Introduction	Counting Crescent Configurations	Distance Geometry	Results	Rigidity Characterization	Thank You

Classification of All Crescent Configurations on Four and Five Points

Rebecca F. Durst, Max Hlavacek, Chi Huynh SMALL REU 2016 rfd1@williams.edu, nhuynh30@gatech.edu, mhlavacek@g.hmc.edu

AMS-MAA-SIAM Special Session on Research in Mathematics by Undergraduates and Students in Post-Baccalaureate Programs, III Joint Mathematics Meetings 2017 Atlanta, GA Jan 7th, 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	Counting Crescent Configurations	Distance Geometry 00000	Results 00	Rigidity Characterization	Thank You
Motiva	ation				

• Erdős' Distinct Distances Problem: Starting with *n* points, what is the minimum number of distinct distances determined by these points?

Distances of specified multiplicities: Given a set of n − 1 distinct distances, can n points be arranged such that for each 1 ≤ i ≤ n − 1, there is exactly one of n − 1 distances occuring i times?

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Introduction	Counting Crescent Configurations	Distance Geometry 00000	Results 00	Rigidity Characterization	
Motiva	ation				

Construction on n = 4 with no restrictions:

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Introduction	Counting Crescent Configurations	Distance Geometry	Results	Rigidity Characterization	Thank You
00	0000	00000	00	000000000	

What if we impose restrictions to avoid "uninteresting" cases?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction	Counting Crescent Configurations		Results	Rigidity Characterization	
•0					
Crescent Configura	itions				
Crescer	nt Configuration	S			

Crescent Configuration (Burt et. al. 2015): We say *n* points are in crescent configuration (in \mathbb{R}^d) if they lie in general position in \mathbb{R}^d and determine n-1 distinct distances, such that for every $1 \le i \le n-1$ there is a distance that occurs exactly *i* times.

General Position: We say that n points are in general position in \mathbb{R}^d if no d+1 points lie on the same hyperplane and no d+2 lie on the same hypersphere.

Introduction	Counting Crescent Configurations		Results	Rigidity Characterization	
0					
Crescent Configura	ations				
Crescer	nt Configuration	IS			

Crescent Configuration (Burt et. al. 2015): We say *n* points are in crescent configuration (in \mathbb{R}^d) if they lie in general position in \mathbb{R}^d and determine n-1 distinct distances, such that for every $1 \le i \le n-1$ there is a distance that occurs exactly *i* times.

General Position: We say that n points are in general position in \mathbb{R}^d if no d+1 points lie on the same hyperplane and no d+2 lie on the same hypersphere.

Erdős' Conjecture (1989): There exists N sufficiently large such that no crescent configuration exists on N points.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	Counting Crescent Configurations		Results	Rigidity Characterization	
00					
Crescent Configu	rations				
Constr	uctions for $n =$	5.6.7 and	8		

Due to Erdős, Pomerance and Palásti (1989)

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Introduction 00	Counting Crescent Configurations ●000	Distance Geometry 00000	Results 00	Rigidity Characterization	
The A	pproach				

Distance Coordinate: Given a set of points *P*, the distance coordinate, *D_A*, of a point *A* ∈ *P* is the set of all distances, counting multiplicity, between *A* and the other points in *P*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction 00	Counting Crescent Configurations	Distance Geometry 00000	Results 00	Rigidity Characterization	
The A	pproach				

- Distance Coordinate: Given a set of points *P*, the distance coordinate, *D_A*, of a point *A* ∈ *P* is the set of all distances, counting multiplicity, between *A* and the other points in *P*.
- **Distance Set:** The distance set, \mathcal{D} , corresponding to \mathcal{P} is the set of the distance coordinates of the points in \mathcal{P} .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction 00	Counting Crescent Configurations •000	Distance Geometry 00000	Results 00	Rigidity Characterization	
The A	pproach				

- Distance Coordinate: Given a set of points P, the distance coordinate, D_A, of a point A ∈ P is the set of all distances, counting multiplicity, between A and the other points in P.
- **Distance Set:** The distance set, \mathcal{D} , corresponding to \mathcal{P} is the set of the distance coordinates of the points in \mathcal{P} .

$$D_{A} = \{d_{2}, d_{2}, d_{3}\};$$

$$D_{B} = \{d_{1}, d_{2}, d_{3}\};$$

$$D_{C} = \{d_{1}, d_{2}, d_{3}\};$$

$$D_{D} = \{d_{3}, d_{3}, d_{3}\};$$

$$\mathcal{D} = \{D_{A}, D_{B}, D_{C}, D_{D}\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Counting Crescent Configurations	Distance Geometry	Results	Rigidity Characterization	Thank You
00	0000	00000	00	000000000	

Graph Isomorphism of Crescent Configurations

Theorem (Durst-Hlavacek-Huynh-Miller-Palsson 2016)

Let A and B be two crescent configurations on the same number of points n. If A and B have the same distance sets, then there exists a graph isomorphism $A \rightarrow B$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Introduction	Counting Crescent Configurations	Distance Geometry	Results	Rigidity Characterization	Thank You
00	0000	00000	00	000000000	

$$\begin{pmatrix} 0 & d_3 & d_1 & d_3 \\ d_3 & 0 & d_2 & d_3 \\ d_1 & d_2 & 0 & d_2 \\ d_3 & d_3 & d_2 & 0 \end{pmatrix} \cong \begin{pmatrix} 0 & d_3 & d_3 & d_2 \\ d_3 & 0 & d_3 & d_1 \\ d_3 & d_3 & 0 & d_2 \\ d_2 & d_1 & d_2 & 0 \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction	Counting Crescent Configurations	Distance Geometry	Results	Rigidity Characterization	Thank You
00	0000	00000	00	000000000	

$$\begin{pmatrix} 0 & d_3 & d_1 & d_3 \\ d_3 & 0 & d_2 & d_3 \\ d_1 & d_2 & 0 & d_2 \\ d_3 & d_3 & d_2 & 0 \end{pmatrix} \cong \begin{pmatrix} 0 & d_3 & d_3 & d_2 \\ d_3 & 0 & d_3 & d_1 \\ d_3 & d_3 & 0 & d_2 \\ d_2 & d_1 & d_2 & 0 \end{pmatrix}$$

Introduction	Counting Crescent Configurations	Distance Geometry	Results	Rigidity Characterization	Thank You
00	0000	00000	00	000000000	

$$\begin{pmatrix} 0 & d_3 & d_1 & d_3 \\ d_3 & 0 & d_2 & d_3 \\ d_1 & d_2 & 0 & d_2 \\ d_3 & d_3 & d_2 & 0 \end{pmatrix} \cong \begin{pmatrix} 0 & d_3 & d_3 & d_2 \\ d_3 & 0 & d_3 & d_1 \\ d_3 & d_3 & 0 & d_2 \\ d_2 & d_1 & d_2 & 0 \end{pmatrix}$$

▲□▶▲□▶▲≡▶▲≡▶ = 三 のへ⊙

Introduction	Counting Crescent Configurations	Distance Geometry	Results	Rigidity Characterization	Thank You
00	0000	00000	00	000000000	

$$\begin{pmatrix} 0 & d_3 & d_1 & d_3 \\ d_3 & 0 & d_2 & d_3 \\ d_1 & d_2 & 0 & d_2 \\ d_3 & d_3 & d_2 & 0 \end{pmatrix} \cong \begin{pmatrix} 0 & d_3 & d_3 & d_2 \\ d_3 & 0 & d_3 & d_1 \\ d_3 & d_3 & 0 & d_2 \\ d_2 & d_1 & d_2 & 0 \end{pmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Introduction	Counting Crescent Configurations	Distance Geometry	Results	Rigidity Characterization	Thank You
00	0000	00000	00	000000000	

$$\begin{pmatrix} 0 & d_3 & d_1 & d_3 \\ d_3 & 0 & d_2 & d_3 \\ d_1 & d_2 & 0 & d_2 \\ d_3 & d_3 & d_2 & 0 \end{pmatrix} \cong \begin{pmatrix} 0 & d_3 & d_3 & d_2 \\ d_3 & 0 & d_3 & d_1 \\ d_3 & d_3 & 0 & d_2 \\ d_2 & d_1 & d_2 & 0 \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction	Counting Crescent Configurations	Distance Geometry	Results	Rigidity Characterization	Thank You
	0000				
Initial	Result				

• For a set of 3 distinct distances on 4 points: Generation of 60 possible adjacency matrices $\xrightarrow[isomorphism]{graph}$ decrease to 4 potential configuration classes

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction 00	Counting Crescent Configurations	Distance Geometry 00000	Results 00	Rigidity Characterization	Thank You
Initial	Result				

- For a set of 4 distinct distances on 5 points: Generation of 12,600 adjacency matrices $\xrightarrow[isomorphism]{graph}$ decrease to 85 potential configuration classes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 00	Counting Crescent Configurations	Distance Geometry 00000	Results 00	Rigidity Characterization	Thank You
Initial	Result				

- For a set of 4 distinct distances on 5 points: Generation of 12,600 adjacency matrices $\xrightarrow[isomorphism]{graph}$ decrease to 85 potential configuration classes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Which candidate is geometrically realizable?

Introduction 00	Counting Crescent Configurations	Distance Geometry	Results 00	Rigidity Characterization	Thank You
			1		

The Question of Geometric Realizability

• **Distance Geometry Problem:** If we are given a set of distances between points, what can we find out about the relative position of these points?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 00	Counting Crescent Configurations	Distance Geometry ○●○○○	Results 00	Rigidity Characterization	
Cavley	-Menger Matric	es			

Cayley-Menger Matrix: The Cayley-Menger matrix for a set of *n* points $\{P_1, P_2, \ldots, P_n\}$ is an $(n+1) \times (n+1)$ matrix of the following form:

$$\begin{pmatrix} 0 & d_{1,2}^2 & \dots & d_{1,n}^2 & 1 \\ d_{2,1}^2 & 0 & \dots & d_{2,n}^2 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ d_{n,1}^2 & d_{n,2}^2 & \dots & 0 & 1 \\ 1 & 1 & \dots & 1 & 0 \end{pmatrix}$$

where $d_{i,j}$ is the distance between P_i and P_j .

Introduction	Counting Crescent Configurations	Distance Geometry	Results	Rigidity Characterization	Thank You
		00000			

Cayley-Menger and Geometric realizability

Theorem (Sommerville 1958)

A distance set corresponding to 4 points is geometrically realizable in \mathbb{R}^2 if and only if the Cayley-Menger matrix is not invertible.

◆□ → ◆□ → ◆ □ → ◆ □ → □ □

Introduction 00	Counting Crescent Configurations	Distance Geometry ○○○●○	Results 00	Rigidity Characterization	
Examp	ole				

$$\begin{array}{cccccc} A & B & C & D \\ A \\ 0 & 13 & 13 & 3 & 1 \\ 13 & 0 & 4 & 4 & 1 \\ 13 & 4 & 0 & 4 & 1 \\ 3 & 4 & 4 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{array}$$

■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q @

Introduction	Counting Crescent Configurations	Distance Geometry	Results	Rigidity Characterization	Thank You
		00000			

Solutions for a Given Crescent Configuration Type

- Suppose we are given a distance set with the multiplicities of the distances specified, but we are not given values for the distances.
- We can fix one of the unknown distances and use Cayley-Menger determinants to find a system of equations that yields geometrically realizable distances.

Figure: Possible values for d_2 , d_3 for the M-type when $d_1 = 1$

Introduction	Counting Crescent Configurations	Distance Geometry	Results	Rigidity Characterization	Thank You
			0		

All Configurations on Four and Five Points

Theorem (Durst-Hlavacek-Huynh-Miller-Palsson 2016)

Given a set of three distinct distances, $\{d_1, d_2, d_3\}$, on four points, there are only three allowable crescent configurations up to graph isomorphism.

• We label these M-type, C-type, and R-type, respectively.

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣

Introduction	Counting Crescent Configurations	Distance Geometry	Results	Rigidity Characterization	Thank You
			00		
<i>n</i> = 5					

Theorem (Durst-Hlavacek-Huynh-Miller-Palsson 2016)

Given a set of four distinct distances, $\{d_1, d_2, d_3, d_4\}$, on five points , there are only 27 allowable crescent configurations up to graph isomorphism.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Introduction 00	Counting Crescent Configurations	Distance Geometry 00000	Results 00	Rigidity Characterization	
The U	niqueness Quest	ion			

Given a particular isomorphism class of crescent configurations on n points, how many realizations of the associated distance set could we construct?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

	Counting Crescent Configurations		Results	Rigidity Characterization	
				• 0000 00000	
Graph Theoretic	Background				
Inspira	tion from the M	Iolecule Pr	ohlem		

Figure: Two Realizations of a Flexible Graph¹

- The Molecule Problem: given a set of distance measurements between points in Euclidean space, can we find the appropriate realization? \rightarrow NP-hard
- More generally: Graph realization (how many arrangements?) and rigidity (can we distort the arrangements?)

	Counting Crescent Configurations	Distance Geometry	Results	Rigidity Characterization	Thank You
				000000000	
Graph Theoretic Ba	ackground				

Laman's Condition for Graph Rigidity

Definition (Graph rigidity - Asimow and Roth 1978)

Let G be a graph (V, E) on v vertices in \mathbb{R}^n then G(p) is G together with the point $p = (p_1, p_2, \ldots, p_v) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \ldots \mathbb{R}^n = \mathbb{R}^{nv}$. Let K be the complete graph on v vertices. The graph G(p) is rigid in \mathbb{R}^n if there exists a neighbordhood **U** of p such that

$$e_{\mathcal{K}}^{-1}(e_{\mathcal{K}}(p))\cap \mathsf{U}=e_{\mathcal{G}}^{-1}(e_{\mathcal{G}}(p))\cap \mathsf{U},$$

where e_K and e_G are the edge functions of K and G, which return the distances of edges of the associated graphs.

Laman's Condition (1970)

A graph with 2n - 3 edges is rigid in two dimensions if and only if no subgraph G' has more than 2n' - 3 edges.

	Counting Crescent Configurations		Results	Rigidity Characterization	
				000000000	
Graph Theoretic	Background				
Cresce	nt Configuratior	ns are Rigio	ł		

• For each *n*, any crescent configurations on *n* points is a complete graph \rightarrow It suffices to show that K_n is rigid for every $n \in \mathbb{N}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

	Counting Crescent Configurations		Results	Rigidity Characterization	
				000000000	
Graph Theoretic	Background				
Cresce	nt Configuratior	ns are Rigio	ł		

- For each *n*, any crescent configurations on *n* points is a complete graph \rightarrow It suffices to show that K_n is rigid for every $n \in \mathbb{N}$
- K_1, K_2 and K_3 can be easily verified to satisfy Laman's Condition.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

	Counting Crescent Configurations		Results	Rigidity Characterization	
				000000000	
Graph Theoretic I	Background				
Cresce	nt Configuratior	ns are Rigio	d		

- For each *n*, any crescent configurations on *n* points is a complete graph \rightarrow It suffices to show that K_n is rigid for every $n \in \mathbb{N}$
- K_1, K_2 and K_3 can be easily verified to satisfy Laman's Condition.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

For n ≥ 3: K_n is composed of K₃ subgraphs (not necessarily non-overlapping)

	Counting Crescent Configurations		Results	Rigidity Characterization	
				000000000	
Graph Theoretic I	Background				
Cresce	nt Configuratior	ns are Rigio	d		

- For each *n*, any crescent configurations on *n* points is a complete graph \rightarrow It suffices to show that K_n is rigid for every $n \in \mathbb{N}$
- K_1, K_2 and K_3 can be easily verified to satisfy Laman's Condition.
- For n ≥ 3: K_n is composed of K₃ subgraphs (not necessarily non-overlapping)

However, does the rigidity ranking differ between configurations?

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

	Counting Crescent Configurations	Distance Geometry	Results	Rigidity Characterization	Thank You
				000000000	
Graph Theoretic	Background				
Techni	iques and Termi	nologies			

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

• Frameworks: Flexible vs. Rigid vs. Redundantly Rigid

Introduction	Counting Crescent Configurations		Results	Rigidity Characterization	Thank You
				000000000	
Graph Theoretic	Background				
Techni	iques and Termi	nologies			

• Frameworks: Flexible vs. Rigid vs. Redundantly Rigid

• Gluck (1975): If a graph has a single rigid realization, then all its generic realizations are rigid.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction	Counting Crescent Configurations	Distance Geometry	Results	Rigidity Characterization	Thank You
				000000000	
Graph Theoretic	Background				
	· · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Techniques and Terminologies

- Frameworks: Flexible vs. Rigid vs. Redundantly Rigid
- **Gluck (1975)**: If a graph has a single rigid realization, then all its generic realizations are rigid.
- **The Rigidity Matrix**: Given a graph *G* with *m* vertices and *n* edges, the *d*-dimensional rigidity matrix *M*_G is a *n* × *dm* matrix such that:
 - The columns are indexed by the entries in the coordinate of each vertex $v = (v_1, v_2, \dots, v_d)$.
 - The rows are indexed by the edges
 - The entry in row *e* and column *v_i* is:

$$\begin{cases} v_i - w_i \text{ if } e = vw \text{ is incident to } v\\ 0 & \text{otherwise} \end{cases}$$

Introduction	Counting Crescent Configurations	Distance Geometry	Results	Rigidity Characterization	Thank You
				000000000	
Graph Theoretic	Background				
TT 1 1	1				

Techniques and Terminologies

- Frameworks: Flexible vs. Rigid vs. Redundantly Rigid
- **Gluck (1975)**: If a graph has a single rigid realization, then all its generic realizations are rigid.
- The Rigidity Matrix: Given a graph G with m vertices and n edges, the d-dimensional rigidity matrix M_G is a $n \times dm$ matrix such that:
 - The columns are indexed by the entries in the coordinate of each vertex $v = (v_1, v_2, \dots, v_d)$.
 - The rows are indexed by the edges
 - The entry in row *e* and column *v_i* is:

$$\begin{cases} v_i - w_i \text{ if } e = vw \text{ is incident to } v\\ 0 & \text{otherwise} \end{cases}$$

• **Example**: K_3 with $v_1 = (0, 1)$, $v_2 = (-1, 0)$ and $v_3 = (1, 0)$

$$\begin{bmatrix} 1 & 1 & -1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & -2 & 0 & 2 & 0 \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

	Counting Crescent Configurations	Results	Rigidity Characterization	
			000000000	
Graph Theoretic Ba	ckground			

Theorem (Hendrickson 1992)

A framework f(G) is rigid if and only if its rigidity matrix has rank exactly equal to S(n, d), which is the number of allowed motions, where:

$$S(n,d) = \left\{ egin{array}{c} nd - rac{d(d+1)}{2} \ ext{for } n \geq d \ rac{n(n-1)}{2} \ ext{otherwise} \end{array}
ight.$$

Note: S(n, d) can also be used to determine whether a graph is *redundantly rigid*, which in turn can be used to determine if there exists a unique realization

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

	Counting Crescent Configurations	Results	Rigidity Characterization	
			0000000000	
Analysis of Type I	R			
Type F	Realization			

Figure: Realization obtained by fixing $d_1 = 1$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

	Counting Crescent Configurations		Results	Rigidity Characterization	
				0000000000	
Analysis of Type I	२				
Rigidity	v Analysis for T	vne R			

Letting $y = \sqrt{-1 + 4x^2}$, we get the rigidity matrix A_R :

$$\begin{bmatrix} -x & 0 & x & 0 & 0 & 0 & 0 & 0 \\ \frac{-x}{2} & \frac{-x}{y} & 0 & 0 & \frac{x}{2} & \frac{x}{y} & 0 & 0 \\ \frac{-1}{2x} & \frac{-y}{2x} & 0 & 0 & 0 & 0 & \frac{1}{2x} & \frac{y}{2x} \\ 0 & 0 & x - \frac{x}{2} & \frac{-x}{2y} & -x + \frac{x}{2} & \frac{x}{2y} & 0 & 0 \\ 0 & 0 & x - \frac{1}{2x} & \frac{-y}{2x} & 0 & 0 & -x + \frac{1}{2x} & \frac{y}{2x} \\ 0 & 0 & 0 & 0 & \frac{x}{2} - \frac{1}{2x} & \frac{x}{2y} - \frac{y}{2x} & \frac{-x}{2} + \frac{1}{2x} & \frac{-x}{2y} + \frac{y}{2x} \end{bmatrix}$$

 $Rank(A_R) = 6 > S(4,2)$ but when removing any row, rank of remaining matrix is 5 \rightarrow redundantly rigid

▲□▶▲□▶▲□▶▲□▶ □ のQの

Introduction 00	Counting Crescent Configurations	Distance Geometry 00000	Results 00	Rigidity Characterization ○○○○○○●○○	
Analysis of Type N	vi				
Type N	A Realizations				

Figure: Two Realizations of Type M: M_1 and M_2

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Introduction	Counting Crescent Configurations	Distance Geometry	Results	Rigidity Characterization	Thank You
				0000000000	
Analysis of Type N	Л				
Rigidity	y Analysis for T	vpe M			

Rigidity matrix A_{M_1}

$$\begin{bmatrix} -2x & 0 & 2x & 0 & 0 & 0 & 0 & 0 \\ -x & -x\sqrt{3} & 0 & 0 & x & x\sqrt{3} & 0 & 0 \\ -x & -x\sqrt{3} - y & 0 & 0 & 0 & 0 & x & x\sqrt{3} + y \\ 0 & 0 & x & -x\sqrt{3} & -x & x\sqrt{3} & 0 & 0 \\ 0 & 0 & x & -x\sqrt{3} - y & 0 & 0 & -x & x\sqrt{3} + y \\ 0 & 0 & 0 & 0 & 0 & -y & 0 & y \end{bmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $\operatorname{Rank}(A_{M_1}) = 5 = S(4, 2) \rightarrow \operatorname{rigid}$ Same results for M_2

	Counting Crescent Configurations	Results	Rigidity Characterization	
			000000000	
Future Work				
Questi	ons to explore			

• Improve the algorithm to find crescent configurations on higher n

	Counting Crescent Configurations	Results	Rigidity Characterization	
			000000000	
Future Work				
Questi	ons to explore			

• Improve the algorithm to find crescent configurations on higher n

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Which distance sets can be realized in higher dimensions?

Introduction	Counting Crescent Configurations	Distance Geometry	Results	Rigidity Characterization	Thank You
				000000000	
Future Work					
Questi	ons to explore				

• Improve the algorithm to find crescent configurations on higher n

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

- Which distance sets can be realized in higher dimensions?
- In addition to rigidity, which other properties of crescent configurations can we explore?

	Counting Crescent Configurations	Results	Rigidity Characterization	
			000000000	
Future Work				
Questi	ions to explore			

- Improve the algorithm to find crescent configurations on higher n
- Which distance sets can be realized in higher dimensions?
- In addition to rigidity, which other properties of crescent configurations can we explore?
- Given a rigidity ranking, can we use the rigidity matrix to generate a crescent configuration?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 00	Counting Crescent Configurations	Distance Geometry 00000	Results 00	Rigidity Characterization	Thank You
Acknow	vledgements				

• Full paper available at: https://arxiv.org/abs/1610.07836

 \circ

- Williams College Finnerty Fund and SMALL REU
- NSF Grants DMS1265673, DMS1561945 and DMS1347804

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Prof. Steven J. Miller and Prof. Eyvindur A. Palsson
- JMM organizers, AMS, MAA and AWM

Introduction OO	Counting Crescent Configurations	OOOOO	Results OO	Rigidity Characterization	Thank You
Refere	ences				
	L. Asimow and B. Roth (1978)				
	The Rigidity of Graphs				
_	Trans. Amer. Math. Soc., 245 (1978),279	-289.			
	D. Burt, E. Goldstein, S. Manski, S.J. Mi	ller, E.A. Palsson and H. S	uh (2016)		
	Crescent Configurations				
	Integers, 16 (2016), #A38.				
	Herman Gluck (1975)				
	Almost all simply connected closed surf	aces are rigid			
	Geometric Topology, Lecture Notes in Ma	athematics, 438 (1), 225 –	239.		
	B. Hendrickson (1990)				
	The Molecule Problem: Determining Co	onformation from Pairwise I	Distances		
	Cornell University Computer Science Tech	nnical Reports, 90 - 1159.			
	B. Hendrickson (1992)				
	Conditions for Unique Graph Realization	15			
	SIAM Journal On Computing, 21 (1), 65	- 84.			
	G. Laman (1970)				
	On graphs and rigidity of plane skeletal	structures			
	Journal of Engineering Mathematics, 4 (1	.970), 331–340.		A □ > A □ > A □ > A □ > A □	► Ξ • • • •