Elliptic Curves and L-functions

Steven J Miller Williams College

Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller

Wellesley College, February 2, 2010

Acknowledgements

- Much of this is joint and current work with Eduardo Dueñez, Duc Khiem Huynh, Jon Keating and Nina Snaith.
- Computer programs written with Adam O'Brien, Jon Hsu, Leo Goldmahker, Stephen Lu and Mike Rubinstein.

Conclusions

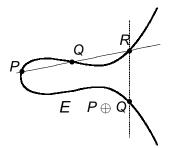
Outline

- Review elliptic curves and *L*-functions.
- Introduce relevant RMT ensembles.
- Reconcile theory and data.

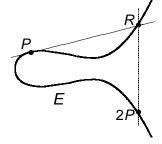
Elliptic Curves and *L*-functions

Mordell-Weil Group

Elliptic curve $y^2 = x^3 + ax + b$ with rational solutions $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ and connecting line y = mx + b.



Addition of distinct points P and Q



Adding a point P to itself

$$E(\mathbb{Q}) \approx E(\mathbb{Q})_{\mathsf{tors}} \oplus \mathbb{Z}^r$$

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}, \text{ Re}(s) > 1.$$

6

Riemann Zeta Function

Elliptic Curves and L-functions

00000

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}, \text{ Re}(s) > 1.$$

Unique Factorization: $n = p_1^{r_1} \cdots p_m^{r_m}$.

Riemann Zeta Function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}, \quad \text{Re}(s) > 1.$$

Unique Factorization: $n = p_1^{r_1} \cdots p_m^{r_m}$.

$$\prod_{p} \left(1 - \frac{1}{p^s} \right)^{-1} = \left[1 + \frac{1}{2^s} + \left(\frac{1}{2^s} \right)^2 + \cdots \right] \left[1 + \frac{1}{3^s} + \left(\frac{1}{3^s} \right)^2 + \cdots \right]$$

$$= \sum_{p} \frac{1}{p^s}.$$

R

Riemann Zeta Function (cont)

$$\zeta(s) = \sum_{n} \frac{1}{n^{s}} = \prod_{p} \left(1 - \frac{1}{p^{s}}\right)^{-1}, \quad \text{Re}(s) > 1$$

$$\pi(x) = \#\{p : p \text{ is prime}, p \le x\}$$

Properties of $\zeta(s)$ and Primes:

O

Elliptic Curves and L-functions

$$\zeta(s) = \sum_{n} \frac{1}{n^{s}} = \prod_{p} \left(1 - \frac{1}{p^{s}}\right)^{-1}, \text{ Re}(s) > 1$$

 $\pi(x) = \#\{p : p \text{ is prime}, p \le x\}$

Properties of $\zeta(s)$ and Primes:

• $\lim_{s\to 1^+} \zeta(s) = \infty$, $\pi(x) \to \infty$.

Riemann Zeta Function (cont)

Elliptic Curves and L-functions

$$\zeta(s) = \sum_{n} \frac{1}{n^{s}} = \prod_{p} \left(1 - \frac{1}{p^{s}}\right)^{-1}, \text{ Re}(s) > 1$$

 $\pi(x) = \#\{p : p \text{ is prime}, p \le x\}$

Properties of $\zeta(s)$ and Primes:

- $\lim_{s\to 1^+} \zeta(s) = \infty$, $\pi(x) \to \infty$.
- $\zeta(2) = \frac{\pi^2}{6}, \pi(x) \to \infty.$

Riemann Zeta Function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}, \quad \text{Re}(s) > 1.$$

Functional Equation:

$$\xi(s) = \Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}}\zeta(s) = \xi(1-s).$$

Riemann Hypothesis (RH):

All non-trivial zeros have $Re(s) = \frac{1}{2}$; can write zeros as $\frac{1}{2} + i\gamma$.

General *L*-functions

$$L(s, f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s} = \prod_{p \text{ prime}} L_p(s, f)^{-1}, \quad \text{Re}(s) > 1.$$

Functional Equation:

$$\Lambda(s,f) = \Lambda_{\infty}(s,f)L(s,f) = \Lambda(1-s,f).$$

Generalized Riemann Hypothesis (GRH):

All non-trivial zeros have $Re(s) = \frac{1}{2}$; can write zeros as $\frac{1}{2} + i\gamma$.

Elliptic curve L-function

Elliptic Curves and L-functions

$$E: y^2 = x^3 + ax + b$$
, associate L-function

$$L(s,E) = \sum_{n=1}^{\infty} \frac{a_E(n)}{n^s} = \prod_{p \text{ prime}} L_E(p^{-s}),$$

where

$$a_E(p) = p - \#\{(x,y) \in (\mathbb{Z}/p\mathbb{Z})^2 : y^2 \equiv x^3 + ax + b \bmod p\}.$$

Elliptic curve L-function

Elliptic Curves and L-functions

 $E: v^2 = x^3 + ax + b$, associate L-function

$$L(s,E) = \sum_{n=1}^{\infty} \frac{a_E(n)}{n^s} = \prod_{p \text{ prime}} L_E(p^{-s}),$$

where

$$a_E(p) = p - \#\{(x,y) \in (\mathbb{Z}/p\mathbb{Z})^2 : y^2 \equiv x^3 + ax + b \bmod p\}.$$

Birch and Swinnerton-Dyer Conjecture

Rank of group of rational solutions equals order of vanishing of L(s, E) at s = 1/2.

Classical Random Matrix Theory

Fundamental Problem: Spacing Between Events

General Formulation: Studying system, observe values at t_1 , t_2 , t_3, \ldots

Question: What rules govern the spacings between the t_i ?

Examples:

- Spacings b/w Energy Levels of Nuclei.
- Spacings b/w Eigenvalues of Matrices.
- Spacings b/w Primes.
- Spacings b/w $n^k \alpha$ mod 1.
- Spacings b/w Zeros of L-functions.

Sketch of proofs

In studying many statistics, often three key steps:

- Determine correct scale for events.
- Develop an explicit formula relating what we want to study to something we understand.
- Use an averaging formula to analyze the quantities above.

It is not always trivial to figure out what is the correct statistic to study!

Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.

Classical Mechanics: 3 Body Problem Intractable.

Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.

Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into nucleus, see what comes out.

Origins of Random Matrix Theory

Classical Mechanics: 3 Body Problem Intractable.

Heavy nuclei (Uranium: 200+ protons / neutrons) worse!

Get some info by shooting high-energy neutrons into nucleus, see what comes out.

Fundamental Equation:

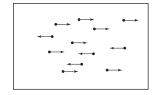
$$H\psi_n = E_n\psi_n$$

H: matrix, entries depend on system

 E_n : energy levels

 ψ_n : energy eigenfunctions

Origins (continued)



- Statistical Mechanics: for each configuration, calculate quantity (say pressure).
- Average over all configurations most configurations close to system average.
- Nuclear physics: choose matrix at random, calculate eigenvalues, average over matrices (real Symmetric $A = A^T$, complex Hermitian $\overline{A}^T = A$).

Conclusions

Elliptic Curves and L-functions

$$A = \left(egin{array}{ccccc} a_{11} & a_{12} & a_{13} & \cdots & a_{1N} \ a_{12} & a_{22} & a_{23} & \cdots & a_{2N} \ dots & dots & dots & dots & dots \ a_{1N} & a_{2N} & a_{3N} & \cdots & a_{NN} \end{array}
ight) = A^T, \quad a_{ij} = a_{ji}$$

Fix p, define

$$\mathsf{Prob}(A) = \prod_{1 < i < j < N} p(a_{ij}).$$

This means

$$\mathsf{Prob}\left(\mathsf{A}: \mathsf{a}_{ij} \in [\alpha_{ij}, \beta_{ij}]\right) = \prod_{1 < i < N} \int_{\mathsf{x}_{ij} = \alpha_{ij}}^{\beta_{ij}} \mathsf{p}(\mathsf{x}_{ij}) d\mathsf{x}_{ij}.$$

Eigenvalue Distribution

$$\delta(x - x_0)$$
 is a unit point mass at x_0 :
$$\int_{-\infty}^{\infty} f(x)\delta(x - x_0)dx = f(x_0).$$

Eigenvalue Distribution

Elliptic Curves and L-functions

$$\delta(x - x_0)$$
 is a unit point mass at x_0 :
$$\int_{-\infty}^{\infty} f(x)\delta(x - x_0)dx = f(x_0).$$

To each A, attach a probability measure:

$$\mu_{A,N}(x) = \frac{1}{N} \sum_{i=1}^{N} \delta\left(x - \frac{\lambda_i(A)}{2\sqrt{N}}\right)$$

$$\int_{a}^{b} \mu_{A,N}(x) dx = \frac{\#\left\{\lambda_i : \frac{\lambda_i(A)}{2\sqrt{N}} \in [a,b]\right\}}{N}$$

$$k^{\text{th moment}} = \frac{\sum_{i=1}^{N} \lambda_i(A)^k}{2^k N^{\frac{k}{2}+1}}.$$

Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but it is the matrix elements that are chosen randomly and independently.

Eigenvalue Trace Lemma

Elliptic Curves and L-functions

Want to understand the eigenvalues of A, but it is the matrix elements that are chosen randomly and independently.

Eigenvalue Trace Lemma

Let A be an $N \times N$ matrix with eigenvalues $\lambda_i(A)$. Then

Trace
$$(A^k) = \sum_{n=1}^N \lambda_i(A)^k$$
,

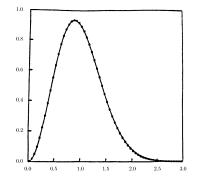
where

Trace
$$(A^k) = \sum_{i_1=1}^N \cdots \sum_{i_k=1}^N a_{i_1 i_2} a_{i_2 i_3} \cdots a_{i_N i_1}.$$

Results, Questions and Conjectures

Zeros of $\zeta(s)$ vs GUE

Elliptic Curves and L-functions



70 million spacings b/w adjacent zeros of $\zeta(s)$, starting at the 10^{20th} zero (from Odlyzko) versus RMT prediction.

Elliptic Curves and L-functions

1-Level Density

L-function L(s, f): by RH non-trivial zeros $\frac{1}{2} + i\gamma_{f,j}$. C_f : analytic conductor.

 $\varphi(x)$: compactly supported even Schwartz function.

$$D_{1,f}(\varphi) = \sum_{i} \varphi\left(\frac{\log C_f}{2\pi}\gamma_{f,i}\right)$$

1-Level Density

Elliptic Curves and L-functions

L-function L(s, f): by RH non-trivial zeros $\frac{1}{2} + i\gamma_{f,i}$. C_f : analytic conductor.

 $\varphi(x)$: compactly supported even Schwartz function.

$$D_{1,f}(\varphi) = \sum_{j} \varphi\left(\frac{\log C_f}{2\pi}\gamma_{f,j}\right)$$

- individual zeros contribute in limit
- most of contribution is from low zeros

Elliptic Curves and L-functions

L-function L(s, f): by RH non-trivial zeros $\frac{1}{2} + i\gamma_{f,j}$.

 C_f : analytic conductor.

 $\varphi(x)$: compactly supported even Schwartz function.

$$D_{1,f}(\varphi) = \sum_{i} \varphi \left(\frac{\log C_f}{2\pi} \gamma_{f,j} \right)$$

- individual zeros contribute in limit
- most of contribution is from low zeros

Katz-Sarnak Conjecture:

$$D_{1,\mathcal{F}}(\varphi) = \lim_{N\to\infty} \frac{1}{|\mathcal{F}_N|} \sum_{f\in\mathcal{F}_N} D_{1,f}(\varphi) = \int \varphi(x) \rho_{G(\mathcal{F})}(x) dx.$$

Comparing the RMT Models

Theorem: M-'04

For small support, one-param family of rank r over $\mathbb{Q}(T)$:

$$\lim_{N\to\infty} \frac{1}{|\mathcal{F}_N|} \sum_{E_t \in \mathcal{F}_N} \sum_{i} \varphi\left(\frac{\log C_{E_t}}{2\pi} \gamma_{E_t, i}\right) = \int \varphi(x) \rho_{\mathcal{G}}(x) dx + r\varphi(0)$$

where

$$\mathcal{G} = \left\{ egin{array}{ll} \mathsf{SO} & \text{if half odd} \\ \mathsf{SO}(\mathsf{even}) & \text{if all even} \\ \mathsf{SO}(\mathsf{odd}) & \text{if all odd} \end{array}
ight.$$

Confirm Katz-Sarnak, B-SD predictions for small support.

Supports Independent and not Interaction model in the limit.

Sketch of Proof

- Explicit Formula: Relates sums over zeros to sums over primes.
- Averaging Formulas: Orthogonality of characters, Petersson formula.
- Control of conductors: Monotone.

Conclusions

Elliptic Curves and L-functions

$$-\frac{\zeta'(s)}{\zeta(s)} = -\frac{d}{ds}\log\zeta(s) = -\frac{d}{ds}\log\prod_{p} (1-p^{-s})^{-1}$$

$$\begin{aligned}
-\frac{\zeta'(s)}{\zeta(s)} &= -\frac{d}{ds}\log\zeta(s) = -\frac{d}{ds}\log\prod_{p} (1-p^{-s})^{-1} \\
&= \frac{d}{ds}\sum_{p}\log(1-p^{-s}) \\
&= \sum_{p} \frac{\log p \cdot p^{-s}}{1-p^{-s}} = \sum_{p} \frac{\log p}{p^{s}} + \operatorname{Good}(s).
\end{aligned}$$

Explicit Formula (Contour Integration)

$$\begin{aligned}
-\frac{\zeta'(s)}{\zeta(s)} &= -\frac{d}{ds}\log\zeta(s) = -\frac{d}{ds}\log\prod_{p}\left(1 - p^{-s}\right)^{-1} \\
&= \frac{d}{ds}\sum_{p}\log\left(1 - p^{-s}\right) \\
&= \sum_{p}\frac{\log p \cdot p^{-s}}{1 - p^{-s}} = \sum_{p}\frac{\log p}{p^{s}} + \operatorname{Good}(s).
\end{aligned}$$

Contour Integration:

$$\int -\frac{\zeta'(s)}{\zeta(s)} \phi(s) ds \quad \text{vs} \quad \sum_{p} \log p \int \phi(s) p^{-s} ds.$$

Explicit Formula (Contour Integration)

Elliptic Curves and L-functions

$$\begin{split} -\frac{\zeta'(s)}{\zeta(s)} &= -\frac{\mathrm{d}}{\mathrm{d}s}\log\zeta(s) = -\frac{\mathrm{d}}{\mathrm{d}s}\log\prod_{p}\left(1-p^{-s}\right)^{-1} \\ &= \frac{\mathrm{d}}{\mathrm{d}s}\sum_{p}\log\left(1-p^{-s}\right) \\ &= \sum_{p}\frac{\log p \cdot p^{-s}}{1-p^{-s}} = \sum_{p}\frac{\log p}{p^{s}} + \mathrm{Good}(s). \end{split}$$

Contour Integration (see Fourier Transform arising):

$$\int -\frac{\zeta'(s)}{\zeta(s)} \; \phi(s) ds \quad \text{vs} \quad \sum_{p} \frac{\log p}{p^{\sigma}} \int \phi(s) e^{-it \log p} ds.$$

Knowledge of zeros gives info on coefficients.

Explicit Formula: Examples

Elliptic Curves and L-functions

Cuspidal Newforms: Let \mathcal{F} be a family of cupsidal newforms (say weight k, prime level N and possibly split by sign) $L(s, f) = \sum_{n} \lambda_f(n)/n^s$. Then

$$\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \sum_{\gamma_f} \phi\left(\frac{\log R}{2\pi} \gamma_f\right) = \widehat{\phi}(0) + \frac{1}{2} \phi(0) - \frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} P(f; \phi) + O\left(\frac{\log \log R}{\log R}\right) \\
+ O\left(\frac{\log \log R}{\log R}\right) \\
P(f; \phi) = \sum_{p \mid N} \lambda_f(p) \widehat{\phi}\left(\frac{\log p}{\log R}\right) \frac{2 \log p}{\sqrt{p} \log R}.$$

RMT: Theoretical Results ($N \to \infty$)

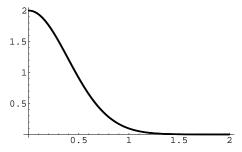


Figure 1a: 1st norm. evalue above 1: SO(even)

RMT: Theoretical Results ($N \to \infty$)

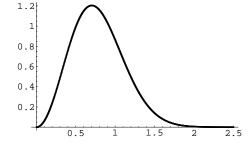


Figure 1b: 1st norm. evalue above 1: SO(odd)

Rank 0 Curves: 1st Normalized Zero above Central Point

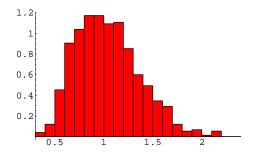


Figure 2a: 750 rank 0 curves from $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$. $log(cond) \in [3.2, 12.6]$, median = 1.00 mean = 1.04, $\sigma_u = .32$

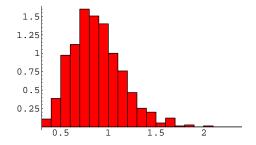
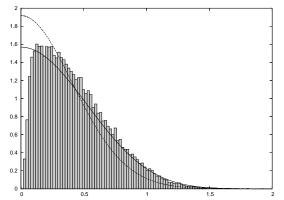


Figure 2b: 750 rank 0 curves from $y^2+a_1xy+a_3y=x^3+a_2x^2+a_4x+a_6.$ $\log(\mathrm{cond})\in[12.6,14.9],$ median =.85, mean =.88, $\sigma_{\mu}=.27$

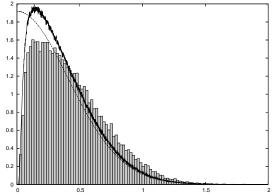
Modeling lowest zero of $L_{E_{11}}(s, \chi_d)$ with 0 < d < 400,000



Lowest zero for $L_{E_{11}}(s,\chi_d)$ (bar chart), lowest eigenvalue of SO(2N) with N_{eff} (solid), standard N_0 (dashed).

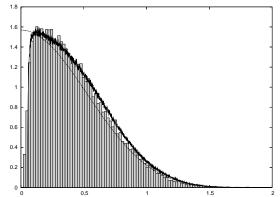
Conclusions

Modeling lowest zero of $L_{E_{11}}(s, \chi_d)$ with 0 < d < 400,000



Lowest zero for $L_{E_{11}}(s, \chi_d)$ (bar chart), lowest eigenvalue of SO(2N) with $N_0 = 12$ (solid) with discretisation and with standard $N_0 = 12.26$ (dashed) without discretisation.

Modeling lowest zero of $L_{E_{11}}(s, \chi_d)$ with 0 < d < 400,000



Lowest zero for $L_{E_{11}}(s, \chi_d)$ (bar chart), lowest eigenvalue of SO(2N) effective N of $N_{\rm eff}$ = 2 (solid) with discretisation and with effective N of $N_{\rm eff}$ = 2.32 (dashed) without discretisation.

Conclusions

- L-functions encode arithmetic.
- Understand behavior as conductors tend to infinity.
- New random matrix model (incorporates arithmetic and discretization).
- Similarities between L-Functions and Nuclei:

Zeros ←→ Energy Levels

Schwartz test function \longrightarrow Neutron

Support of test function \longleftrightarrow Neutron Energy.

References

Caveat: this bibliography is only meant to be a first reference.

B. Bektemirov, B. Mazur and M. Watkins, Average Ranks of Elliptic Curves, preprint.

B. Birch and H. Swinnerton-Dyer, Notes on elliptic curves. I, J. reine angew. Math. **212**, 1963, 7 – 25.

B. Birch and H. Swinnerton-Dyer, Notes on elliptic curves. II, J. reine angew. Math. **218**, 1965, 79 – 108.

C. Breuil, B. Conrad, F. Diamond and R. Taylor, On the modularity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc. **14**, no. 4, 2001, 843 – 939.

A. Brumer, The average rank of elliptic curves I, Invent. Math. **109**, 1992, 445 – 472.

A. Brumer and R. Heath-Brown, The average rank of elliptic curves III, preprint.

A. Brumer and R. Heath-Brown, The average rank of elliptic curves V, preprint.

A. Brumer and O. McGuinness, The behaviour of the Mordell-Weil group of elliptic curves, Bull. AMS 23, 1991, 375 - 382.

J. Coates and A. Wiles, On the conjecture of Birch and Swinnterton-Dyer, Invent. Math. **39**, 1977, 43 – 67.

Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press, 1992.

F. Diamond, On deformation rings and Hecke rings, Ann. Math. **144**. 1996. 137 – 166.

S. Fermigier, Zéros des fonctions L de courbes elliptiques, Exper. Math. 1, 1992, 167 – 173.

S. Fermigier, Étude expérimentale du rang de familles de courbes elliptiques sur \mathbb{O} , Exper. Math. 5, 1996, 119 – 130.

E. Fouvrey and J. Pomykala, Rang des courbes elliptiques et sommes d'exponentelles, Monat. Math. **116**, 1993, 111 – 125.

F. Gouvéa and B. Mazur, The square-free sieve and the rank of *elliptic curves*, J. Amer. Math. Soc. **4**, 1991, 45 – 65.

D. Goldfeld, *Conjectures on elliptic curves over quadratic fields*, Number Theory (Proc. Conf. in Carbondale, 1979), Lecture Notes in Math. **751**, Springer-Verlag, 1979, 108 – 118.

H. Iwaniec, W. Luo and P. Sarnak, *Low lying zeros of families of L-functions*, Inst. Hautes Études Sci. Publ. Math. **91**, 2000, 55 – 131.

A. Knapp, *Elliptic Curves*, Princeton University Press, Princeton, 1992.

N. Katz and P. Sarnak, *Random Matrices, Frobenius Eigenvalues and Monodromy*, AMS Colloquium Publications **45**, AMS, Providence, 1999.

N. Katz and P. Sarnak, *Zeros of zeta functions and symmetries*, Bull. AMS **36**, 1999, 1 – 26.

V. Kolyvagin, *On the Mordell-Weil group and the Shafarevich-Tate group of modular elliptic curves*, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), Math. Soc. Japan, Tokyo, 1991, 429 – 436.

L. Mai, *The analytic rank of a family of elliptic curves*, Canadian Journal of Mathematics **45**, 1993, 847 – 862.

J. Mestre, Formules explicites et minorations de conducteurs de variétés algébriques, Compositio Mathematica $\bf 58$, 1986, 209-232.

J. Mestre, Courbes elliptiques de rang \geq 11 sur $\mathbf{Q}(t)$, C. R. Acad. Sci. Paris, ser. 1, **313**, 1991, 139 – 142.

J. Mestre, Courbes elliptiques de rang \geq 12 sur $\mathbf{Q}(t)$, C. R. Acad. Sci. Paris, ser 1, 313, 1991, 171 – 174.

P. Michel, Rang moyen de familles de courbes elliptiques et lois de Sato-Tate, Monat. Math. **120**, 1995, 127 – 136.

S. J. Miller, 1- and 2-Level Densities for Families of Elliptic Curves: Evidence for the Underlying Group Symmetries, P.H.D. Thesis, Princeton University, 2002, http://www.math.princeton.edu/~similler/thesis/thesis.pdf.

S. J. Miller, 1- and 2-level densities for families of elliptic curves: evidence for the underlying group symmetries, Compositio Mathematica **140** (2004), 952-992.

S. J. Miller, Variation in the number of points on elliptic curves and applications to excess rank, C. R. Math. Rep. Acad. Sci. Canada **27** (2005), no. 4, 111–120.

S. J. Miller, Investigations of zeros near the central point of elliptic curve L-functions (with an appendix by E. Dueñez), Experimental Mathematics **15** (2006), no. 3, 257–279.

K. Nagao, Construction of high-rank elliptic curves, Kobe J. Math. **11**, 1994, 211 – 219.

K. Nagao, $\mathbb{Q}(t)$ -rank of elliptic curves and certain limit coming from the local points, Manuscr. Math. **92**, 1997, 13 - 32.

Rizzo, Average root numbers for a non-constant family of elliptic curves, preprint.

D. Rohrlich, *Variation of the root number in families of elliptic curves*, Compos. Math. **87**, 1993, 119 – 151.

M. Rosen and J. Silverman, *On the rank of an elliptic surface*, Invent. Math. **133**, 1998, 43 – 67.

M. Rubinstein, *Evidence for a spectral interpretation of the zeros of L-functions*, P.H.D. Thesis, Princeton University, 1998, http://www.ma.utexas.edu/users/miker/thesis/thesis.html.

Z. Rudnick and P. Sarnak, *Zeros of principal L-functions and random matrix theory*, Duke Journal of Math. **81**, 1996, 269 – 322.

T. Shioda, Construction of elliptic curves with high-rank via the invariants of the Weyl groups, J. Math. Soc. Japan **43**, 1991,

J. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics 106, Springer-Verlag, Berlin - New York, 1986.

J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics 151, Springer-Verlag, Berlin - New York, 1994.

J. Silverman, The average rank of an algebraic family of elliptic *curves*, J. reine angew. Math. **504**, 1998, 227 – 236.

N. Snaith. Derivatives of random matrix characteristic polynomials with applications to elliptic curves, preprint.

C. Stewart and J. Top, On ranks of twists of elliptic curves and power-free values of binary forms, Journal of the American Mathematical Society 40, number 4, 1995.

R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. Math. 141, 1995, 553 – 572.

A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. Math **141**, 1995, 443 — 551.

M. Young, Lower order terms of the 1-level density of families of elliptic curves, IMRN 10 (2005), 587–633.

M. Young, Low-Lying Zeros of Families of Elliptic Curves, JAMS, to appear.

D. Zagier and G. Kramarz, Numerical investigations related to the L-series of certain elliptic curves, J. Indian Math. Soc. **52** (1987), 51 - 69.