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Statement

A finite set of integers, |A| its size. Form
@ Sumset: A+ A= {a +a;:a,a €A}
o Difference set: A— A= {a —a; : a,a € A}.
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Statement

A finite set of integers, |A| its size. Form
@ Sumset: A+ A= {a +a;:a,a €A}
o Difference set: A— A= {a —a; : a,a € A}.

Definition

We say A is difference dominated if |A — A| > |[A+ A|,
balanced if |A — A| = |A + A| and sum dominated (or an
MSTD set) if A+ A] > |A—A|.
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@ Addition is commutative, subtraction isn't.
@ Generic pair (&, ;) gives 1 sum, 2 differences.
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Questions

We expect a generic set to be difference dominated:

@ Addition is commutative, subtraction isn't.
@ Generic pair (&, ;) gives 1 sum, 2 differences.

@ What happens when we increase the number of

summands?

@ What happens if we let the probability of choosing
elements decay with N?
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Past Results

@ Martin and O’Bryant, 2006: Positive percentage of
sets are MSTD when chosen with uniform probability.
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Past Results

@ Martin and O’Bryant, 2006: Positive percentage of
sets are MSTD when chosen with uniform probability.

@ lyer, Lazarev, Miller, Zhang, 2011: Generalized
results above to an arbitrary number of summands.
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@ Hegarty and Miller, 2008: When elements chosen
with probability p(N) — 0 as N — oo, then
|A—A| > |A+ A| almost surely.
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Past Results

@ Hegarty and Miller, 2008: When elements chosen
with probability p(N) — 0 as N — oo, then
|A—A| > |A+ A| almost surely.

@ Found critical value of § = % for probability
p(N)=cN=?, § € (0,1).

@ Critical value is a phase transition because at critical
value, the number of repeated elements is on the
same order as the number of distinct elements.
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Generalized Sumsets

Definition
For s > d, consider the Generalized Sumset
Asg =A+---+A—-A—---— Awhere we have s plus

signs and d minus signs. Leth =s +d.

Goal: Study Asg when p(N) = cN~°.
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Our Results

Let h be a positive integer, ¢ > 0, and choose pairs of
integers (sj, d;) with s; > d; and s; + d; = h. Each element
of Iy is independently chosen to be in A with probability
p(N) =cN™.

@ For ¢ > =1 the set As g with the larger d; is larger
almost surely, and with probability one
’Asl,dll/‘ASZ,dz’ = (Szldzl)/(81|d1|) + 0(1) as N — oo.

@ Define g(x;s,d) = > o, (—1)%" 1(Sb|*c‘“k) x (s+d)k
If 6 = "1 then almost surely |As, | ~ Ng(c;si, d)),
and with probability one as N — oo
[Asy.ail /|As, ;| = 9(Ci 81,d1)/9(C: 82, d2) + 0(1).




Cases for §

o Fast Decay: § > L.

e Critical Decay: § = "L

@ Slow Decay: § < "L,




: h—1
Fast Decay: 0 > ~5=

@ Set with more differences is larger 100% of the time.
@ Ratio of the sizes of A 4 is a function of (2)

@ Proofs use scarcity of elements in A.
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Proof of the ratio of sizes of Ag 4

@ Compute the number of distinct h-tuples.
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@ Show that sum of repeated elements is close to its
expectation.
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@ Show that sum of repeated elements is close to its
expectation.

@ Conclude that almost all h-tuples generate a distinct
number as N — oc.
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Proof of the ratio of sizes of Ag 4

@ Compute the number of distinct h-tuples.

@ Show that sum of repeated elements is close to its
expectation.

@ Conclude that almost all h-tuples generate a distinct
number as N — oc.

@ Using combinatorics, conclude that ratio is:

Ag gl (@) spldy!

|A527d2| n (dhz) N Slldl!.
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Critical Decay: ¢ =

@ Set with more minus signs is larger 100% of time.
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Critical Decay: ¢ =

@ Set with more minus signs is larger 100% of time.

@ Result depends on counting number of repeated
elements by counting number of ways to add to each
integer in the interval.
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Critical Decay: ¢ =

@ Set with more minus signs is larger 100% of time.

@ Result depends on counting number of repeated
elements by counting number of ways to add to each
integer in the interval.

@ Proof uses strong concentration results.




Defining a Function to Count Ways to Generate  n

First step: determine a tractable formula for R(n, s, d), the
number of h(s q)-tuples of integers drawn from {0,... N}
that generate n.
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Defining a Function to Count Ways to Generate  n

First step: determine a tractable formula for R(n, s, d), the
number of h(s q)-tuples of integers drawn from {0,... N}

that generate n.
Letn’ := n + dN. We have:

R(n,s,d) — LnN_IZJfl(—l)i (*I‘) (”’ - i(Nh+_1i+ h— 1)'

i=0
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Defining a Function to Count Ways to Generate  n

First step: determine a tractable formula for R(n, s, d), the
number of h(s q)-tuples of integers drawn from {0,... N}

that generate n.
Letn’ := n + dN. We have:

R(n,s,d) — LnN_IZJfl(—l)i (*I‘) (”’ - i(Nh+_1i+ h— 1)'

i=0

@ Cookie Problem (or Stars and Bars Problem)
@ Inclusion-Exclusion
@ Considering Differences

DA
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@ Harder for a number of reasons.
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: h-1
Slow Decay: § < =

@ Harder for a number of reasons.

@ Focuses on number of elements missing from Ag 4.

@ Analysis focuses on the fringe of [-dN, sN|, the
integers very close to —dN or sN.

Will be investigated by SMALL "13.
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Conclusion

Key Techniques:
@ Order of the size of the set of repeated elements.

@ Counting the ways to generate an integer n.

@ Using existing inequalities to bound true value near
expectation.

Open question: Generalizing the case of slow decay.
Hopefully will be done for CANT 2014!
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