Great Expectations, or: Expect More, Work Less (2/3/10)

Steven J Miller Williams College

Steven.J.Miller@williams.edu
http://www.williams.edu/go/math/sjmiller/
public_html/wellesley/

Wellesley College, February 3, 2010

Clicker Questions

Collect all four!

Cereal toy problem

A cereal company decides to put one of *N* toys in each specially marked box. Each box has exactly one toy, and each box is equally likely to have any of the *N* toys. For *N* large, approximately how many boxes do we expect to buy before we have one of each toy?

Collect all four!

Cereal toy problem

A cereal company decides to put one of *N* toys in each specially marked box. Each box has exactly one toy, and each box is equally likely to have any of the *N* toys. For *N* large, approximately how many boxes do we expect to buy before we have one of each toy?

- (a) Around 6.
- (b) Around N.
- (c) Around $N \log N$.
- (d) Around $N^{3/2}$.
- (e) Around $N^2/\log N$.
- (f) Around N^2 .
- (a) More than N^3 .

Prime divisors

Number of prime divisors

Let N be a large number. If we choose an integer of size approximately N, on average about how many distinct prime factors do we expect N to have (as $N \to \infty$)? It might be useful to recall the Prime Number Theorem: The number of primes at most x is about $x/\log x$.

Prime divisors

Number of prime divisors

Let N be a large number. If we choose an integer of size approximately N, on average about how many distinct prime factors do we expect N to have (as $N \to \infty$)? It might be useful to recall the Prime Number Theorem: The number of primes at most x is about $x/\log x$.

- (a) Around 6.
- (b) Around log log log N.
- (c) Around log log N.
- (d) Around log N.
- (e) Around log N log log N.
- (f) Around $(\log N)^2$.
- (g) This is an open question.

Fermat Primes

Fermat Primes

If $F_n = 2^{2^n} + 1$ is prime, we say F_n is a Fermat prime. About how many Fermat primes are there less than x as $x \to \infty$?

Fermat Primes

Fermat Primes

If $F_n = 2^{2^n} + 1$ is prime, we say F_n is a Fermat prime. About how many Fermat primes are there less than x as $x \to \infty$?

- (a) 5
- (b) 10
- (c) Between 11 and 20.
- (d) Between 21 and 100.
- (e) $\log \log \log x$.
- (f) log log *x*.
- (q) log x.
- (h) More than log x.
- (i) This is an open problem.

3x + 1 Problem

3x + 1: Iterating to the fixed point

Define the 3x + 1 map by $a_{n+1} = \frac{3a_n + 1}{2^k}$ where $2^k || 3a_n + 1$. Choose a large integer N and randomly choose a starting seed a_0 around N. About how many iterations are needed until we reach 1 (equivalently, about how large is the smallest n such that $a_n = 1$)?

3x + 1 Problem

3x + 1: Iterating to the fixed point

Define the 3x + 1 map by $a_{n+1} = \frac{3a_n + 1}{2^k}$ where $2^k || 3a_n + 1$. Choose a large integer N and randomly choose a starting seed a_0 around N. About how many iterations are needed until we reach 1 (equivalently, about how large is the smallest n such that $a_n = 1$)?

There is a constant C so that the answer is

- (a) Around 6.
- (b) Around C log log log N.
- (c) Around Clog log N.
- (d) Around C log N.
- (e) Around C log N log log N.
- (f) Around $C(\log N)^2$.
- (a) This is an open question.

CD players on long car trips

The Randomizer in CD Players

Assume our car's CD randomizer is equally likely to choose any of the 6 CDs, no matter which song is playing. If we listen to 2250 songs, how many times do we expect to hear the CD player to change disks?

The Randomizer in CD Players

Assume our car's CD randomizer is equally likely to choose any of the 6 CDs, no matter which song is playing. If we listen to 2250 songs, how many times do we expect to hear the CD player to change disks?

- (a) Around 476.
- (b) Around 732.
- (c) Around 1066.
- (d) Around 1492.
- (e) Around 1875.
- (f) Around 2250.

Definition

Moments

Let X be a random variable. We define

• k^{th} moment: $m_k := \mathbb{E}[X^k]$ (if converges absolutely).

Assume X has a finite mean, which we denote by μ (so $\mu = \mathbb{E}[X]$). We define

• k^{th} centered moment: $\sigma_k := \mathbb{E}[(X - \mu)^k]$ (if converges absolutely).

- Be alert: Some books write μ'_k for m_k and μ_k for σ_k .
- Call σ_2 the variance, write it as σ^2 or Var(X).
- Note $Var(X) = \mathbb{E}[(X \mu)^2] = \mathbb{E}[X^2] \mathbb{E}[X]^2$.

Key Results on Expected Values

- Linearity: $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$.
- Independence: X, Y independent then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$. If RHS holds say uncorrelated.
- Variance: $Var(aX + bY) = a^2Var(X) + b^2Var(Y)$ if uncorrelated. In general:

$$\operatorname{CoVar}(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$$

$$\operatorname{Var}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \operatorname{Var}(X_i) + 2\sum_{1 \leq i < j \leq n} \operatorname{CoVar}(X_i, X_j).$$

Solutions (Don't read before the talk!)

Cereal toy problem

The answer is is (c), about $N \log N$. Let X_k denote how long we must wait till we get the k^{th} new toy, given that we have k distinct toys. Then if X is the total waiting time,

$$X = 1 + X_2 + \cdots + X_n$$
, and $X_k \sim \operatorname{Geom}\left(\frac{n-(k-1)}{n}\right)$. It is a standard result that a geometric random variable with parameter p has expected value $1/p$. Inputting this leads to $\mathbb{E}[X] = \sum_{k=1}^{n} \frac{n}{k} \sim n \log n$.

An excellent challenge is to figure out a formula for the median waiting time (i.e., how long we must wait until we have a 50% chance of having one of each toy).

See also the solution to Problem 2 from Section 3.3 (page 13) in

http://www.williams.edu/go/math/sjmiller/public html/341/handouts/hwcomments.pdf.

Number of prime divisors

The answer is (c), around log log *N*. This is explained in detail in the supplemental notes to the lecture, online at http://www.williams.edu/go/math/sjmiller/public html/wellesley/ExpectationThursOct8 2009

Number of prime divisors (continued)

Figure: Distribution of the number of prime factors for n, 1000 consecutive values starting at $a_0 = 5487525252462375634352364513298043621345687989991218989811$. Note $\log \log a_0 \approx 4.88$.

Fermat Primes

We expect there to only be five Fermat primes, so (a). For a generic number N, the probability it is prime is about $1/\log N$. Thus the expected number of Fermat numbers that are prime should be

$$\sum_{n=0}^{\infty} \frac{1}{\log F_n} \approx \sum_{n=0}^{\infty} \frac{1}{2^n \log 2} \approx 2.88;$$

of course, we know the first 5 choices of *n* yield primes.... (Note: it isn't too surprising that we can have small discrepancies when the final answer is finite.)

3x + 1

The answer is (d), around $C \log N$ (it turns out C is about $1/\log(4/3)$). Let $x_n = \log a_n$. We have

$$\mathbb{E}[x_{n+1}] = \sum_{k=1}^{\infty} \frac{\log(3a_n+1)}{2^k} \approx \sum_{k=1}^{\infty} \frac{x_n + \log 3}{2^k};$$

after some algebra we find the right hand side is $x_n + \log(3/4)$. Iterating we find $a_n \sim (3/4)^n a_0$, so the number of iterations expected before a_0 decays to 1 should be found by setting $(4/3)^n$ equal to a_0 , so $n \sim \frac{\log a_n}{\log(4/3)}$.

CD Changer

Given the numbers displayed, not surprisingly things were rigged to make (e), 1875, come out correct. Every time a new song is chosen, it has a 5/6 chance of being on a different CD, and $2250 \cdot \frac{5}{6} = 1875$.