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Introduction

Motivation

o Erdés’ Distinct Distances Problem: Starting with n points, what
is the minimum number of distinct distances determined by these
points?

o Distances of specified multiplicities: Given a set of n — 1 distinct
distances, can n points be arranged such that for each 1 </ < n-—1,
there is exactly one of n — 1 distances occuring i times?
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Motivation

Construction on n = 4 with no restrictions:
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Introduction

What if we impose restrictions to avoid "uninteresting” cases?
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Crescent Configurations

Crescent Configuration (Burt et. al. 2015): We say n points are in
crescent configuration (in RY) if they lie in general position in R? and
determine n — 1 distinct distances, such that for every 1 <i<n-—1

there is a distance that occurs exactly i times.

General Position: We say that n points are in general position in RY if
no d+1 points lie on the same hyperplane and no d+2 lie on the same
hypersphere.
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Crescent Configurations

Crescent Configuration (Burt et. al. 2015): We say n points are in
crescent configuration (in RY) if they lie in general position in R? and
determine n — 1 distinct distances, such that for every 1 <i<n-—1

there is a distance that occurs exactly i times.

General Position: We say that n points are in general position in RY if
no d+1 points lie on the same hyperplane and no d+2 lie on the same
hypersphere.

Erdés’ Conjecture (1989): There exists N sufficiently large such that no
crescent configuration exists on N points.
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Constructions for n =5,6,7 and 8

Due to Erdés, Pomerance and Palésti (1989)
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The Approach

o Distance Coordinate: Given a set of points P, the distance
coordinate, Dy, of a point A € P is the set of all distances, counting
multiplicity, between A and the other points in P.
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The Approach

o Distance Coordinate: Given a set of points P, the distance
coordinate, Dy, of a point A € P is the set of all distances, counting
multiplicity, between A and the other points in P.

o Distance Set: The distance set, D, corresponding to P is the set of
the distance coordinates of the points in P.

Dp = {d>, db, d3};
Dp = {dla da, d3};
D¢ = {di, d>, d3};
Dp = {ds, d3, d3};
D= {DA7 DBa DC7 DD}

(1)
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Graph Isomorphism of Crescent Configurations

Theorem (Durst-Hlavacek-Huynh-Miller-Palsson 2016)

Let A and B be two crescent configurations on the same number of
points n. If A and B have the same distance sets, then there exists a

graph isomorphism A — B.
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Graph Isomorphism Example

A B
0 d3 d1 d3 0 d3 d3 d2
d3 0 dy 3| |ds 0 d5 d
dl d2 0 d2 B d3 d3 0 d2

d3 d3 do 0 d di d O



Counting Crescent Configurations
[e]e] o]

Graph Isomorphism Example

A B
0 d3 d1 d3 0 d3 d3 d2
d3 0 dy 3| |ds 0 d5 d
dl d2 0 d2 B d3 d3 0 d2

d3 d3 d» O d d d O
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Graph Isomorphism Example

A B
0 d3 d1 d3 0 d3 d3 d2
s 0 d ds||ds 0 d5 o
d 1 d2 0 d2 B d3 d3 0 d2

d3 d3 do 0 d di d O
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Graph Isomorphism Example

A B
0 d3 d1 d3 0 d3 d3 d2
d3 0 o ds| |5 O ds o
dl d2 0 d2 B d3 d3 0 d2

d3 d3 do 0 d di d O
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Graph Isomorphism Example

A B
0 d3 d1 d3 O d3 d3 d2
3 0 b 3| |ds 0 ds d
dl d2 0 d2 B d3 d3 0 d2

d3 d3 do 0 d di d O
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Initial Result

@ For a set of 3 distinct distances on 4 points: Generation of 60
. . . graph .
possible adjacency matrices ————— decrease to 4 potential

isomorphism
configuration classes

@ For a set of 4 distinct distances on 5 points: Generation of 12,600
. . graph .
adjacency matrices ————— decrease to 85 potential

isomorphism
configuration classes.

Which candidate is geometrically realizable?
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The Question of Geometric Realizability

o Distance Geometry Problem: If we are given a set of distances
between points, what can we find out about the relative position of
these points?
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Cayley-Menger Matrices

Cayley-Menger Matrix: The Cayley-Menger matrix for a set of n points
{Py,Ps,...P,}isan (n+ 1) x (n+ 1) matrix of the following form:

0 df, ... di, 1
, 0 ... d, 1
2, d2, ... 0 1
1 1 ... 1 0

where d;; is the distance between P; and P;.
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Cayley-Menger and Geometric realizability

Theorem (Sommerville 1958)

A distance set corresponding to 4 points is geometrically realizable in R?
if and only if the Cayley-Menger matrix is not invertible.




Distance Geometry

Example

A B C D
A/0 13 13 3 1
Bl113 0 4 4 1
Cl|13 4 0 4 1
D3 4 4 0 1

1 1 1 1 0
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Solutions for a Given Crescent Configuration Type

@ Suppose we are given a distance set with the multiplicities of the
distances specified, but we are not given values for the distances.

@ We can fix one of the unknown distances and use Cayley-Menger
determinants to find a system of equations that yields geometrically
realizable distances.

M

Figure: Possible values for d», d3 for the M-type when d; =1



n=4

All Configurations on Four and Five Points

Theorem (Durst-Hlavacek-Huynh-Miller-Palsson 2016)

Given a set of three distinct distances, {di, d», d3}, on four points , there
are only three allowable crescent configurations up to graph isomorphism.

@ We label these M-type, C-type, and R-type, respectively.
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Theorem (Durst-Hlavacek-Huynh-Miller-Palsson 2016)

Given a set of four distinct distances, {dy, d2, ds, ds}, on five points ,
there are only 27 allowable crescent configurations up to graph
isomorphism.
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Rigidity Characterization

The Uniqueness Question

Given a particular isomorphism class of crescent configurations on n
points, how many realizations of the associated distance set could we
construct?
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Inspiration from the Molecule Problem

Figure: Two Realizations of a Flexible Graph!

@ The Molecule Problem: given a set of distance measurements
between points in Euclidean space, can we find the appropriate
realization? — NP-hard

o More generally: Graph realization (how many arrangements?) and
rigidity (can we distort the arrangements?)

1B. Hendrickson. Conditions for Unique Graph Realization. SIAM Journal of
Computing . 21(1). 64-84, Feb. 1992
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Graph Theoretic Background

Laman’s Condition for Graph Rigidity

Definition (Graph rigidity - Asimow and Roth 1978)

Let G be a graph (V, E) on v vertices in R” then G(p) is G together
with the point p = (p1,p2,...,pv) ER? X R" x R"...R" =R". Let K
be the complete graph on v vertices. The graph G(p) is rigid in R" if
there exists a neighbordhood U of p such that

e (ex(p)) NU = eg'(ea(p)) N U,

where ex and eg are the edge functions of K and G, which return the
distances of edges of the associated graphs.

Laman's Condition (1970)

A graph with 2n — 3 edges is rigid in two dimensions if and only if no
subgraph G’ has more than 2n’ — 3 edges.
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@ For each n, any crescent configurations on n points is a complete
graph — It suffices to show that K, is rigid for every n € N
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Graph Theoretic Background

Crescent Configurations are Rigid

@ For each n, any crescent configurations on n points is a complete
graph — It suffices to show that K, is rigid for every n € N

@ Ki, K> and K3 can be easily verified to satisfy Laman’s Condition.

@ For n > 3: K, is composed of K3 subgraphs (not necessarily
non-overlapping)

However, does the rigidity ranking differ between configurations?
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Graph Theoretic Background

Techniques and Terminologies

e Frameworks: Flexible vs. Rigid vs. Redundantly Rigid

@ Gluck (1975): If a graph has a single rigid realization, then all its
generic realizations are rigid.

e The Rigidity Matrix: Given a graph G with m vertices and n edges,
the d-dimensional rigidity matrix Mg is a n X dm matrix such that:
e The columns are indexed by the entries in the coordinate of each
vertex v = (vi, Vo, ..., Vq).
o The rows are indexed by the edges
o The entry in row e and column v; is:

v; — w; if e = vw is incident to v
0 otherwise
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Graph Theoretic Background

Techniques and Terminologies

e Frameworks: Flexible vs. Rigid vs. Redundantly Rigid

@ Gluck (1975): If a graph has a single rigid realization, then all its
generic realizations are rigid.

e The Rigidity Matrix: Given a graph G with m vertices and n edges,
the d-dimensional rigidity matrix Mg is a n X dm matrix such that:
e The columns are indexed by the entries in the coordinate of each
vertex v = (vi, Vo, ..., Vq).
o The rows are indexed by the edges
o The entry in row e and column v; is:

v; — w; if e = vw is incident to v
0 otherwise

e Example: K3 with v; = (0,1), v» = (—1,0) and v3 = (1,0)

1 1 -1 -1 0 O
-1 1 0 0 1 -1
0 0 -2 0 2 O
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Graph Theoretic Background

Theorem (Hendrickson 1992)

A framework f(G) is rigid if and only if its rigidity matrix has rank
exactly equal to S(n, d), which is the number of allowed motions, where:

S(n,d) = nd — 4 d2+1 forn>d
’ w otherwise

Note: S(n,d) can also be used to determine whether a graph is
redundantly rigid, which in turn can be used to determine if there exists a
unique realization
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Type R Realization

G
2' 21t 4x?
1 v—1 + 4x?
(Zx o 2x )

(0,0) (x,0)

Figure: Realization obtained by fixing di = 1
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Rigidity Analysis for Type R

Letting y = v/ —1 + 4x2, we get the rigidity matrix Ag:

-x 0 X 0 0 0 0 0
A
% m 0 0 0 0 2 e
0 0 x—3 5—;‘ X+ 3 % 0 0
1 -y 1 y
X 1 X —x —x
00 0 0 F-% 3 % Thw ozt

Rank(Ag) = 6 > 5(4,2) but when removing any row, rank of remaining
matrix is 5 — redundantly rigid
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Type M Realizations

©x3+y) ©.2V3)

(—x,0) (x,0)

(—x,0) (x,0)

0, -y

Figure: Two Realizations of Type M: M; and M,
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Analysis of Type M

Rigidity Analysis for Type M

Rigidity matrix Ap,

—2x 0 2x 0 0 0 0 0
-x  —xV3 0 0 x xV/3 0 0
-x —xV3—y 0 0 0 0 x xV3+4y
0 0 x —xV3  —x xv/3 0 0
0 0 x —xV3- y O 0 —x xV3+ y
0 0 0 0 0 -y 0 y

Rank(Am,) =5 = 5(4,2) — rigid
Same results for M,
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Future Work

Questions to explore

@ Improve the algorithm to find crescent configurations on higher n

@ Which distance sets can be realized in higher dimensions?

@ In addition to rigidity, which other properties of crescent
configurations can we explore?

@ Given a rigidity ranking, can we use the rigidity matrix to generate a
crescent configuration?
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