.78^k$.

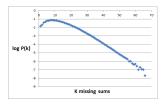


Figure: Log P(k missing sums) seems eventually linear.

Our main results are about $P(A: a_1, \dots, and a_m \notin A + A)$.

Results

Theorem: Bounds on the distribution (Lazarev-Miller, 2011)

Variance

$$0.70^k \ll P(A+A \text{ has } k \text{ missing sums}) \ll 0.81^k$$
.

Conjecture: $P(A + A \text{ has } k \text{ missing sums}) \sim 0.78^k$.

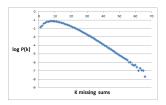


Figure: Log P(k missing sums) seems eventually linear.

Our main results are about $P(A: a_1, \dots, and a_m \notin A + A)$. Main idea: Use graph theory.

More Results

Results

Theorem: Variance (Lazarev-Miller)

$$Var|A + A| = 4 \sum_{i < j < n-1} P(i \text{ and } j \notin A + A) - 40 \sim 35.98.$$

Variance

Theorem: Distribution of configurations (Lazarev-Miller)

For any fixed a_1, \dots, a_m , exists $\lambda_{a_1, \dots, a_m}$ such that

$$P(k+a_1,k+a_2,\cdots,\text{ and }k+a_m \notin A+A) = \Theta(\lambda_{a_1,\cdots,a_m}^k).$$

Theorem: Consecutive missing sums (Lazarev-Miller)

$$P(k, k+1, \dots, \text{ and } k+m \notin A+A) = \left(\frac{1}{2} + o(1)\right)^{(k+m)/2}.$$

Bounds on the Distribution

Lower bound: $P(A + A \text{ has } k \text{ missing sums}) > 0.01 \cdot 0.70^k$ *Proof sketch:* Construction.

• Let the first k/2 be missing from A.

Introduction

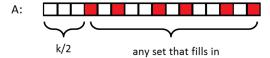
Lower bound: $P(A + A \text{ has } k \text{ missing sums}) > 0.01 \cdot 0.70^k$ *Proof sketch:* Construction.

- Let the first k/2 be missing from A.
- For the rest of elements, pick any set that fills in.

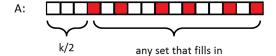
Introduction

- Let the first k/2 be missing from A.
- For the rest of elements, pick any set that fills in.
- Martin/O'Bryant: P(fills in) > 0.01 independent of n.

- Let the first k/2 be missing from A.
- For the rest of elements, pick any set that fills in.
- Martin/O'Bryant: P(fills in) > 0.01 independent of n.



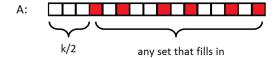
- Let the first k/2 be missing from A.
- For the rest of elements, pick any set that fills in.
- Martin/O'Bryant: P(fills in) > 0.01 independent of n.

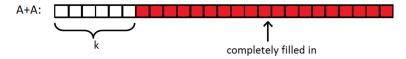


Introduction

Lower bound: $P(A + A \text{ has } k \text{ missing sums}) > 0.01 \cdot 0.70^k$ *Proof sketch:* Construction.

- Let the first k/2 be missing from A.
- For the rest of elements, pick any set that fills in.
- Martin/O'Bryant: P(fills in) > 0.01 independent of n.





 $P(A + A \text{ has } k \text{ missing sums}) > 0.01 \left(\frac{1}{2}\right)^{k/2} \sim 0.01 \cdot 0.70^k$

Weaker Upper bound: $P(A + A \text{ has } k \text{ missing sums}) < 0.93^k$. *Proof sketch:*

Weaker Upper bound: $P(A + A \text{ has } k \text{ missing sums}) < 0.93^k$. *Proof sketch:*

• Recall $P(k \notin A + A) = \left(\frac{3}{4}\right)^{k/2}$.

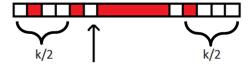
Introduction

Weaker Upper bound: $P(A + A \text{ has } k \text{ missing sums}) < 0.93^k$. *Proof sketch:*

- Recall $P(k \not\in A + A) = \left(\frac{3}{4}\right)^{k/2}$.
- If k elements are missing, then missing one element at least k/2 from the edges.

Weaker Upper bound: $P(A + A \text{ has } k \text{ missing sums}) < 0.93^k$. Proof sketch:

- Recall $P(k \notin A + A) = \left(\frac{3}{4}\right)^{k/2}$.
- If k elements are missing, then missing one element at least k/2 from the edges.



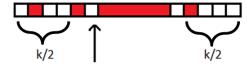
missing sum more than k/2 from ends

Introduction

Bound on Distribution: Upper Bound

Weaker Upper bound: $P(A + A \text{ has } k \text{ missing sums}) < 0.93^k$. *Proof sketch:*

- Recall $P(k \not\in A + A) = \left(\frac{3}{4}\right)^{k/2}$.
- If k elements are missing, then missing one element at least k/2 from the edges.



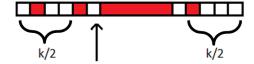
missing sum more than k/2 from ends

• $P(A + A \text{ has } k \text{ missing sums}) < P(k/2 \not\in A + A) < (\frac{3}{4})^{k/4} \sim 0.93^k$.

Bound on Distribution: Upper Bound

Weaker Upper bound: $P(A + A \text{ has } k \text{ missing sums}) < 0.93^k$. *Proof sketch:*

- Recall $P(k \notin A + A) = (\frac{3}{4})^{k/2}$.
- If k elements are missing, then missing one element at least k/2 from the edges.



missing sum more than k/2 from ends

- $P(A + A \text{ has } k \text{ missing sums}) < P(k/2 \notin A + A) < (\frac{3}{4})^{k/4} \sim 0.93^k$.
- Note: Bounds on $P(k + a_1, k + a_2, \dots, \text{ and } k + a_m \notin A + A)$ yield upper bounds on P(A + A has k missing sums).

Variance

Variances reduces to $\sum_{0 \le i, j \le 2n-2} P(A : i \text{ and } j \notin A + A)$.

Introduction

Variances reduces to $\sum_{0 \le i, i \le 2n-2} P(A : i \text{ and } j \notin A + A)$.

Variance

000000

Example: $P(A: 3 \text{ and } 7 \notin A + A)$

Variances reduces to $\sum_{0 \le i, i \le 2n-2} P(A : i \text{ and } j \notin A + A)$.

Example: $P(A: 3 \text{ and } 7 \notin A + A)$

Conditions:

 $i = 3 : 0 \text{ or } 3 \notin A$ $i = 7: 0 \text{ or } 7 \notin A$ and 1 or $2 \notin A$ and 1 or $6 \notin A$ and 2 or $5 \notin A$ and 3 or $4 \notin A$.

Variance

Variances reduces to $\sum_{0 \le i, i \le 2n-2} P(A : i \text{ and } j \notin A + A)$.

Example: $P(A: 3 \text{ and } 7 \notin A + A)$

Conditions:

Introduction

$$i=3: 0 \text{ or } 3 \not\in A$$
 $j=7: 0 \text{ or } 7 \not\in A$ and 1 or 6 $\not\in A$ and 2 or 5 $\not\in A$ and 3 or 4 $\not\in A$.

Variance

 Since there are common integers in both lists, the events $3 \notin A + A$ and $7 \notin A + A$ are dependent.

Transform the conditions into a graph!

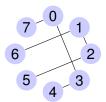
- Transform the conditions into a graph!
- For each integers in [0,7], add a vertex with that integer.

- Transform the conditions into a graph!
- For each integers in [0, 7], add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7.

Introduction

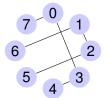
- Transform the conditions into a graph!
- For each integers in [0, 7], add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7.

Example i = 3, j = 7:



- Transform the conditions into a graph!
- For each integers in [0, 7], add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7.

Example i = 3, j = 7:



Untangle graph ⇒

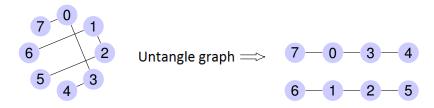
Introduction

- Transform the conditions into a graph!
- For each integers in [0, 7], add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7.

Example i = 3, j = 7:

- Transform the conditions into a graph!
- For each integers in [0,7], add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7.

Example i = 3, j = 7:



 One-to-one correspondence between conditions/edges (and integers/vertices).

Transformed into:

Transformed into:

$$7 - 0 - 3 - 4$$

$$6 - 1 - 2 - 5$$

Need to pick integers so that each condition is satisfied.

Transformed into:

- Need to pick integers so that each condition is satisfied.
- Therefore, need to pick vertices so that each edge has a vertex chosen.

Transformed into:

$$7 - 0 - 3 - 4$$
 $6 - 1 - 2 - 4$

- Need to pick integers so that each condition is satisfied.
- Therefore, need to pick vertices so that each edge has a vertex chosen.
- So need to pick a vertex cover!

Have:

Have:

$$7 - 0 - 3 - 4$$

Example:

7, 0, 4 and 6, 2 form a vertex cover

Have:

6 - 1 - 2 - 5

Example:

7, 0, 4 and 6, 2 form a vertex cover

$$\iff$$

If $7, 0, 4, 6, 2 \notin A$, then $3, 7 \notin A + A$

Introduction

Have:

$$6 - 1 - 2 - 5$$

Example:

7, 0, 4 and 6, 2 form a vertex cover

 \iff

If $7, 0, 4, 6, 2 \notin A$, then $3, 7 \notin A + A$

Lemma (Lazarev-Miller)

 $P(i, j \notin A + A) = P(\text{pick a vertex cover for graph}).$

Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

• Case 1: If the first vertex is chosen:

Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

• Case 1: If the first vertex is chosen:

Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

• Case 1: If the first vertex is chosen:

Need an vertex cover for the rest of the graph: g(n-1).

Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

• Case 1: If the first vertex is chosen:

Need an vertex cover for the rest of the graph: g(n-1).

• Case 2: If the first vertex is not chosen:

$$0 - x - ? - ? - ?$$

Need an vertex cover for the rest of the graph: g(n-2).

Introduction

Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

• Case 1: If the first vertex is chosen:

$$x - ? - ? - ? - ?$$

Need an vertex cover for the rest of the graph: g(n-1).

• Case 2: If the first vertex is not chosen:

$$0 - x - ? - ? - ?$$

Need an vertex cover for the rest of the graph: g(n-2).

Fibonacci recursive relationship!

$$g(n) = g(n-1) + g(n-2)$$

Introduction

Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

• Case 1: If the first vertex is chosen:

$$x - ? - ? - ? - ?$$

Need an vertex cover for the rest of the graph: g(n-1).

• Case 2: If the first vertex is not chosen:

$$0 - x - ? - ? - ?$$

Need an vertex cover for the rest of the graph: g(n-2).

Fibonacci recursive relationship!

$$g(n) = g(n-1) + g(n-2)$$

 $g(1) = 2 = F_3, g(2) = 3 = F_4$

Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

• Case 1: If the first vertex is chosen:

$$x - ? - ? - ? - ?$$

Need an vertex cover for the rest of the graph: g(n-1).

• Case 2: If the first vertex is not chosen:

$$0 - x - ? - ? - ?$$

Need an vertex cover for the rest of the graph: g(n-2).

Fibonacci recursive relationship!

$$g(n) = g(n-1) + g(n-2)$$

 $g(1) = 2 = F_3, g(2) = 3 = F_4$
 $\implies g(n) = F_{n+2}$

Introduction

P(3 and 7
$$\notin$$
 A + A) = $\frac{1}{2^8}F_{4+2}F_{4+2} = \frac{1}{4}$

since there were two graphs each of length 4.

General i, j

Introduction

In particular

P(3 and
$$7 \notin A + A$$
) = $\frac{1}{2^8} F_{4+2} F_{4+2} = \frac{1}{4}$

since there were two graphs each of length 4.

• For odd i < j < n:

$$\begin{split} & P(A:i \text{ and } j \not\in A + A) \\ & = \frac{1}{2^{j+1}} F_{2\left\lceil \frac{j+1}{j-i} \right\rceil + 2}^{\frac{1}{2}\left((j-i)\left\lceil \frac{i+1}{j-i} \right\rceil - (i+1)\right)} \times F_{2\left\lceil \frac{j+1}{j-i} \right\rceil + 4}^{\frac{1}{2}\left(j+1-(j-i)\left\lceil \frac{i+1}{j-i} \right\rceil\right)}. \end{split}$$

Introduction

In particular

P(3 and
$$7 \notin A + A$$
) = $\frac{1}{2^8} F_{4+2} F_{4+2} = \frac{1}{4}$

since there were two graphs each of length 4.

• For odd i < j < n:

$$P(A: i \text{ and } j \notin A + A)$$

$$= \frac{1}{2^{j+1}} F_{2 {j+1 \choose j-i} + 2}^{\frac{1}{2} ((j-i) {j+1 \choose j-i} - (i+1))} \times F_{2 {j+1 \choose j-i} + 4}^{\frac{1}{2} (j+1-(j-i) {j+1 \choose j-i})}.$$

• In general $P(k \text{ and } k+1 \not\in A+A) < C(\phi/2)^k \sim 0.81^k$, giving upper bound.

Introduction

$$\begin{aligned} &Var|A+A| = -40 + 4 \sum_{i < j < n} P(i,j \not\in A+A) \\ &= -40 + O(c^n) \\ &+ 4 \sum_{i,j \text{ odd}} \frac{1}{2^{j+1}} F_2^{\frac{1}{2} \left((j-i) \left\lceil \frac{j+1}{j-1} \right\rceil - (i+1)\right)} F_2^{\frac{1}{2} \left(j+1-(j-i) \left\lceil \frac{j+1}{j-1} \right\rceil \right)} \\ &+ 4 \sum_{i,j \text{ odd}} \frac{1}{2^{j+1}} F_2^{\frac{1}{2} \left(\frac{j+1}{j-1} \right\rceil + 2} F_2^{\frac{1}{2} \left((j-i-1) \left\lceil \frac{j+1}{j-1} \right\rceil - (i+1) + 2 \left\lceil \frac{j/2+1}{j-1} \right\rceil - 1\right)} F_2^{\frac{1}{2} \left(j+1-(j-i-1) \left\lceil \frac{j+1}{j-1} \right\rceil - 2 \left\lceil \frac{j/2+1}{j-1} \right\rceil \right)} \\ &+ 4 \sum_{i \text{ even}, j \text{ odd}} \frac{1}{2^{j+1}} F_2^{\frac{1}{2} \left(\frac{j/2+1}{j-1} \right\rceil + 1} F_2^{\frac{1}{2} \left(\frac{j-1}{j-1} \right\rceil + 2} F_2^{\frac{1}{2} \left((j-i-1) \left\lceil \frac{j+1}{j-1} \right\rceil - (i+1) + 2 \left\lceil \frac{j/2+1}{j-1} \right\rceil - 2\right)} F_2^{\frac{1}{2} \left(j+2-(j-i-1) \left\lceil \frac{j+1}{j-1} \right\rceil + 2 \left\lceil \frac{j/2+1}{j-1} \right\rceil \right)} \\ &+ 4 \sum_{i \text{ odd}, j \text{ even}} \frac{1}{2^{j+1}} F_2^{\frac{1}{2} \left(\frac{j/2+1}{j-1} \right\rceil} F_2^{\frac{1}{2} \left(\frac{j+1}{j-1} \right\rceil - (i+1) + 2 \left\lceil \frac{j/2+1}{j-1} \right\rceil - 2\right)} F_2^{\frac{1}{2} \left(\frac{j+1}{j-1} \right\rceil + 2 \left\lceil \frac{j/2+1}{j-1} \right\rceil + 2 \left\lceil \frac{j/2+1}{j-1} \right\rceil + 2 \left\lceil \frac{j/2+1}{j-1} \right\rceil - 2\right)} F_2^{\frac{1}{2} \left(\frac{j+2}{j-1} - 2\right) \left\lceil \frac{j+1}{j-1} + 2 \left\lceil \frac{j/2+1}{j-1} \right\rceil + 2 \left\lceil \frac{j/2+1}{j-1} \right\rceil \right)} F_2^{\frac{1}{2} \left(\frac{j+2}{j-1} - (j-1) \right) \left\lceil \frac{j+1}{j-1} + 2 \left\lceil \frac{j/2+1}{j-1} \right\rceil + 2 \left\lceil \frac{j/2+1}{j-1} \right\rceil \right)} F_2^{\frac{1}{2} \left(\frac{j+2}{j-1} - (j-1) \right) \left\lceil \frac{j+1}{j-1} + 2 \left\lceil \frac{j/2+1}{j-1} \right\rceil + 2 \left\lceil \frac{j/2+1}{j-1} \right\rceil \right)} F_2^{\frac{1}{2} \left(\frac{j+2}{j-1} - (j-1) \right) \left\lceil \frac{j+1}{j-1} + 2 \left\lceil \frac{j/2+1}{j-1} \right\rceil + 2 \left\lceil \frac{j/2+1}{j-1} \right\rceil \right)} F_2^{\frac{1}{2} \left(\frac{j+2}{j-1} - (j-1) \right) \left\lceil \frac{j+1}{j-1} + 2 \left\lceil \frac{j/2+1}{j-1} \right\rceil + 2 \left\lceil \frac{j/2+1}{j-1} \right\rceil \right)} F_2^{\frac{1}{2} \left(\frac{j+2}{j-1} - (j-1) \right) \left\lceil \frac{j+1}{j-1} + 2 \left\lceil \frac{j/2+1}{j-1} \right\rceil + 2 \left\lceil \frac{j/2+1}{j-1} \right\rceil \right]} F_2^{\frac{1}{2} \left(\frac{j+2}{j-1} - (j-1) \right) \left\lceil \frac{j+1}{j-1} + 2 \left\lceil \frac{j/2+1}{j-1} \right\rceil + 2 \left\lceil \frac{j/2+1}{j-1} \right\rceil \right]} F_2^{\frac{1}{2} \left(\frac{j+2}{j-1} - (j-1) \right)} F_2^{\frac{1}{2} \left(\frac{j+2}{j-1} - (j-1) - (j-1) \right)} F_2^{\frac{1}{2} \left(\frac{j+2}{j-1} - (j-1) - (j-1) - (j-1) - (j-1) - (j-1)} F_2^{\frac{1$$

Variance Formula

$$\begin{aligned} &Var|A+A| = -40 + 4\sum_{i < j < n} P(i,j \not\in A+A) \\ &= -40 + O(c^n) \\ &+ 4\sum_{i,j \ odd} \frac{1}{2^{j+1}} F_2^{\frac{1}{2}\left((j-i)\left\lceil\frac{j+1}{j-1}\right\rceil - (i+1)\right)} F_2^{\frac{1}{2}\left(j+1-(j-i)\left\lceil\frac{j+1}{j-1}\right\rceil\right)} \\ &+ 4\sum_{i \ even,j \ odd} \frac{1}{2^{j+1}} F_2^{\left\lceil\frac{j+2+1}{j-1}\right\rceil + 2} F_2^{\left\lceil\frac{j+1}{j-1}\right\rceil + 4} \\ &+ 4\sum_{i \ even,j \ odd} \frac{1}{2^{j+1}} F_2^{\left\lceil\frac{j/2+1}{j-1}\right\rceil + 1} F_2^{\left\lceil\frac{j+1}{j-1}\right\rceil + 2} F_2^{\left\lceil\frac{j+2+1}{j-1}\right\rceil + 2} F_2^{\left\lceil\frac{j+2+1}{j-1}\right\rceil$$

So clearly

Var|*A* + *A*|
$$\sim$$
 35.98.

Consecutive Missing Sums

• Will study the particular case of $P(a_1, \dots, a_j \notin A + A)$ of consecutive missing sums: $P(k, k+1, \dots, k+i \notin A + A)$.

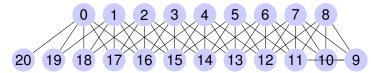
- Will study the particular case of $P(a_1, \dots, a_j \notin A + A)$ of consecutive missing sums: $P(k, k+1, \dots, k+i \notin A + A)$.
- Example: $P(16, 17, 18, 19, 20 \notin A + A)$

- Will study the particular case of $P(a_1, \dots, a_j \notin A + A)$ of consecutive missing sums: $P(k, k+1, \dots, k+i \notin A + A)$.
- Example: $P(16, 17, 18, 19, 20 \notin A + A)$

Start with original graph and remove some conditions (edges):

- Will study the particular case of $P(a_1, \dots, a_j \notin A + A)$ of consecutive missing sums: $P(k, k+1, \dots, k+i \notin A + A)$.
- Example: $P(16, 17, 18, 19, 20 \notin A + A)$

Start with original graph and remove some conditions (edges):



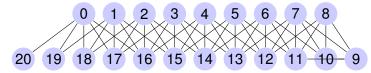
Conclusion

Consecutive Missing Sums in A+A

Introduction

- Will study the particular case of $P(a_1, \dots, a_j \notin A + A)$ of consecutive missing sums: $P(k, k+1, \dots, k+i \notin A + A)$.
- Example: $P(16, 17, 18, 19, 20 \notin A + A)$

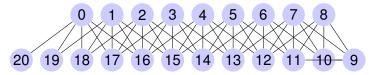
Start with original graph and remove some conditions (edges):



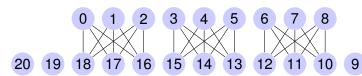
 \Longrightarrow Transforms to:

- Will study the particular case of $P(a_1, \dots, a_j \notin A + A)$ of consecutive missing sums: $P(k, k+1, \dots, k+i \notin A + A)$.
- Example: $P(16, 17, 18, 19, 20 \notin A + A)$

Start with original graph and remove some conditions (edges):

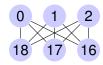


 \Longrightarrow Transforms to:

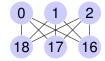


78

• So have 3 complete bipartite graphs like:



• So have 3 complete bipartite graphs like:

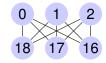


• To get a vertex cover, need to have all vertices from one side chosen; occurs with probability $\leq \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$.

Introduction

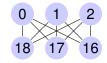
Consecutive Missing Sums in A+A

• So have 3 complete bipartite graphs like:



- To get a vertex cover, need to have all vertices from one side chosen; occurs with probability $\leq \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$.
- By independence, $P(16, 17, 18, 19, 20) \leq \left(\frac{1}{4}\right)^3 \sim \left(\frac{1}{4}\right)^{20/6}$.

So have 3 complete bipartite graphs like:



- To get a vertex cover, need to have all vertices from one side chosen; occurs with probability $\leq \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$.
- By independence, $P(16, 17, 18, 19, 20) \leq \left(\frac{1}{4}\right)^3 \sim \left(\frac{1}{4}\right)^{20/6}$.
- In general, $P(k, k+1, k+2, k+3, k+4) \le \left(\frac{1}{4}\right)^{(k+4)/6} \sim 0.79^{k+4}.$

Introduction

Consecutive Missing Sums

Most general case is:

$$P(k, k+1, \cdots, k+i \not\in A+A) \leq \left(\frac{1}{2}\right)^{(k+i)/2} (1+\epsilon_i)^k.$$

Consecutive Missing Sums

Introduction

Most general case is:

$$P(k, k+1, \cdots, k+i \not\in A+A) \leq \left(\frac{1}{2}\right)^{(k+i)/2} (1+\epsilon_i)^k.$$

• But the trivial lower bound is:

$$\left(\frac{1}{2}\right)^{(k+i)/2} \leq P(k, k+1, \cdots, k+i \notin A+A).$$

Consecutive Missing Sums

Introduction

Most general case is:

$$P(k,k+1,\cdots,k+i\not\in A+A)\leq \left(\frac{1}{2}\right)^{(k+i)/2}(1+\epsilon_i)^k.$$

- But the trivial lower bound is: $\left(\frac{1}{2}\right)^{(k+i)/2} \leq P(k,k+1,\cdots,k+i \not\in A+A).$
- Why interesting? Bounds almost match!

Consecutive Missing Sums

Introduction

Most general case is:

$$P(k, k+1, \cdots, k+i \notin A+A) \leq \left(\frac{1}{2}\right)^{(k+i)/2} (1+\epsilon_i)^k.$$

- But the trivial lower bound is: $\left(\frac{1}{2}\right)^{(k+i)/2} \leq P(k, k+1, \dots, k+i \notin A+A).$
- Why interesting? Bounds almost match!
- Essentially the only way to miss a block of i consecutive sums is to miss all elements before the block as well.

Summary

Use graph theory to study $P(a_1, \dots, and a_m \notin A + A)$.

Currently investigating:

- Is distribution of missing sums approximately exponential?
- Higher moments: third moment involves $P(i, j, k \notin A + A)$, with more complicated graphs.
- Distribution of A A.

Summary

Use graph theory to study $P(a_1, \dots, and a_m \notin A + A)$.

Currently investigating:

- Is distribution of missing sums approximately exponential?
- Higher moments: third moment involves $P(i, j, k \notin A + A)$, with more complicated graphs.
- Distribution of A A.

Thank you!

CANT 2012

