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Background

Let A ⊆ N ∪ {0}.

Definition
Sumset: A + A = {x + y : x , y ∈ A}
Interval: [a,b] = {x ∈ N : a ≤ x ≤ b}

Example: if A = {1,2,5}, then

A + A = {2,3,4,6,7,10}.

Why study sumsets?
Goldbach’s conjecture: {4,6,8, · · · } ⊆ P + P.
Fermat’s last theorem: let An be the nth powers and then
ask if (An + An) ∩ An = ∅ for all n > 2.

Key Question: What is the structure of A + A?
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Structure of Random Sets

Consider finite A ⊆ [0,n− 1] chosen randomly with uniform
distribution from all subsets of [0,n − 1].

Question: What is the structure of A + A for such A? What
is the distribution of |A + A| for such A?

Theorem: Martin-O’Bryant (2006)

E|A + A| = 2n − 1− 10 + O((3/4)n/2).

Theorem: Zhao (2011)
For each fixed k , P(A ⊆ [0,n − 1] : |A + A| = 2n − 1− k) has a
limit as n→∞.

Note: Both theorems can be more naturally stated in terms of
missing sums (independent of n).
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Structure of Random Sets, Continued

Why is the expectation so high? E |A + A| ∼ 2n − 11.

Main characteristic of typical A + A: middle is full.
Many ways to write middle elements as sums.

50 100 150 200

5

10

15

20

25

Figure: Comparison of predicted and observed number of
representations of possible elements of the sumset.

Key fact: if k < n, then P(k 6∈ A + A) ∼
(3

4

)k/2
.
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Results
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New Results

Theorem: Bounds on the distribution (Lazarev-Miller, 2011)

0.70k � P(A + A has k missing sums)� 0.81k .

Conjecture: P(A + A has k missing sums) ∼ 0.78k .

Figure: Log P(k missing sums) seems eventually linear.

Our main results are about P(A : a1, · · · , and am 6∈ A + A).
Main idea: Use graph theory.
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More Results

Theorem: Variance (Lazarev-Miller)

Var|A + A| = 4
∑

i<j≤n−1

P(i and j 6∈ A + A)− 40 ∼ 35.98.

Theorem: Distribution of configurations (Lazarev-Miller)
For any fixed a1, · · · ,am, exists λa1,··· ,am such that

P(k + a1, k + a2, · · · , and k + am 6∈ A + A) = Θ(λk
a1,··· ,am ).

Theorem: Consecutive missing sums (Lazarev-Miller)

P(k , k + 1, · · · , and k + m 6∈ A + A) =

(
1
2

+ o(1)

)(k+m)/2

.
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Bounds on the Distribution
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Bound on Distribution: Lower Bound

Lower bound: P(A + A has k missing sums) > 0.01 · 0.70k

Proof sketch: Construction.

Let the first k/2 be missing from A.
For the rest of elements, pick any set that fills in.
Martin/O’Bryant: P( fills in) > 0.01 independent of n.

P(A + A has k missing sums) > 0.01
(1

2

)k/2 ∼ 0.01 · 0.70k .
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Bound on Distribution: Upper Bound

Weaker Upper bound: P(A + A has k missing sums) < 0.93k .
Proof sketch:

Recall P(k 6∈ A + A) =
(3

4

)k/2
.

If k elements are missing, then missing one element at
least k/2 from the edges.

P(A + A has k missing sums) < P(k/2 6∈ A + A) <(3
4

)k/4 ∼ 0.93k .

Note: Bounds on P(k + a1, k + a2, · · · , and k + am 6∈ A + A)
yield upper bounds on P(A + A has k missing sums).
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Variance
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Problem: Dependent Random Variables

Variances reduces to
∑

0≤i,j≤2n−2 P(A : i and j 6∈ A + A).

Example: P(A : 3 and 7 6∈ A + A)

Conditions:

i = 3 : 0 or 3 6∈ A j = 7 : 0 or 7 6∈ A
and 1 or 2 6∈ A and 1 or 6 6∈ A

and 2 or 5 6∈ A
and 3 or 4 6∈ A.

Since there are common integers in both lists, the events
3 6∈ A + A and 7 6∈ A + A are dependent.
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Solution: Use Graphs!

Transform the conditions into a graph!

For each integers in [0,7], add a vertex with that integer.
Then connect two vertices if add up to 3 or 7.

Example i = 3, j = 7:

0
1

2

3
4

5

6

7

7 0 3 4

6 1 2 5

One-to-one correspondence between conditions/edges
(and integers/vertices).
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Interpretation of Graphs

Transformed into:

7 0 3 4 6 1 2 5

Need to pick integers so that each condition is satisfied.
Therefore, need to pick vertices so that each edge has a
vertex chosen.
So need to pick a vertex cover!

51



Introduction Results Bounds on Distribution Variance Consecutive Missing Sums Conclusion

Interpretation of Graphs

Transformed into:

7 0 3 4 6 1 2 5

Need to pick integers so that each condition is satisfied.

Therefore, need to pick vertices so that each edge has a
vertex chosen.
So need to pick a vertex cover!

52



Introduction Results Bounds on Distribution Variance Consecutive Missing Sums Conclusion

Interpretation of Graphs

Transformed into:

7 0 3 4 6 1 2 5

Need to pick integers so that each condition is satisfied.
Therefore, need to pick vertices so that each edge has a
vertex chosen.

So need to pick a vertex cover!

53



Introduction Results Bounds on Distribution Variance Consecutive Missing Sums Conclusion

Interpretation of Graphs

Transformed into:

7 0 3 4 6 1 2 5

Need to pick integers so that each condition is satisfied.
Therefore, need to pick vertices so that each edge has a
vertex chosen.
So need to pick a vertex cover!

54



Introduction Results Bounds on Distribution Variance Consecutive Missing Sums Conclusion

Vertex Covers

Have:

7 0 3 4 6 1 2 5

Have:

7 0 3 4 6 1 2 5

Example:
7,0,4 and 6,2 form a vertex cover
⇐⇒
If 7,0,4,6,2 6∈ A, then 3,7 6∈ A + A

Lemma (Lazarev-Miller)

P(i , j 6∈ A + A) = P(pick a vertex cover for graph).
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Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need
g(n), the number of vertex covers for a ‘segment’ graph with n
vertices.

Case 1: If the first vertex is chosen:
x ? ? ? ?

Need an vertex cover for the rest of the graph: g(n − 1).
Case 2: If the first vertex is not chosen:

o x ? ? ?

Need an vertex cover for the rest of the graph: g(n − 2).
Fibonacci recursive relationship!

g(n) = g(n − 1) + g(n − 2)

g(1) = 2 = F3,g(2) = 3 = F4

=⇒ g(n) = Fn+2
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General i , j

In particular

P(3 and 7 6∈ A + A) =
1
28 F4+2F4+2 =

1
4

since there were two graphs each of length 4.

For odd i < j < n:

P(A : i and j 6∈ A + A)

=
1

2j+1 F
1
2

(
(j−i)

⌈
i+1
j−i

⌉
−(i+1)

)
2
⌈

i+1
j−i

⌉
+2

× F
1
2

(
j+1−(j−i)

⌈
i+1
j−i

⌉)
2
⌈

i+1
j−i

⌉
+4

.

In general P(k and k + 1 6∈ A + A) < C(φ/2)k ∼ 0.81k ,
giving upper bound.
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Variance Formula
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So clearly
Var |A + A| ∼ 35.98.
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Consecutive Missing Sums
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Consecutive Missing Sums in A+A

Will study the particular case of P(a1, · · · ,aj 6∈ A + A) of
consecutive missing sums: P(k , k + 1, · · · , k + i 6∈ A + A).

Example: P(16,17,18,19,20 6∈ A + A)

Start with original graph and remove some conditions (edges):

0 1 2 3 4 5 6 7 8

20 19 18 17 16 15 14 13 12 11 10 9

=⇒ Transforms to:

0 1 2 3 4 5 6 7 8

20 19 18 17 16 15 14 13 12 11 10 9
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Consecutive Missing Sums in A+A

So have 3 complete bipartite graphs like:

0 1 2

18 17 16

To get a vertex cover, need to have all vertices from one
side chosen; occurs with probability ≤ 1

8 + 1
8 = 1

4 .

By independence, P(16,17,18,19,20) ≤
(1

4

)3 ∼
(1

4

)20/6
.

In general,
P(k , k + 1, k + 2, k + 3, k + 4) ≤

(1
4

)(k+4)/6 ∼ 0.79k+4.
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Consecutive Missing Sums

Most general case is:
P(k , k + 1, · · · , k + i 6∈ A + A) ≤

(1
2

)(k+i)/2
(1 + εi)

k .

But the trivial lower bound is:(1
2

)(k+i)/2 ≤ P(k , k + 1, · · · , k + i 6∈ A + A).
Why interesting? Bounds almost match!
Essentially the only way to miss a block of i consecutive
sums is to miss all elements before the block as well.
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Summary

Use graph theory to study P(a1, · · · , and am 6∈ A + A).

Currently investigating:
Is distribution of missing sums approximately exponential?
Higher moments: third moment involves P(i , j , k 6∈ A + A),
with more complicated graphs.
Distribution of A− A.

Thank you!
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