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Introduction
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Statement

A finite set of integers, |A| its size. Form

Sumset: A + A = {ai + aj : aj , aj ∈ A}.
Difference set: A − A = {ai − aj : aj , aj ∈ A}.
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Statement

A finite set of integers, |A| its size. Form

Sumset: A + A = {ai + aj : aj , aj ∈ A}.
Difference set: A − A = {ai − aj : aj , aj ∈ A}.

Definition
We say A is difference dominated if |A − A| > |A + A|,
balanced if |A − A| = |A + A| and sum dominated (or an
MSTD set) if |A + A| > |A − A|.
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Questions

We expect a generic set to be difference dominated:

Addition is commutative, subtraction isn’t.
Generic pair (ai , aj) gives 1 sum, 2 differences.
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Questions

We expect a generic set to be difference dominated:

Addition is commutative, subtraction isn’t.
Generic pair (ai , aj) gives 1 sum, 2 differences.

Questions
What happens when we increase the number of
summands?
What happens if we let the probability of choosing
elements decay with N?
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Past Results

Martin and O’Bryant, 2006: Positive percentage of
sets are MSTD when chosen with uniform probability.
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Past Results

Martin and O’Bryant, 2006: Positive percentage of
sets are MSTD when chosen with uniform probability.

Iyer, Lazarev, Miller, Zhang, 2011: Generalized
results above to an arbitrary number of summands.
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Past Results

Hegarty and Miller, 2008: When elements chosen
with probability p(N) → 0 as N → ∞, then
|A − A| > |A + A| almost surely.
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Past Results

Hegarty and Miller, 2008: When elements chosen
with probability p(N) → 0 as N → ∞, then
|A − A| > |A + A| almost surely.

Found critical value of δ = 1
2 for probability

p(N) = cN−δ, δ ∈ (0, 1).

Critical value is a phase transition because at critical
value, the number of repeated elements is on the
same order as the number of distinct elements.
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Generalized Sumsets

Definition
For s > d , consider the Generalized Sumset
As,d = A + · · ·+ A − A − · · · − A where we have s plus
signs and d minus signs. Let h = s + d .

Goal: Study As,d when p(N) = cN−δ.
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Our Results

Let h be a positive integer, c > 0, and choose pairs of
integers (si , di) with si ≥ di and si + di = h. Each element
of IN is independently chosen to be in A with probability
p(N) = cN−δ.

For δ > h−1
h , the set Asi ,di with the larger di is larger

almost surely, and with probability one
|As1,d1 |/|As2,d2 | = (s2!d2!)/(s1!d1!) + o(1) as N → ∞.

Define g(x ; s, d) :=
∑m

k=1(−1)k−1 bh,k

(s!d!)k x (s+d)k .

If δ = h−1
h then almost surely |Asi ,di | ∼ Ng(c; si , di),

and with probability one as N → ∞
|As1,d1 |/|As2,d2 | = g(c; s1, d1)/g(c; s2, d2) + o(1).
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Cases for δ

Fast Decay: δ > h−1
h .

Critical Decay: δ = h−1
h .

Slow Decay: δ < h−1
h .
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Fast Decay: δ >
h−1

h

Set with more differences is larger 100% of the time.

Ratio of the sizes of As,d is a function of
(h

d

)

.

Proofs use scarcity of elements in A.
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Proof of the ratio of sizes of As,d

Compute the number of distinct h-tuples.
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Proof of the ratio of sizes of As,d

Compute the number of distinct h-tuples.

Show that sum of repeated elements is close to its
expectation.
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Proof of the ratio of sizes of As,d

Compute the number of distinct h-tuples.

Show that sum of repeated elements is close to its
expectation.

Conclude that almost all h-tuples generate a distinct
number as N → ∞.
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Proof of the ratio of sizes of As,d

Compute the number of distinct h-tuples.

Show that sum of repeated elements is close to its
expectation.

Conclude that almost all h-tuples generate a distinct
number as N → ∞.

Using combinatorics, conclude that ratio is:

|As1,d1 |

|As2,d2 |
=

( h
d1

)

( h
d2

) =
s2!d2!

s1!d1!
.
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Critical Decay: δ =
h−1

h

Set with more minus signs is larger 100% of time.
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Critical Decay: δ =
h−1

h

Set with more minus signs is larger 100% of time.

Result depends on counting number of repeated
elements by counting number of ways to add to each
integer in the interval.
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Critical Decay: δ =
h−1

h

Set with more minus signs is larger 100% of time.

Result depends on counting number of repeated
elements by counting number of ways to add to each
integer in the interval.

Proof uses strong concentration results.
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Defining a Function to Count Ways to Generate n

First step: determine a tractable formula for R(n, s, d), the
number of h(s,d)-tuples of integers drawn from {0, . . . ,N}
that generate n.
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Defining a Function to Count Ways to Generate n

First step: determine a tractable formula for R(n, s, d), the
number of h(s,d)-tuples of integers drawn from {0, . . . ,N}
that generate n.

Let n′ := n + dN. We have:

R(n, s, d) =

⌊ n′

N ⌋−1
∑

i=0

(−1)i

(

h
i

)(

n′ − i(N + 1) + h − 1
h − 1

)

.
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Defining a Function to Count Ways to Generate n

First step: determine a tractable formula for R(n, s, d), the
number of h(s,d)-tuples of integers drawn from {0, . . . ,N}
that generate n.

Let n′ := n + dN. We have:

R(n, s, d) =

⌊ n′

N ⌋−1
∑

i=0

(−1)i

(

h
i

)(

n′ − i(N + 1) + h − 1
h − 1

)

.

Cookie Problem (or Stars and Bars Problem)
Inclusion-Exclusion
Considering Differences
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Slow Decay: δ <
h−1

h

Harder for a number of reasons.
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Slow Decay: δ <
h−1

h

Harder for a number of reasons.

Focuses on number of elements missing from As,d .
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Slow Decay: δ <
h−1

h

Harder for a number of reasons.

Focuses on number of elements missing from As,d .

Analysis focuses on the fringe of [−dN, sN], the
integers very close to −dN or sN.

Will be investigated by SMALL ’13.
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Conclusion

Key Techniques:

Order of the size of the set of repeated elements.

Counting the ways to generate an integer n.

Using existing inequalities to bound true value near
expectation.

Open question: Generalizing the case of slow decay.
Hopefully will be done for CANT 2014!
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