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Introduction

Given A ⊆ Z, define its sumset
A + A := {a1 + a2 | a1,a2 ∈ A}.

Sumsets are fundamental objects in number theory.

Fermat’s Last Theorem: if Gk is the set of k th powers
of Z>0, (Gk + Gk) ∩ Gk = ∅ for k > 2.
Goldbach Conjecture: for the set of primes P,
P + P ⊇ {4,6,8, . . . }.
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Setting

Fix N ≥ 0. Fix p ∈ (0,1), and let q := 1 − p.

Select A ⊆ [0,N] by a Bernoulli process: for each
k ∈ [0,N], independently include k in A with
probability p.

Recent research in |A + A| as a random variable.

Martin and O’Bryant’s formative paper [MO]
compared |A + A| to |A − A| when p = 1/2.

4



Introduction The Infinite Case Expected Value Higher Moments The Distribution of Y The Limit of the Finite Case Conclusion

Setting

Fix N ≥ 0. Fix p ∈ (0,1), and let q := 1 − p.

Select A ⊆ [0,N] by a Bernoulli process: for each
k ∈ [0,N], independently include k in A with
probability p.

Recent research in |A + A| as a random variable.

Martin and O’Bryant’s formative paper [MO]
compared |A + A| to |A − A| when p = 1/2.

5



Introduction The Infinite Case Expected Value Higher Moments The Distribution of Y The Limit of the Finite Case Conclusion

Numerically observed behavior

(a) Large p (b) Small p

Figure: Point distribution function P (|(A + A)c | = m) for several
values of p.
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Motivating Questions

What is the decay rate for the distribution of
|(A + A)c| := |[0,2N]\(A + A)|?

What are E (|A + A|c) and Var (|A + A|c)?

Why are the “divots” here?
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Prior Work

Theorem (Martin and O’Bryant ’06)

If p = 1
2 , then E[|(A + A)c|] = 10 + O((3/4)N/2).

Theorem (Lazarev, Miller, and O’Bryant ’13 [LMO])

If p = 1
2 , then for i < j ≤ N with i , j odd,

P(i and j /∈ A + A) =
1

2j+1 F r
q+2F r ′

q+4

for q, r , r ′ depending on i and j, and similar formulations
hold for the other 3 parity cases.
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Prior Work

In general, when p ̸= 1/2, not all sets A are equally
likely, which makes the analysis harder.

Chu, King, Luntzlara, Martinez, Miller, Shao, Sun, and
Xu [CKLMMSSX] study sumsets for generic p.

[CKLMMSSX] and [LMO] both use graph-theoretic
approaches, particularly the notion of a condition
graph.
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Prior Work

Theorem (King, Martinez, Miller, Sun ’19)

For p ∈ [0,1] and q := 1 − p,

E[|A + A|] =
n∑

r=0

pr qn−r
(

n
r

)(
2

n−1∑
k=0

(
1 − f (k)(n

r

) )−

(
1 − f (n − 1)(n

r

) ))
,

where n = N + 1 and

f (k) =


∑k+1

i= k+1
2

2k+1−i
( k+1

2
i− k+1

2

)(n−k−1
r−i

)
for k odd∑k

i= k
2

2k−i
( k

2
i− k

2

)(n−k−1
r−1−i

)
for k even.

In particular, where the LHS holds for p > 1
2 ,

2n − 1 − 2
1

1 −
√

2q
− (2q)

n−1
2 ≤ E[|A + A|] ≤ 2n − 1 − 2

1 − q
n−1

2

1 −√
q

.
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Prior Work

Theorem (King, Martinez, Miller, Sun ’19)

For p ∈ (0,1) and q := 1 − p,

Var(|A + A|) =
n∑

r=0

(
n
r

)
pr qn−r

×
(

2
∑

0≤i<j≤2n−2

1 − Pr (i , j) +
∑

0≤i≤2n−2

1 − Pr (i)
)

− E[|A + A|]2,

where n = N + 1,

Pr (i) = P(i ̸∈ A + A
∣∣ |A| = r),

and
Pr (i , j) = P(i and j ̸∈ A + A

∣∣ |A| = r).
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The Infinite Case
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Setup

Instead of considering A ⊆ [0,N] for some natural
number N, consider A ⊆ Z≥0 chosen randomly via a
Bernouli process.

For any k ∈ Z≥0, include k in A with probability p.

With probability 1, A and Ac both include infinitely
many elements.

How do A+ A and A− A behave?
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Motivation

In general, sum sets are “almost full” in the middle,
and missing elements are only on the fringes. In the
“infinite case,” there is only one fringe to worry about.

Having “N = ∞” allow us to properly use asymptotic
notation for the number of missing summands.

Studying the “infinite case” will help us understand
the “finite case.”
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Analysis of A− A

Proposition
With probability 1, A− A = Z.

Proof.
For j ∈ Z≥0, each pair (j ,0), (2j + 1, j + 1),
(3j + 2,2j + 2), . . . has probability p2 of occurring.
Second Borel-Cantelli lemma: with probability 1,
infinitely many of these pairs are in A.
Reverse pairs to get −j .
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Analysis of A+ A

Unlike A− A, where there are infinitely many pairs
that can lead to j , there are only finitely many for
A+ A.

To check if n ∈ A+ A, only need to know about the
first n + 1 elements: {0,1,2, . . . ,n}.

Focus on the sumset A+ A.
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Expected Value
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Probability of Missing a Specific Summand

Define Y := |Z≥0\(A+ A)|, the number of missing
summands.

For each i ≥ 0, let Xi be the indicator variable for
i /∈ A+ A:

Xi :=

{
1 i /∈ A+ A
0 i ∈ A+ A.

The upshot is that

Y =
∞∑

i=0

Xi .

To calculate E (Y), need E (Xi) = P (i ̸∈ A+ A).
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Probability of Missing a Specific Summand

Like [LMO], for odd n,

{n ̸∈ A+A} = {(0 /∈ A or n /∈ A) and · · · and
(n − 1

2
/∈ A or

n + 1
2

/∈ A
)
}

and for even n,

{n /∈ A+ A} = {(0 /∈ A or n /∈ A) and · · · and n/2 ̸∈ A}.

Hence,

P (n ̸∈ A+ A) =

{
(1 − p2)

n+1
2 n odd

(1 − p)(1 − p2)
n
2 n even.

29



Introduction The Infinite Case Expected Value Higher Moments The Distribution of Y The Limit of the Finite Case Conclusion

Probability of Missing a Specific Summand

Like [LMO], for odd n,

{n ̸∈ A+A} = {(0 /∈ A or n /∈ A) and · · · and
(n − 1

2
/∈ A or

n + 1
2

/∈ A
)
}

and for even n,

{n /∈ A+ A} = {(0 /∈ A or n /∈ A) and · · · and n/2 ̸∈ A}.

Hence,

P (n ̸∈ A+ A) =

{
(1 − p2)

n+1
2 n odd

(1 − p)(1 − p2)
n
2 n even.

30



Introduction The Infinite Case Expected Value Higher Moments The Distribution of Y The Limit of the Finite Case Conclusion

Calculating E (Y)

By the Monotone Convergence Theorem,

E (Y) =
∞∑

n=0

E (Xn) =
∑
n odd

(1 − p2)(n+1)/2+
∑

n even

(1 − p)(1 − p2)n/2.

Proposition
For p ∈ (0,1),

E (Y) =
2
p2 − 1

p
− 1.
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Higher Moments
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A Problem with Dependencies

To calculate E
(
Y2
)
, need P (i , j /∈ A+ A).

Unlike P (i /∈ A+ A), P (i , j ̸∈ A+ A) is laden with
dependencies.

Example: P (0 ̸∈ A+ A) = 1 − p and
P (1 ̸∈ A+ A) = 1− p2, but P (0,1 ̸∈ A+ A) = 1− p2.

For higher moments, E
(
Yk
)
, even more dependency.
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A Workaround

Instead of an exact expression, we find a bound:

E
(
Yk) =

∞∑
n1=0

· · ·
∞∑

nk=0

P(n1, . . . ,nk /∈ A+ A)

≤
∞∑

n1=0

· · ·
∞∑

nk=0

P(max{n1, . . . ,nk} /∈ A+ A).

We know the probability of n /∈ A+ A:

E
(
Yk) ≤ ∞∑

n1=0

· · ·
∞∑

nk=0

(1 − p2)(max{n1,...,nk}+1)/2.

Intuitively may not be too much loss; if
max{n1, . . . ,nk} /∈ A+ A, many elements are missing
from A, so other values are probably also missing
from A+ A.
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The bound

Evaluating the “almost-geometric” sum yields

E
(
Yk) ≤ (1 +

α√
2π

)
k !
αk ,

where

α := log
1√

1 − p2
=
∣∣∣log√1 − p2

∣∣∣ .
O(k !/αk) moments correspond to f (x) = e−αx .
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The Distribution of Y
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Empirical results
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Asymptotic rate of decay seems “approximately
exponential.”
Y appears more likely to be even than odd.
Question: how does this distribution relate to the
“finite case”?
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Proving exponential decay

Since E
(
Yk
)
= O(k !/αk), Chernoff’s inequality yields

P (Y ≥ n) = O
(

n
(
1 − p2)n/2

)
.

If 0, . . . ,n/2 are missing from A, then 0, . . . ,n are
missing from A+ A. Therefore,

P (Y ≥ n) ≥ (1 − p)n/2+1.

Bounded above and below by exponential functions,
P (Y ≥ n) is “approximately exponential.”
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Can we determine the details?

At large, the distribution is exponential.

Determining the exact details is very hard.

A “simple” question: what is the probability P (Y = 0)
of missing zero summands, e.g., of having
A+ A = Z≥0?

0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0

The probability of missing zero summands
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Speculation about P (Y = n)

Proposition: P (Y = 0) is asymptotically less than
every polynomial.

Conjecture: P (Y = 0) > 0 for every p ̸= 0.

Conjecture: P (Y = 0) cannot be an analytic function
of p.

Conjecture: P (Y = n) has no closed-form expression
in elementary functions.
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The Limit of the Finite Case
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Review of the finite case

A ⊆ [0,N] selected at random such that P (i ∈ A) = p
for all i independently.

Define Y := 2N + 1 − |A + A| and Xi := [i /∈ A + A].

Object of interest: random variable YN→∞,

P (YN→∞ = n) := lim
N→∞

P (Y = n).

What we will compute: the k -th moment

E
(
Y k

N→∞
)
= lim

N→∞
E
(
Y k).
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The k -th moment of Y as a corner sum

E
(
Y k
)
=
∑2N

i1,...,ik=0 E (Xi1 . . .Xik ) is a sum over a
k -dimensional hypercube.

Observation: A + A is “almost full” in the middle.

Conclusion: To compute E
(
Y k
)
, we just need to sum

over the corners of the hypercube.
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Summing over the corners

Observation: When j − i > N, events i /∈ A + A and
j /∈ A + A are independent. Therefore, the corners are
independent.

Result of calculations: the k -th moment of YN→∞ is

lim
N→∞

E
(
Y k) = k∑

s=0

(
k
s

)
E (Ys)E

(
Yk−s).
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The finite case, reduced

Observation: The moments limN→∞ E
(
Y k
)

are the
same as those of Y+ Y′. Apply Carleman’s condition.

Theorem

The probability distribution of YN→∞ is the same as that of
Y+ Y′, where Y′ is a copy of Y independent of it.

Intuition: Summands can be missing from the left and
right fringes, and these are independent for large N.
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Future Work

Use Euler’s identity to calculate the even-odd
disparity: P (Y even)− P (Y odd) = E

(
eiπY

)
.

Get tighter bounds on the asymptotic decay rate of
P (Y ≥ n).

Investigate A+k , the k -th additive power of A, as well
as A+∞ = {0} ∪ A ∪ A+2 . . . , the set of all possible
sums resulting from A.
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