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Let AC NU {0}.

Definition

Sumset: A+A={x+y:x,ycA}
Interval: [a,b] ={x e N:a<x < b}

Example: if A= {1,2,5}, then
A+A={23,4,6,7,10}.

Why study sumsets?
@ Goldbach’s conjecture: {4,6,8,---} C P+ P.

@ Fermat’s last theorem: let A, be the nth powers and then
ask if (Ap+ Ap) N A, =0 foralln> 2.

Key Question: What is the structure of A+ A?
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Theorem: Zhao (2011)
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Structure of Random Sets

@ Consider finite A C [0, n — 1] chosen randomly with uniform
distribution from all subsets of [0, n — 1].

@ Question: What is the structure of A + A for such A? What
is the distribution of |A 4 A| for such A?

Theorem: Martin-O’Bryant (2006)

EJA+ A =2n—1—-10+ O((3/4)"?).

| A,

Theorem: Zhao (2011)

For each fixed k, P(AC [0,n—1] : [A+ A =2n—1—k) has a
limit as n — oo.

v

Note: Both theorems can be more naturally stated in terms of
missing sums (independent of n).
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New Results

Theorem: Bounds on the distribution (Lazarev-Miller, 2011)

0.70% < P(A+ A has k missing sums) < 0.81%,

Conjecture: P(A + A has k missing sums) ~ 0.78k.

tog P(l) .

K missing sums

Figure: Log P(k missing sums) seems eventually linear.

Our main results are about P(A: aq,---, and an & A+ A).
Main idea: Use graph theory.
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More Results

Theorem: Variance (Lazarev-Miller)

VarlA+ Al=4 > P(iand; ¢ A+ A)—40 ~ 35.98.

i<j<n—1

Theorem: Distribution of configurations (Lazarev-Miller)
For any fixed ay, - - - , am, exists A, ... a, such that

P(k+ai,k+ap,---, andk+an ¢ A+ A) :@()‘gh'”’a’")'

Theorem: Consecutive missing sums (Lazarev-Miller)

) (k+m)/2

P(k,k+1,---,andk+ mg A+ A) = <;+o(1)
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Bound on Distribution: Lower Bound

Lower bound: P(A + A has k missing sums) > 0.01 - 0.70%
Proof sketch: Construction.

@ Let the first k/2 be missing from A.

@ For the rest of elements, pick any set that fills in.

@ Martin/O’Bryant: P( fills in) > 0.01 independent of n.

JEEE H EE E EE N
AV\ ~ Y

k/2 any set that fills in

T U
H_/ T

k completely filled in

P(A + A has k missing sums) > 0.01 ()" ~ 0.01-0.70%.
’
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Weaker Upper bound: P(A + A has k missing sums) < 0.93.
Proof sketch:

o Recall P(k ¢ A+ A) = (3)/2,
@ If k elements are missing, then missing one element at
least k/2 from the edges.
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Bound on Distribution: Upper Bound

Weaker Upper bound: P(A + A has k missing sums) < 0.93.
Proof sketch:

o Recall P(k ¢ A+ A) = (3)"/.

@ If k elements are missing, then missing one element at
least k/2 from the edges.

EI:EI:_:IZEEI
'|~ \(J
k/2 k/2

missing sum more than k/2 from ends

P(A+ Ahas k missing sums) < P(k/2 ¢ A+ A) <
(3)* ~ 0.93~.

N
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Bound on Distribution: Upper Bound

Weaker Upper bound: P(A + A has k missing sums) < 0.93.
Proof sketch:

o Recall P(k ¢ A+ A) = (3)"/.

@ If k elements are missing, then missing one element at
least k/2 from the edges.

EI:EI:_:IZEEI
'|~ \(J
k/2 k/2

missing sum more than k/2 from ends
@ P(A+ Ahas k missing sums) < P(k/2 ¢ A+ A) <
(3)* ~ 0.93~.
Note: Bounds on P(k + a1,k + az,---, and k + an ¢ A+ A)
yield upper bounds on P(A + A has k missing sums).
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Problem: Dependent Random Variables

Variances reduces t0 3 o <o o P(A:iandj ¢ A+ A).

Example: P(A:3and 7 ¢ A+ A)
@ Conditions:

i=3: 0or3¢A j=7: 0or7¢A
and1or2¢A and1or6 ¢ A
and2or5¢ A
and3or4 £ A

@ Since there are common integers in both lists, the events
3ZA+Aand7 ¢ A+ A are dependent.
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@ Transform the conditions into a graph!
@ For each integers in [0, 7], add a vertex with that integer.
@ Then connect two vertices if add up to 3 or 7.

Example i =3,/ =7:

_0

7 1
\
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Solution: Use Graphs!

@ Transform the conditions into a graph!
@ For each integers in [0, 7], add a vertex with that integer.
@ Then connect two vertices if add up to 3 or 7.

Example i =3,/ =7:

_0
7 1
\
6ﬂ2 Untangle graph —> 7—0—3—4
5 3
4~ 6 —1 —2—5

@ One-to-one correspondence between conditions/edges
(and integers/vertices).
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Interpretation of Graphs

Transformed into:

7—0—3—4 6—1—2—5

@ Need to pick integers so that each condition is satisfied.

@ Therefore, need to pick vertices so that each edge has a
vertex chosen.

@ So need to pick a vertex cover!

BA
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Vertex Covers

Have:
7—0—3—4 6 —1—2—5
Example:
7,0,4 and 6, 2 form a vertex cover
—

§7,0,4,6,2¢ A then3,7 ¢ A+ A

Lemma (Lazarev-Miller)

P(i,j ¢ A+ A) = P(pick a vertex cover for graph).
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Condition graphs are always ‘segment’ graphs. So we just need
g(n), the number of vertex covers for a ‘segment’ graph with n
vertices.
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Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need
g(n), the number of vertex covers for a ‘segment’ graph with n
vertices.

@ Case 1: If the first vertex is chosen:
X —?2—?2—2 —?

Need an vertex cover for the rest of the graph: g(n—1).

@ Case 2: If the first vertex is not chosen:
0O — X —?2—°?2—27?

Need an vertex cover for the rest of the graph: g(n — 2).
@ Fibonacci recursive relationship!

g(n)=g(n-1)+g(n-2)
9(1)=2=F3,9(2)=3=F
= g(n) = Fpi2
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General /,j

@ In particular

1 1
P(3 and 7 ¢ A+ A) 28 F4+2F4+2 = Z
since there were two graphs each of length 4.
@ Foroddi<j<n:

P(A:iandj ¢ A+ A)
LF% ((/ ’)PHW (;+1)) F% (j+1—(j—i)[%D

2/+1 2[’*‘%2 % 2[@%4

@ Ingeneral P(kand k +1 ¢ A+ A) < C(¢/2)K ~ 0.81%,
giving upper bound.
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Variance Formula

y

VarlA+ Al = —40+4 > P(i,j g A+ A)

i<j<n
= —40 + 0(c")
13 (u-n[E]-n) %(/’+1—(/'—i)H_1iD

+4 __F \

i,jzo:dd 2t o[ 42 2“%1:]*4
¥ R F%((/ffq)[ﬁf‘,]f(m)u[%w4)[__;(j+1 (j—i—1)H+—J’-]—2[‘7

i even,j odd o 2’7%]“ 2“%H+2 2“*”+4

1 ‘é((jqq)(%] (r+1)+2“2ji‘]72)’__%( —G-i-n[ hz[/j‘

P> ﬁip/ﬁ]i[w]ﬁ o[ F1] 4

i odd,j even J—i J—i j—i

4 Foi

oot 1) vl )
Fz”%ﬂw Fz”*T‘I]M
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Variance Formula

y

Var|A+ Al = —40+4 > P(i,j ¢ A+ A)

i<j<n
= —40 + O(c™)
13 (u-n[E]-n) %(/’+1—(/'—i)H_1iD
+4 —F \
PRI E A
1 %((/44)[%]4#1)%[%}71) ;(m (j—i—1)H+—J’-]—2[‘7
+4 T Fo 2] P Fafi s
i even,] odd 2 Z{ﬁ%‘ 2[ [ ] 42 [£4]+
1 ‘é((jqq)(%] (r+1)+2“2ji‘]72) %( —G-i-n[ hz[/j‘
4> ﬁF 2+ For i, F 1] 4
i 0dd,j even 2{7?:*1 [ ]+ b=
4 F.:
F%((sz)[,’%‘] (:+1)+2[’/2+‘%zp/j%‘]fs)F%(Hz—(/fifz){%u{’/f%ﬂ] W*I‘H)
2”%‘,%2 2”%%4
So clearly

Var|A+ A| ~ 35.98.
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Consecutive Missing Sums in A+A

@ Will study the particular case of P(ay,--- ,a; ¢ A+ A) of
consecutive missing sums: P(k,k+1,--- ,k+i ¢ A+ A).
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Consecutive Missing Sums in A+A

@ Will study the particular case of P(ay,--- ,a; ¢ A+ A) of
consecutive missing sums: P(k,k+1,--- ,k+i ¢ A+ A).
@ Example: P(16,17,18,19,20 ¢ A+ A)

Start with original graph and remove some conditions (edges):

0 1. . 2 3 4 5 6 7 8

T ABAIHIATILILIEIIIN

20 19 18 17 16 15 14 13 12 11 —46— 9

= Transforms to:

0 1 2 3 4 5 6 7

8
XKL IR )RR
20 19 18 17 16 15 14 13 12 11 10 9
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@ So have 3 complete bipartite graphs like:
0 1 2
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Consecutive Missing Sums in A+A

@ So have 3 complete bipartite graphs like:
0 1 2
\ 8>0<g \
18 17 16

@ To get a vertex cover, need to have all vertices from one

side chosen; occurs with probability < 3 + 1 = 1.
e By independence, P(16,17,18,19,20) < (1)° ~ (1)%°.
@ In general,

P(k,k+1,k+2,k+ 3,k +4) < (1)“T/® < 0.79k+4,
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@ Most general case is:
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@ But the trivial lower bound is:

(D2 < Pk k41, k+ig A+ A).
@ Why interesting? Bounds almost match!
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Consecutive Missing Sums

@ Most general case is:

Pk k+1, k+ig A+ A) < (12 (1 + ek
@ But the trivial lower bound is:

(D)2 <Pk k+1, k+i¢ A+ A).
@ Why interesting? Bounds almost match!

@ Essentially the only way to miss a block of i consecutive
sums is to miss all elements before the block as well.




Conclusion
[ ]

Summary

Use graph theory to study P(ay,---, and an ¢ A+ A).

Currently investigating:
@ Is distribution of missing sums approximately exponential?
@ Higher moments: third moment involves P(i,j, k ¢ A+ A),
with more complicated graphs.
@ Distribution of A — A.




Conclusion
[ ]

Summary

Use graph theory to study P(ay,---, and an ¢ A+ A).

Currently investigating:
@ Is distribution of missing sums approximately exponential?
@ Higher moments: third moment involves P(i,j, k ¢ A+ A),
with more complicated graphs.
@ Distribution of A — A.

Thank you!

CANT 2012
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