Egg Drop Mathematics: It IS all its cracked up to be!

Steven J Miller, Williams College (sjm1@williams.edu) https://web.williams.edu/Mathematics/sjmiller/public html/

Building with N floors, have 2 golden eggs.

Special eggs: some floor n such that if you drop from below n no damage; can drop as many times as wish.

If drop even once from floor n or higher immediately break.

Find in as few drops as you can what n is (the lowest floor where if you drop from there it breaks). Doesn't matter if have any of the golden eggs at the end - just want to know n.

Interpretation:

How do you interpret finding n in as few drops as possible?

Interpretation:

How do you interpret finding n in as few drops as possible?

- Minimize worse case.
- Minimize average case.

General Advice:

When given a hard problem:

- try to do an easier version first, and
- try to do specific values of parameters.

What is an easier problem?

Simple Case: 1 Egg

What is the solution?

Simple Case: 1 Egg

What is the solution?

Only possibility is go $1,2,3, \ldots$ till break.
Worse case is order N drops.

Next Case: 2 Eggs

Once one cracks, reduced to 1 egg case.

What are possible strategies?

Next Case: 2 Eggs

Once one cracks, reduced to 1 egg case.
What are possible strategies?
Extreme cases:

- Drop every $2^{\text {nd }}$ floor.
- Drop at $\mathrm{N} / 2$.
- (more generally drop every x)

Competing Influences

Drop every $2^{\text {nd }}$ floor.

- Once first breaks fast, but could take many drops.
- \#Drops = N/2 + 1

Drop at $\mathrm{N} / 2$

- If doesn't crack eliminate a lot, when crack lot to check. \#Drops $=1+(\mathrm{N} / 2-1)$.

Both basically on the order of $N / 2$ drops....

Competing Influences: Balance

Drop every x floors.

- Could take N / x before first breaks, then $x-1$.
$\#$ Drops $=(N / x)+(x-1)=(N / x+x)-1$.

Reduced to choosing x to minimize

$$
\frac{N}{x}+x
$$

Thoughts on how to do this?

Competing Influences: Balance

 Reduced to choosing x to minimize$$
\frac{N}{x}+x
$$

Set two terms equal to each other to balance:

$$
\frac{N}{x}=x \text { so } N=x^{2} \quad \text { or } x=N^{1 / 2}
$$

Competing Influences: Balance

Reduced to choosing x to minimize

$$
\frac{N}{x}+x
$$

Set two terms equal to each other to balance:

$$
\frac{N}{x}=x \text { so } N=x^{2} \text { or } x=N^{1 / 2}
$$

Gives \#Drops $=\frac{N}{N^{1 / 2}}+N^{1 / 2}-1$ or about $2 N^{1 / 2}$.

Plot [100 / x + x, $\{x, 1,100\}]$

Write $\mathrm{x}=\mathrm{t} \mathrm{N}^{1 / 2}$ in \#Drops $=\frac{N}{x}+x-1$.
Gives \#Drops $=\frac{N}{t N^{1 / 2}}+t N^{1 / 2}-1$.

$$
\operatorname{Plot}[1 / t+t,\{t, 0,5\}]
$$

This is just $\mathrm{N}^{1 / 2}\left(\frac{1}{t}+\mathrm{t}\right)$, so on the order of $N^{1 / 2}$!

If know calculus: want to minimize $f(x)=N / x+x$:

- Endpoints: $f(1)$ and $f(N)$ are of order N.
- $f^{\prime}(x)=-N / x^{2}+1$, critical point $f^{\prime}(x)=0$ or $x=N^{1 / 2}$.
- Easily see minimum, or note $f^{\prime \prime}(x)=2 N / x^{3}>0$.

Balancing Application

Imagine have two algorithms:

- One always takes 1000 seconds.
- One takes 1 second except one in a million inputs take $1,000,000,000$ seconds.

Both take on average approximately 1000 seconds....

Balancing Application

Imagine have two algorithms:

- One always takes 1000 seconds.
- One takes 1 second except one in a million inputs take 1,000,000,000 seconds.

Both take on average approximately 1000 seconds.... ...but what if run algorithm 1 and if takes more than 2 seconds on an input switch to first? Average of about 1 second!

Improving Strategy with 2 Eggs

Consider triangular numbers and dynamic rescaline.

- Do not move in constant steps of x floors.
- Do x, then $x-1$ if doesn't crack, then $x-2 . .$. .
- Advantage is always same number of drops!
- Basically if doesn't crack doing 2 egg problem but now with N -x floors (after first drop).

Improving Strategy with 2 Eggs

Consider triangular numbers and dynamic rescaline.

- Do not move in constant steps of x floors.
- Do x, then $x-1$ if doesn't crack, then $x-2 \ldots$....
- Advantage is always same number of drops!
- Basically if doesn't crack doing 2 egg problem but now with N -x floors (after first drop).
Example: $\mathrm{N}=105=14+13+12+\ldots+1$:
$(1+13)$ or $(2+12)$ or $(3+11) \ldots$.
All are 14 drops, better than 2 105 ${ }^{1 / 2}$ (about 20).

What if we have 3 Eggs? Or k eggs?

What if we have 3 Eggs? Or k eggs?

For 3 eggs: once one cracks, 2 egg problem. If do every x it would be, worse case:

