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Motivation

Erdős’ Distinct Distances Problem: Starting with n points, what
is the minimum number of distinct distances determined by these
points?

Distances of specified multiplicities: Given a set of n − 1 distinct
distances, can n points be arranged such that for each 1 ≤ i ≤ n− 1,
there is exactly one of n − 1 distances occuring i times?
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Motivation

Construction on n = 4 with no restrictions:
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What if we impose restrictions to avoid ”uninteresting” cases?
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Crescent Configurations

Crescent Configurations

Crescent Configuration (Burt et. al. 2015): We say n points are in
crescent configuration (in Rd ) if they lie in general position in Rd and
determine n − 1 distinct distances, such that for every 1 ≤ i ≤ n − 1
there is a distance that occurs exactly i times.

General Position: We say that n points are in general position in Rd if
no d+1 points lie on the same hyperplane and no d+2 lie on the same
hypersphere.

Erdős’ Conjecture (1989): There exists N sufficiently large such that no
crescent configuration exists on N points.
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Crescent Configurations

Constructions for n = 5, 6, 7 and 8

Due to Erdős, Pomerance and Palásti (1989)
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The Approach

Distance Coordinate: Given a set of points P, the distance
coordinate, DA, of a point A ∈ P is the set of all distances, counting
multiplicity, between A and the other points in P.

Distance Set: The distance set, D, corresponding to P is the set of
the distance coordinates of the points in P.

DA = {d2, d2, d3};
DB = {d1, d2, d3};
DC = {d1, d2, d3};
DD = {d3, d3, d3};

D = {DA, DB , DC , DD}.
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Graph Isomorphism of Crescent Configurations

Theorem (Durst-Hlavacek-Huynh-Miller-Palsson 2016)
Let A and B be two crescent configurations on the same number of
points n. If A and B have the same distance sets, then there exists a
graph isomorphism A→ B.
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Graph Isomorphism Example


0 d3 d1 d3
d3 0 d2 d3
d1 d2 0 d2
d3 d3 d2 0

 ∼=


0 d3 d3 d2
d3 0 d3 d1
d3 d3 0 d2
d2 d1 d2 0
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Graph Isomorphism Example
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d3 0 d2 d3
d1 d2 0 d2
d3 d3 d2 0
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0 d3 d3 d2
d3 0 d3 d1
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Initial Result

For a set of 3 distinct distances on 4 points: Generation of 60
possible adjacency matrices graph−−−−−−−→

isomorphism
decrease to 4 potential

configuration classes

For a set of 4 distinct distances on 5 points: Generation of 12, 600
adjacency matrices graph−−−−−−−→

isomorphism
decrease to 85 potential

configuration classes.

Which candidate is geometrically realizable?
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The Question of Geometric Realizability

Distance Geometry Problem: If we are given a set of distances
between points, what can we find out about the relative position of
these points?
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Cayley-Menger Matrices

Cayley-Menger Matrix: The Cayley-Menger matrix for a set of n points
{P1, P2, . . . Pn} is an (n + 1)× (n + 1) matrix of the following form:

0 d2
1,2 . . . d2

1,n 1
d2

2,1 0 . . . d2
2,n 1

...
...

. . .
...

...
d2

n,1 d2
n,2 . . . 0 1

1 1 . . . 1 0


where di,j is the distance between Pi and Pj .
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Cayley-Menger and Geometric realizability

Theorem (Sommerville 1958)
A distance set corresponding to 4 points is geometrically realizable in R2

if and only if the Cayley-Menger matrix is not invertible.
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Example



A B C D
A 0 13 13 3 1
B 13 0 4 4 1
C 13 4 0 4 1
D 3 4 4 0 1

1 1 1 1 0
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Solutions for a Given Crescent Configuration Type
Suppose we are given a distance set with the multiplicities of the
distances specified, but we are not given values for the distances.
We can fix one of the unknown distances and use Cayley-Menger
determinants to find a system of equations that yields geometrically
realizable distances.

Figure: Possible values for d2, d3 for the M-type when d1 = 1
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n = 4

All Configurations on Four and Five Points

Theorem (Durst-Hlavacek-Huynh-Miller-Palsson 2016)
Given a set of three distinct distances, {d1, d2, d3}, on four points , there
are only three allowable crescent configurations up to graph isomorphism.

We label these M-type, C-type, and R-type, respectively.
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n = 5

Theorem (Durst-Hlavacek-Huynh-Miller-Palsson 2016)
Given a set of four distinct distances, {d1, d2, d3, d4}, on five points ,
there are only 27 allowable crescent configurations up to graph
isomorphism.
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The Uniqueness Question

Given a particular isomorphism class of crescent configurations on n
points, how many realizations of the associated distance set could we
construct?
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Graph Theoretic Background

Inspiration from the Molecule Problem

Figure: Two Realizations of a Flexible Graph1

The Molecule Problem: given a set of distance measurements
between points in Euclidean space, can we find the appropriate
realization? → NP-hard
More generally: Graph realization (how many arrangements?) and
rigidity (can we distort the arrangements?)

1B. Hendrickson. Conditions for Unique Graph Realization. SIAM Journal of
Computing . 21(1). 64–84, Feb. 1992
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Graph Theoretic Background

Laman’s Condition for Graph Rigidity

Definition (Graph rigidity - Asimow and Roth 1978)
Let G be a graph (V , E ) on v vertices in Rn then G(p) is G together
with the point p = (p1, p2, . . . , pv ) ∈ Rn × Rn × Rn . . .Rn = Rnv . Let K
be the complete graph on v vertices. The graph G(p) is rigid in Rn if
there exists a neighbordhood U of p such that

e−1
K (eK (p)) ∩U = e−1

G (eG (p)) ∩U,

where eK and eG are the edge functions of K and G , which return the
distances of edges of the associated graphs.

Laman’s Condition (1970)
A graph with 2n − 3 edges is rigid in two dimensions if and only if no
subgraph G ′ has more than 2n′ − 3 edges.
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Graph Theoretic Background

Crescent Configurations are Rigid

For each n, any crescent configurations on n points is a complete
graph → It suffices to show that Kn is rigid for every n ∈ N

K1, K2 and K3 can be easily verified to satisfy Laman’s Condition.

For n ≥ 3: Kn is composed of K3 subgraphs (not necessarily
non-overlapping)

However, does the rigidity ranking differ between configurations?
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Graph Theoretic Background

Techniques and Terminologies
Frameworks: Flexible vs. Rigid vs. Redundantly Rigid

Gluck (1975): If a graph has a single rigid realization, then all its
generic realizations are rigid.

The Rigidity Matrix: Given a graph G with m vertices and n edges,
the d-dimensional rigidity matrix MG is a n × dm matrix such that:

The columns are indexed by the entries in the coordinate of each
vertex v = (v1, v2, . . . , vd ).
The rows are indexed by the edges
The entry in row e and column vi is:{

vi − wi if e = vw is incident to v
0 otherwise

Example: K3 with v1 = (0, 1), v2 = (−1, 0) and v3 = (1, 0) 1 1 −1 −1 0 0
−1 1 0 0 1 −1
0 0 −2 0 2 0
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Graph Theoretic Background

Theorem (Hendrickson 1992)
A framework f (G) is rigid if and only if its rigidity matrix has rank
exactly equal to S(n, d), which is the number of allowed motions, where:

S(n, d) =
{

nd − d(d+1)
2 for n ≥ d

n(n−1)
2 otherwise

Note: S(n, d) can also be used to determine whether a graph is
redundantly rigid, which in turn can be used to determine if there exists a
unique realization
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Analysis of Type R

Type R Realization

Figure: Realization obtained by fixing d1 = 1
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Analysis of Type R

Rigidity Analysis for Type R

Letting y =
√
−1 + 4x2, we get the rigidity matrix AR :



−x 0 x 0 0 0 0 0
−x
2

−x
y 0 0 x

2
x
y 0 0

−1
2x

−y
2x 0 0 0 0 1

2x
y

2x
0 0 x − x

2
−x
2y −x + x

2
x

2y 0 0
0 0 x − 1

2x
−y
2x 0 0 −x + 1

2x
y

2x
0 0 0 0 x

2 −
1

2x
x

2y −
y

2x
−x
2 + 1

2x
−x
2y + y

2x


Rank(AR) = 6 > S(4, 2) but when removing any row, rank of remaining
matrix is 5→ redundantly rigid
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Analysis of Type M

Type M Realizations

Figure: Two Realizations of Type M: M1 and M2
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Analysis of Type M

Rigidity Analysis for Type M

Rigidity matrix AM1

−2x 0 2x 0 0 0 0 0
−x −x

√
3 0 0 x x

√
3 0 0

−x −x
√

3− y 0 0 0 0 x x
√

3 + y
0 0 x −x

√
3 −x x

√
3 0 0

0 0 x −x
√

3− y 0 0 −x x
√

3 + y
0 0 0 0 0 −y 0 y


Rank(AM1 ) = 5 = S(4, 2)→ rigid
Same results for M2
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Future Work

Questions to explore

Improve the algorithm to find crescent configurations on higher n

Which distance sets can be realized in higher dimensions?

In addition to rigidity, which other properties of crescent
configurations can we explore?

Given a rigidity ranking, can we use the rigidity matrix to generate a
crescent configuration?
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