Linear Recurrences of Order at Most Two in Nontrivial Divisors

Liyang Shen (joint work with Hung Chu, Kevin Le, Steven J. Miller, and Yuan Qiu)

New York University

Liyang.Shen@nyu.edu
New York Number Theory Seminar CANT 2023
May 232023

Introduction

Definition 1

The set of small divisors of N is

$$
S_{N}:=\{d: 1 \leq d \leq \sqrt{N}, d \text { divides } N\} .
$$

There is a related definition:

$$
S_{N}^{\prime}:=\{d: 1<d<\sqrt{N}, d \text { divides } N\}
$$

Introduction

Definition 1

The set of small divisors of N is

$$
S_{N}:=\{d: 1 \leq d \leq \sqrt{N}, d \text { divides } N\} .
$$

There is a related definition:

$$
S_{N}^{\prime}:=\{d: 1<d<\sqrt{N}, d \text { divides } N\}
$$

Definition 2

A positive integer N is said to be small recurrent if S_{N}^{\prime} satisfies a linear recurrence of order at most two. When $\left|S_{N}^{\prime}\right| \leq 2, N$ is vacuously small recurrent.

- In 2018, lannucci characterized all positive integers N whose S_{N} forms an arithmetic progression (or AP, for short).
- In 2018, lannucci characterized all positive integers N whose S_{N} forms an arithmetic progression (or AP, for short).
- lannucci's key idea was to show that if S_{N} forms an AP, then the size $\left|S_{N}\right|$ cannot exceed 6 . The trivial divisor 1 plays an important role in lannucci's proofs.
- In 2018, lannucci characterized all positive integers N whose S_{N} forms an arithmetic progression (or AP, for short).
- lannucci's key idea was to show that if S_{N} forms an AP, then the size $\left|S_{N}\right|$ cannot exceed 6 . The trivial divisor 1 plays an important role in lannucci's proofs.
- Recently, Chentouf generalized Iannucci's result from a different perspective by characterizing all N whose S_{N} satisfies a linear recurrence of order at most two.
- In 2018, lannucci characterized all positive integers N whose S_{N} forms an arithmetic progression (or AP, for short).
- lannucci's key idea was to show that if S_{N} forms an AP, then the size $\left|S_{N}\right|$ cannot exceed 6 . The trivial divisor 1 plays an important role in lannucci's proofs.
- Recently, Chentouf generalized lannucci's result from a different perspective by characterizing all N whose S_{N} satisfies a linear recurrence of order at most two.
- In particular, for each tuple $(u, v, a, b) \in \mathbb{Z}^{4}$, there is an integral linear recurrence, denoted by $U(u, v, a, b)$, of order at most two, given by

$$
n_{i}= \begin{cases}u & \text { if } i=1 \\ v & \text { if } i=2 \\ a n_{i-1}+b n_{i-2} & \text { if } i \geq 3\end{cases}
$$

- Noting that the appearance of the trivial divisor 1 contributes nontrivially to Chentouf's proof, we generalize his result: we characterize all positive integers N whose S_{N}^{\prime} satisfies a linear recurrence of order at most two without the help of the trivial divisor.

Properties of S_{N}

Proposition 1
If $\left|S_{N}^{\prime}\right| \geq 2$, then N cannot have two (not necessarily distinct) prime factors p_{1} and p_{2} at least \sqrt{N}.

Proposition 1

If $\left|S_{N}^{\prime}\right| \geq 2$, then N cannot have two (not necessarily distinct) prime factors p_{1} and p_{2} at least \sqrt{N}.

Proposition 2

If all elements of S_{N}^{\prime} are divisible by some prime p and $\left|S_{N}^{\prime}\right| \geq 4$, then either $N=p^{k}$ or $N=p^{k} q$ for some $k \geq 1$ and some prime $q>p^{k}$.

Proposition 1

If $\left|S_{N}^{\prime}\right| \geq 2$, then N cannot have two (not necessarily distinct) prime factors p_{1} and p_{2} at least \sqrt{N}.

Proposition 2

If all elements of S_{N}^{\prime} are divisible by some prime p and $\left|S_{N}^{\prime}\right| \geq 4$, then either $N=p^{k}$ or $N=p^{k} q$ for some $k \geq 1$ and some prime $q>p^{k}$.

Proof: If all divisors (except 1) of N are divisible by p, then $N=p^{k}$ for some $k \geq 1$.

Properties of S_{N}^{\prime}

Proposition 1

If $\left|S_{N}^{\prime}\right| \geq 2$, then N cannot have two (not necessarily distinct) prime factors p_{1} and p_{2} at least \sqrt{N}.

Proposition 2

If all elements of S_{N}^{\prime} are divisible by some prime p and $\left|S_{N}^{\prime}\right| \geq 4$, then either $N=p^{k}$ or $N=p^{k} q$ for some $k \geq 1$ and some prime $q>p^{k}$.

Proof: If all divisors (except 1) of N are divisible by p, then $N=p^{k}$ for some $k \geq 1$. Assume that N has a prime factor $q \neq p$. Then $q \geq \sqrt{N}$.

Properties of S_{N}^{\prime}

Proposition 1

If $\left|S_{N}^{\prime}\right| \geq 2$, then N cannot have two (not necessarily distinct) prime factors p_{1} and p_{2} at least \sqrt{N}.

Proposition 2

If all elements of S_{N}^{\prime} are divisible by some prime p and $\left|S_{N}^{\prime}\right| \geq 4$, then either $N=p^{k}$ or $N=p^{k} q$ for some $k \geq 1$ and some prime $q>p^{k}$.

Proof: If all divisors (except 1) of N are divisible by p, then $N=p^{k}$ for some $k \geq 1$. Assume that N has a prime factor $q \neq p$. Then $q \geq \sqrt{N}$. Proposition 1 implies that N cannot have another prime factor at least \sqrt{N}. Hence, $N=p^{k} q$ for some $k \geq 1$ and $q>p^{k}$.

Notation

Write $S_{N}^{\prime}=\left\{d_{2}, d_{3}, d_{4}, d_{5}, \ldots\right\}$. (We start with d_{2} since the smallest divisor of N is usually denoted by $d_{1}=1$, which is excluded from S_{N}^{\prime}.)

Notation

Write $S_{N}^{\prime}=\left\{d_{2}, d_{3}, d_{4}, d_{5}, \ldots\right\}$. (We start with d_{2} since the smallest divisor of N is usually denoted by $d_{1}=1$, which is excluded from S_{N}^{\prime}.)

Lemma 3

Suppose that the first 4 numbers in S_{N}^{\prime} are $p<q<p^{2}<r$. If N is small recurrent with $U(p, q, a, b)$, the following hold:

Notation

Write $S_{N}^{\prime}=\left\{d_{2}, d_{3}, d_{4}, d_{5}, \ldots\right\}$. (We start with d_{2} since the smallest divisor of N is usually denoted by $d_{1}=1$, which is excluded from S_{N}^{\prime}.)

Lemma 3

Suppose that the first 4 numbers in S_{N}^{\prime} are $p<q<p^{2}<r$. If N is small recurrent with $U(p, q, a, b)$, the following hold:
i) $\operatorname{gcd}(a, b)=1$.

First case of S_{N}^{\prime}

Notation
Write $S_{N}^{\prime}=\left\{d_{2}, d_{3}, d_{4}, d_{5}, \ldots\right\}$. (We start with d_{2} since the smallest divisor of N is usually denoted by $d_{1}=1$, which is excluded from S_{N}^{\prime}.)

Lemma 3

Suppose that the first 4 numbers in S_{N}^{\prime} are $p<q<p^{2}<r$. If N is small recurrent with $U(p, q, a, b)$, the following hold:
i) $\operatorname{gcd}(a, b)=1$.
ii) if $d_{2 i} \in S_{N}^{\prime}$, then $p \mid d_{2 i}$; however, if $d_{2 i-1} \in S_{N}^{\prime}$, then $p \nmid d_{2 i-1}$.

First case of S_{N}^{\prime}

Notation
Write $S_{N}^{\prime}=\left\{d_{2}, d_{3}, d_{4}, d_{5}, \ldots\right\}$. (We start with d_{2} since the smallest divisor of N is usually denoted by $d_{1}=1$, which is excluded from S_{N}^{\prime}.)

Lemma 3

Suppose that the first 4 numbers in S_{N}^{\prime} are $p<q<p^{2}<r$. If N is small recurrent with $U(p, q, a, b)$, the following hold:
i) $\operatorname{gcd}(a, b)=1$.
ii) if $d_{2 i} \in S_{N}^{\prime}$, then $p \mid d_{2 i}$; however, if $d_{2 i-1} \in S_{N}^{\prime}$, then $p \nmid d_{2 i-1}$.
iii) for $d_{i}, d_{2 i-1} \in S_{N}^{\prime}$, we have $\operatorname{gcd}\left(b, d_{i}\right)=\operatorname{gcd}\left(a, d_{2 i-1}\right)=1$.

First case of S_{N}

Notation
Write $S_{N}^{\prime}=\left\{d_{2}, d_{3}, d_{4}, d_{5}, \ldots\right\}$. (We start with d_{2} since the smallest divisor of N is usually denoted by $d_{1}=1$, which is excluded from S_{N}^{\prime}.)

Lemma 3

Suppose that the first 4 numbers in S_{N}^{\prime} are $p<q<p^{2}<r$. If N is small recurrent with $U(p, q, a, b)$, the following hold:
i) $\operatorname{gcd}(a, b)=1$.
ii) if $d_{2 i} \in S_{N}^{\prime}$, then $p \mid d_{2 i}$; however, if $d_{2 i-1} \in S_{N}^{\prime}$, then $p \nmid d_{2 i-1}$.
iii) for $d_{i}, d_{2 i-1} \in S_{N}^{\prime}$, we have $\operatorname{gcd}\left(b, d_{i}\right)=\operatorname{gcd}\left(a, d_{2 i-1}\right)=1$.
iv) for $d_{i}, d_{i+1} \in S_{N}^{\prime}$, we have $\operatorname{gcd}\left(d_{i}, d_{i+1}\right)=1$.

First case of S_{N}^{\prime}

Notation
Write $S_{N}^{\prime}=\left\{d_{2}, d_{3}, d_{4}, d_{5}, \ldots\right\}$. (We start with d_{2} since the smallest divisor of N is usually denoted by $d_{1}=1$, which is excluded from S_{N}^{\prime}.)

Lemma 3

Suppose that the first 4 numbers in S_{N}^{\prime} are $p<q<p^{2}<r$. If N is small recurrent with $U(p, q, a, b)$, the following hold:
i) $\operatorname{gcd}(a, b)=1$.
ii) if $d_{2 i} \in S_{N}^{\prime}$, then $p \mid d_{2 i}$; however, if $d_{2 i-1} \in S_{N}^{\prime}$, then $p \nmid d_{2 i-1}$.
iii) for $d_{i}, d_{2 i-1} \in S_{N}^{\prime}$, we have $\operatorname{gcd}\left(b, d_{i}\right)=\operatorname{gcd}\left(a, d_{2 i-1}\right)=1$.
iv) for $d_{i}, d_{i+1} \in S_{N}^{\prime}$, we have $\operatorname{gcd}\left(d_{i}, d_{i+1}\right)=1$.
v) for $d_{2 i-1}, d_{2 i+1} \in S_{N}^{\prime}$, we have $\operatorname{gcd}\left(d_{2 i-1}, d_{2 i+1}\right)=1$.

An example

We first look at a simple example. Let $N=60$, so
$S_{N}^{\prime}=\left\{d_{2}=2, d_{3}=3, d_{4}=4, d_{5}=5\right\}$.

An example

We first look at a simple example. Let $N=60$, so
$S_{N}^{\prime}=\left\{d_{2}=2, d_{3}=3, d_{4}=4, d_{5}=5\right\}$. we can check that 60 is small recurrent with $U(p=2, q=3, a=2, b=-1)$.

An example

We first look at a simple example. Let $N=60$, so
$S_{N}^{\prime}=\left\{d_{2}=2, d_{3}=3, d_{4}=4, d_{5}=5\right\}$. we can check that 60 is small recurrent with $U(p=2, q=3, a=2, b=-1)$.
i) $\operatorname{gcd}(a, b)=\operatorname{gcd}(2,-1)=1$.

An example

We first look at a simple example. Let $N=60$, so
$S_{N}^{\prime}=\left\{d_{2}=2, d_{3}=3, d_{4}=4, d_{5}=5\right\}$. we can check that 60 is small recurrent with $U(p=2, q=3, a=2, b=-1)$.
i) $\operatorname{gcd}(a, b)=\operatorname{gcd}(2,-1)=1$.
ii) $p \mid d_{2}$ and $p \mid d_{4}$, but $p \nmid d_{3}$ and $p \nmid d_{5}$.

An example

We first look at a simple example. Let $N=60$, so
$S_{N}^{\prime}=\left\{d_{2}=2, d_{3}=3, d_{4}=4, d_{5}=5\right\}$. we can check that 60 is small recurrent with $U(p=2, q=3, a=2, b=-1)$.
i) $\operatorname{gcd}(a, b)=\operatorname{gcd}(2,-1)=1$.
ii) $p \mid d_{2}$ and $p \mid d_{4}$, but $p \nmid d_{3}$ and $p \nmid d_{5}$.
iii) for $d_{i}, d_{2 i-1} \in S_{N}^{\prime}$, we have $\operatorname{gcd}\left(b, d_{i}\right)=\operatorname{gcd}\left(a, d_{2 i-1}\right)=1$.

An example

We first look at a simple example. Let $N=60$, so
$S_{N}^{\prime}=\left\{d_{2}=2, d_{3}=3, d_{4}=4, d_{5}=5\right\}$. we can check that 60 is small recurrent with $U(p=2, q=3, a=2, b=-1)$.
i) $\operatorname{gcd}(a, b)=\operatorname{gcd}(2,-1)=1$.
ii) $p \mid d_{2}$ and $p \mid d_{4}$, but $p \nmid d_{3}$ and $p \nmid d_{5}$.
iii) for $d_{i}, d_{2 i-1} \in S_{N}^{\prime}$, we have $\operatorname{gcd}\left(b, d_{i}\right)=\operatorname{gcd}\left(a, d_{2 i-1}\right)=1$.
iv) for $d_{i}, d_{i+1} \in S_{N}^{\prime}$, we have $\operatorname{gcd}\left(d_{i}, d_{i+1}\right)=1$.

An example

We first look at a simple example. Let $N=60$, so
$S_{N}^{\prime}=\left\{d_{2}=2, d_{3}=3, d_{4}=4, d_{5}=5\right\}$. we can check that 60 is small recurrent with $U(p=2, q=3, a=2, b=-1)$.
i) $\operatorname{gcd}(a, b)=\operatorname{gcd}(2,-1)=1$.
ii) $p \mid d_{2}$ and $p \mid d_{4}$, but $p \nmid d_{3}$ and $p \nmid d_{5}$.
iii) for $d_{i}, d_{2 i-1} \in S_{N}^{\prime}$, we have $\operatorname{gcd}\left(b, d_{i}\right)=\operatorname{gcd}\left(a, d_{2 i-1}\right)=1$.
iv) for $d_{i}, d_{i+1} \in S_{N}^{\prime}$, we have $\operatorname{gcd}\left(d_{i}, d_{i+1}\right)=1$.
v) for $d_{2 i-1}, d_{2 i+1} \in S_{N}^{\prime}$, we have $\operatorname{gcd}\left(d_{2 i-1}, d_{2 i+1}\right)=1$.

Small recurrent numbers

Small recurrent numbers

As we rely heavily on case analysis and there are many cases, we only focus on two typical cases here.

Small recurrent numbers

As we rely heavily on case analysis and there are many cases, we only focus on two typical cases here.
Let $d_{2}=p$ for some prime p. Then d_{3} is either p^{2} or q for some prime $q>p$.

Small recurrent numbers

As we rely heavily on case analysis and there are many cases, we only focus on two typical cases here.
Let $d_{2}=p$ for some prime p. Then d_{3} is either p^{2} or q for some prime $q>p$.

The case $d_{2}=p, d_{3}=p^{2}$
If $d_{3}=p^{2}$, according to Proposition 2, we know that $N=p^{k}$ or $N=p^{k} q$ for some $k \geq 1$ and $q>p^{k}$.

Small recurrent numbers

As we rely heavily on case analysis and there are many cases, we only focus on two typical cases here.
Let $d_{2}=p$ for some prime p. Then d_{3} is either p^{2} or q for some prime $q>p$.

The case $d_{2}=p, d_{3}=p^{2}$
If $d_{3}=p^{2}$, according to Proposition 2, we know that $N=p^{k}$ or $N=p^{k} q$ for some $k \geq 1$ and $q>p^{k}$.

The case $d_{2}=p, d_{3}=q, d_{4}=p^{2}, d_{5}=r$
If $d_{3}=q$ for some prime $q>p$, then $d_{4}=p q, p^{2}, r$ for some prime $r>q$.

Small recurrent numbers

As we rely heavily on case analysis and there are many cases, we only focus on two typical cases here.
Let $d_{2}=p$ for some prime p. Then d_{3} is either p^{2} or q for some prime $q>p$.

The case $d_{2}=p, d_{3}=p^{2}$
If $d_{3}=p^{2}$, according to Proposition 2, we know that $N=p^{k}$ or $N=p^{k} q$ for some $k \geq 1$ and $q>p^{k}$.

The case $d_{2}=p, d_{3}=q, d_{4}=p^{2}, d_{5}=r$
If $d_{3}=q$ for some prime $q>p$, then $d_{4}=p q, p^{2}, r$ for some prime $r>q$. In this talk, we will mainly focus on the case
$d_{2}=p, d_{3}=q, d_{4}=p^{2}, d_{5}=r$.

The case where $d_{2}=p, d_{3}=q, d_{4}=p^{2}$
When $d_{5}=r$, we show by induction the following proposition.
Proposition 4
Suppose that the first 4 numbers in S_{N}^{\prime} are $p<q<p^{2}<r$. Then $\left|S_{N}\right| \leq 7$. As a result, $\left|S_{N}^{\prime}\right| \leq 6$.

The case where $d_{2}=p, d_{3}=q, d_{4}=p^{2}$

When $d_{5}=r$, we show by induction the following proposition.
Proposition 4
Suppose that the first 4 numbers in S_{N}^{\prime} are $p<q<p^{2}<r$. Then $\left|S_{N}\right| \leq 7$. As a result, $\left|S_{N}^{\prime}\right| \leq 6$.

Proof.

Assume that $\left|S_{N}\right| \geq 2 i$ for some $i \geq 4$. We obtain a contradiction by showing that $\left|S_{N}\right| \geq 2 i+2$.

The case where $d_{2}=p, d_{3}=q, d_{4}=p^{2}$

When $d_{5}=r$, we show by induction the following proposition.

Proposition 4

Suppose that the first 4 numbers in S_{N}^{\prime} are $p<q<p^{2}<r$. Then $\left|S_{N}\right| \leq 7$. As a result, $\left|S_{N}^{\prime}\right| \leq 6$.

Proof.

Assume that $\left|S_{N}\right| \geq 2 i$ for some $i \geq 4$. We obtain a contradiction by showing that $\left|S_{N}\right| \geq 2 i+2$.

By Lemma 3 ii), $p \nmid d_{2 i-1}, p \mid d_{2 i-2}$, and $p \nmid d_{2 i-3}$. By Lemma 3 v), $\operatorname{gcd}\left(d_{2 i-1}, d_{2 i-3}\right)=1$, so $p^{2} d_{2 i-1} d_{2 i-3}$ divides N.

The case where $d_{2}=p, d_{3}=q, d_{4}=p^{2}$
When $d_{5}=r$, we show by induction the following proposition.

Proposition 4

Suppose that the first 4 numbers in S_{N}^{\prime} are $p<q<p^{2}<r$. Then $\left|S_{N}\right| \leq 7$. As a result, $\left|S_{N}^{\prime}\right| \leq 6$.

Proof.

Assume that $\left|S_{N}\right| \geq 2 i$ for some $i \geq 4$. We obtain a contradiction by showing that $\left|S_{N}\right| \geq 2 i+2$.

By Lemma 3 ii), $p \nmid d_{2 i-1}, p \mid d_{2 i-2}$, and $p \nmid d_{2 i-3}$. By Lemma 3 v), $\operatorname{gcd}\left(d_{2 i-1}, d_{2 i-3}\right)=1$, so $p^{2} d_{2 i-1} d_{2 i-3}$ divides N. Hence, $p d_{2 i-3} \in S_{N}^{\prime}$.

The case where $d_{2}=p, d_{3}=q, d_{4}=p^{2}$
When $d_{5}=r$, we show by induction the following proposition.

Proposition 4

Suppose that the first 4 numbers in S_{N}^{\prime} are $p<q<p^{2}<r$. Then $\left|S_{N}\right| \leq 7$. As a result, $\left|S_{N}^{\prime}\right| \leq 6$.

Proof.

Assume that $\left|S_{N}\right| \geq 2 i$ for some $i \geq 4$. We obtain a contradiction by showing that $\left|S_{N}\right| \geq 2 i+2$.

By Lemma 3 ii), $p \nmid d_{2 i-1}, p \mid d_{2 i-2}$, and $p \nmid d_{2 i-3}$. By Lemma 3 v), $\operatorname{gcd}\left(d_{2 i-1}, d_{2 i-3}\right)=1$, so $p^{2} d_{2 i-1} d_{2 i-3}$ divides N. Hence, $p d_{2 i-3} \in S_{N}^{\prime}$.

If $p d_{2 i-3}=d_{2 i-2}$, then $p d_{2 i-3}=a d_{2 i-3}+b d_{2 i-4}$,

The case where $d_{2}=p, d_{3}=q, d_{4}=p^{2}$

When $d_{5}=r$, we show by induction the following proposition.

Proposition 4

Suppose that the first 4 numbers in S_{N}^{\prime} are $p<q<p^{2}<r$. Then $\left|S_{N}\right| \leq 7$. As a result, $\left|S_{N}^{\prime}\right| \leq 6$.

Proof.

Assume that $\left|S_{N}\right| \geq 2 i$ for some $i \geq 4$. We obtain a contradiction by showing that $\left|S_{N}\right| \geq 2 i+2$.

By Lemma 3 ii), $p \nmid d_{2 i-1}, p \mid d_{2 i-2}$, and $p \nmid d_{2 i-3}$. By Lemma 3 v), $\operatorname{gcd}\left(d_{2 i-1}, d_{2 i-3}\right)=1$, so $p^{2} d_{2 i-1} d_{2 i-3}$ divides N. Hence, $p d_{2 i-3} \in S_{N}^{\prime}$.

If $p d_{2 i-3}=d_{2 i-2}$, then $p d_{2 i-3}=a d_{2 i-3}+b d_{2 i-4}$, so $d_{2 i-3} \mid b d_{2 i-4}$, which contradicts Lemma 3 iii) and iv).

The case where $d_{2}=p, d_{3}=q, d_{4}=p^{2}$
If $p d_{2 i-3}=d_{2 i}$, then

$$
\begin{aligned}
p d_{2 i-3}=a d_{2 i-1}+b d_{2 i-2} & =a\left(a d_{2 i-2}+b d_{2 i-3}\right)+b d_{2 i-2} \\
& =\left(a^{2}+b\right) d_{2 i-2}+a b d_{2 i-3} .
\end{aligned}
$$

The case where $d_{2}=p, d_{3}=q, d_{4}=p^{2}$
If $p d_{2 i-3}=d_{2 i}$, then

$$
\begin{aligned}
p d_{2 i-3}=a d_{2 i-1}+b d_{2 i-2} & =a\left(a d_{2 i-2}+b d_{2 i-3}\right)+b d_{2 i-2} \\
& =\left(a^{2}+b\right) d_{2 i-2}+a b d_{2 i-3} .
\end{aligned}
$$

Therefore, $d_{2 i-3}$ divides $a^{2}+b$.

The case where $d_{2}=p, d_{3}=q, d_{4}=p^{2}$

If $p d_{2 i-3}=d_{2 i}$, then

$$
\begin{aligned}
p d_{2 i-3}=a d_{2 i-1}+b d_{2 i-2} & =a\left(a d_{2 i-2}+b d_{2 i-3}\right)+b d_{2 i-2} \\
& =\left(a^{2}+b\right) d_{2 i-2}+a b d_{2 i-3} .
\end{aligned}
$$

Therefore, $d_{2 i-3}$ divides $a^{2}+b$.
It is easy to check that for $d_{j} \in S_{N}^{\prime}$, the sequence $d_{j} a^{2}+b$ is congruent to
$1, p, q, p^{2}, a b p, a b q, a b p^{2},(a b)^{2} p,(a b)^{2} q,(a b)^{2} p^{2}, \ldots \bmod \left(a^{2}+b\right)$.

The case where $d_{2}=p, d_{3}=q, d_{4}=p^{2}$

If $p d_{2 i-3}=d_{2 i}$, then

$$
\begin{aligned}
p d_{2 i-3}=a d_{2 i-1}+b d_{2 i-2} & =a\left(a d_{2 i-2}+b d_{2 i-3}\right)+b d_{2 i-2} \\
& =\left(a^{2}+b\right) d_{2 i-2}+a b d_{2 i-3} .
\end{aligned}
$$

Therefore, $d_{2 i-3}$ divides $a^{2}+b$.
It is easy to check that for $d_{j} \in S_{N}^{\prime}$, the sequence $d_{j} a^{2}+b$ is congruent to
$1, p, q, p^{2}, a b p, a b q, a b p^{2},(a b)^{2} p,(a b)^{2} q,(a b)^{2} p^{2}, \ldots \bmod \left(a^{2}+b\right)$.
Hence, we can write

$$
d_{2 i-3}=\left(a^{2}+b\right) \ell+a^{k} b^{k} s,
$$

for some $\ell \in \mathbb{Z}$, some $k \geq 1$, and some $s \in\left\{p, q, p^{2}\right\}$.

The case where $d_{2}=p, d_{3}=q, d_{4}=p^{2}$

If $p d_{2 i-3}=d_{2 i}$, then

$$
\begin{aligned}
p d_{2 i-3}=a d_{2 i-1}+b d_{2 i-2} & =a\left(a d_{2 i-2}+b d_{2 i-3}\right)+b d_{2 i-2} \\
& =\left(a^{2}+b\right) d_{2 i-2}+a b d_{2 i-3} .
\end{aligned}
$$

Therefore, $d_{2 i-3}$ divides $a^{2}+b$.
It is easy to check that for $d_{j} \in S_{N}^{\prime}$, the sequence $d_{j} a^{2}+b$ is congruent to
$1, p, q, p^{2}, a b p, a b q, a b p^{2},(a b)^{2} p,(a b)^{2} q,(a b)^{2} p^{2}, \ldots \bmod \left(a^{2}+b\right)$.
Hence, we can write

$$
d_{2 i-3}=\left(a^{2}+b\right) \ell+a^{k} b^{k} s,
$$

for some $\ell \in \mathbb{Z}$, some $k \geq 1$, and some $s \in\left\{p, q, p^{2}\right\}$. Since $d_{2 i-3} \mid\left(a^{2}+b\right)$, we have $d_{2 i-3} \mid a^{k} b^{k} s$.

The case where $d_{2}=p, d_{3}=q, d_{4}=p^{2}$

If $p d_{2 i-3}=d_{2 i}$, then

$$
\begin{aligned}
p d_{2 i-3}=a d_{2 i-1}+b d_{2 i-2} & =a\left(a d_{2 i-2}+b d_{2 i-3}\right)+b d_{2 i-2} \\
& =\left(a^{2}+b\right) d_{2 i-2}+a b d_{2 i-3} .
\end{aligned}
$$

Therefore, $d_{2 i-3}$ divides $a^{2}+b$.
It is easy to check that for $d_{j} \in S_{N}^{\prime}$, the sequence $d_{j} a^{2}+b$ is congruent to
$1, p, q, p^{2}, a b p, a b q, a b p^{2},(a b)^{2} p,(a b)^{2} q,(a b)^{2} p^{2}, \ldots \bmod \left(a^{2}+b\right)$.
Hence, we can write

$$
d_{2 i-3}=\left(a^{2}+b\right) \ell+a^{k} b^{k} s
$$

for some $\ell \in \mathbb{Z}$, some $k \geq 1$, and some $s \in\left\{p, q, p^{2}\right\}$. Since $d_{2 i-3} \mid\left(a^{2}+b\right)$, we have $d_{2 i-3} \mid a^{k} b^{k} s$. By Lemma 3 iii), $d_{2 i-3} \mid s$; that is, $d_{2 i-3} \leq p^{2}$.

The case where $d_{2}=p, d_{3}=q, d_{4}=p^{2}$

If $p d_{2 i-3}=d_{2 i}$, then

$$
\begin{aligned}
p d_{2 i-3}=a d_{2 i-1}+b d_{2 i-2} & =a\left(a d_{2 i-2}+b d_{2 i-3}\right)+b d_{2 i-2} \\
& =\left(a^{2}+b\right) d_{2 i-2}+a b d_{2 i-3} .
\end{aligned}
$$

Therefore, $d_{2 i-3}$ divides $a^{2}+b$.
It is easy to check that for $d_{j} \in S_{N}^{\prime}$, the sequence $d_{j} a^{2}+b$ is congruent to
$1, p, q, p^{2}, a b p, a b q, a b p^{2},(a b)^{2} p,(a b)^{2} q,(a b)^{2} p^{2}, \ldots \bmod \left(a^{2}+b\right)$.
Hence, we can write

$$
d_{2 i-3}=\left(a^{2}+b\right) \ell+a^{k} b^{k} s
$$

for some $\ell \in \mathbb{Z}$, some $k \geq 1$, and some $s \in\left\{p, q, p^{2}\right\}$. Since $d_{2 i-3} \mid\left(a^{2}+b\right)$, we have $d_{2 i-3} \mid a^{k} b^{k} s$. By Lemma 3 iii), $d_{2 i-3} \mid s$; that is, $d_{2 i-3} \leq p^{2}$. However, $d_{2 i-3} \geq d_{5}>d_{4}=p^{2}$, a contradiction.

We conclude that $p d_{2 i-3} \geq d_{2 i+2}$.

We conclude that $p d_{2 i-3} \geq d_{2 i+2}$. Since $p d_{2 i-3} \in S_{N}^{\prime}$, we know that $d_{2 i+2} \in S_{N}^{\prime}$ and $\left|S_{N}\right| \geq 2 i+2$. This completes the proof to Proposition 4.

We conclude that $p d_{2 i-3} \geq d_{2 i+2}$. Since $p d_{2 i-3} \in S_{N}^{\prime}$, we know that $d_{2 i+2} \in S_{N}^{\prime}$ and $\left|S_{N}\right| \geq 2 i+2$. This completes the proof to Proposition 4.

Next we exclude other two cases by showing the following proposition.

Proposition 5

Suppose that the first 4 numbers in S_{N}^{\prime} are $p<q<p^{2}<r$. If N is small recurrent, then $\left|S_{N}^{\prime}\right| \neq 4,6$.

We conclude that $p d_{2 i-3} \geq d_{2 i+2}$. Since $p d_{2 i-3} \in S_{N}^{\prime}$, we know that $d_{2 i+2} \in S_{N}^{\prime}$ and $\left|S_{N}\right| \geq 2 i+2$. This completes the proof to Proposition 4.

Next we exclude other two cases by showing the following proposition.

Proposition 5

Suppose that the first 4 numbers in S_{N}^{\prime} are $p<q<p^{2}<r$. If N is small recurrent, then $\left|S_{N}^{\prime}\right| \neq 4,6$.

Proof.

For each $N \in \mathbb{N}$ with the prime factorization $\prod_{i=1}^{\ell} p_{i}^{a_{i}}$, the divisor-counting function is

$$
\begin{equation*}
\tau(N):=\sum_{d \mid N} 1=\prod_{i=1}^{\ell}\left(a_{i}+1\right) \tag{1}
\end{equation*}
$$

It is easy to verify that for $N>1$,

$$
\tau(N):= \begin{cases}2\left|S_{N}^{\prime}\right|+3 & \text { if } N \text { is a square } \tag{2}\\ 2\left|S_{N}^{\prime}\right|+2 & \text { otherwise }\end{cases}
$$

It is easy to verify that for $N>1$,

$$
\tau(N):= \begin{cases}2\left|S_{N}^{\prime}\right|+3 & \text { if } N \text { is a square } \tag{2}\\ 2\left|S_{N}^{\prime}\right|+2 & \text { otherwise }\end{cases}
$$

If $\left|S_{N}^{\prime}\right|=4$, then (2) gives $\tau(N)=10$ or 11 .

It is easy to verify that for $N>1$,

$$
\tau(N):= \begin{cases}2\left|S_{N}^{\prime}\right|+3 & \text { if } N \text { is a square } \tag{2}\\ 2\left|S_{N}^{\prime}\right|+2 & \text { otherwise }\end{cases}
$$

If $\left|S_{N}^{\prime}\right|=4$, then (2) gives $\tau(N)=10$ or 11 . Note that N has three distinct prime factors p, q, r and the power of p is at least 2 . Since $2^{3} \cdot 3>11, N$ cannot have another prime factor besides p, q, r.

It is easy to verify that for $N>1$,

$$
\tau(N):= \begin{cases}2\left|S_{N}^{\prime}\right|+3 & \text { if } N \text { is a square } \tag{2}\\ 2\left|S_{N}^{\prime}\right|+2 & \text { otherwise }\end{cases}
$$

If $\left|S_{N}^{\prime}\right|=4$, then (2) gives $\tau(N)=10$ or 11 . Note that N has three distinct prime factors p, q, r and the power of p is at least 2 . Since $2^{3} \cdot 3>11, N$ cannot have another prime factor besides p, q, r.

Write $N=p^{a} q^{b} r^{c}$, for some $a \geq 2, b \geq 1, c \geq 1$. However, neither $(a+1)(b+1)(c+1)=10$ nor $(a+1)(b+1)(c+1)=11$ has a solution.

It is easy to verify that for $N>1$,

$$
\tau(N):= \begin{cases}2\left|S_{N}^{\prime}\right|+3 & \text { if } N \text { is a square } \tag{2}\\ 2\left|S_{N}^{\prime}\right|+2 & \text { otherwise }\end{cases}
$$

If $\left|S_{N}^{\prime}\right|=4$, then (2) gives $\tau(N)=10$ or 11 . Note that N has three distinct prime factors p, q, r and the power of p is at least 2 . Since $2^{3} \cdot 3>11, N$ cannot have another prime factor besides p, q, r.

Write $N=p^{a} q^{b} r^{c}$, for some $a \geq 2, b \geq 1, c \geq 1$. However, neither $(a+1)(b+1)(c+1)=10$ nor $(a+1)(b+1)(c+1)=11$ has a solution. Therefore, $\left|S_{N}^{\prime}\right| \neq 4$. A similar argument gives $\left|S_{N}^{\prime}\right| \neq 6$.

It is easy to verify that for $N>1$,

$$
\tau(N):= \begin{cases}2\left|S_{N}^{\prime}\right|+3 & \text { if } N \text { is a square } \tag{2}\\ 2\left|S_{N}^{\prime}\right|+2 & \text { otherwise }\end{cases}
$$

If $\left|S_{N}^{\prime}\right|=4$, then (2) gives $\tau(N)=10$ or 11 . Note that N has three distinct prime factors p, q, r and the power of p is at least 2 . Since $2^{3} \cdot 3>11, N$ cannot have another prime factor besides p, q, r.

Write $N=p^{a} q^{b} r^{c}$, for some $a \geq 2, b \geq 1, c \geq 1$. However, neither $(a+1)(b+1)(c+1)=10$ nor $(a+1)(b+1)(c+1)=11$ has a solution. Therefore, $\left|S_{N}^{\prime}\right| \neq 4$. A similar argument gives $\left|S_{N}^{\prime}\right| \neq 6$.

Conclusion

By Propositions 4 and 5 , we know that $\left|S_{N}^{\prime}\right|=5$; that is, $\tau(N)=12$ or 13 . Using the same reasoning as in the proof of Proposition 5 , we know that $\tau(N)=12$ and $N=p^{2} q$, where $p<q<p^{2}<r$.

Full list

Now we give the complete list of small recurrent numbers.

Full list

Now we give the complete list of small recurrent numbers.
Complete list
If N is small recurrent and $\left|S_{N}^{\prime}\right| \geq 4$, then N belongs to one of the following forms.

Full list

Now we give the complete list of small recurrent numbers.
Complete list
If N is small recurrent and $\left|S_{N}^{\prime}\right| \geq 4$, then N belongs to one of the following forms.
(S1) $N=p^{k}$ or $N=p^{k} q$ for some $k \geq 1$ and $q>p^{k}$.
(S2) $N=p q^{k}$ or $p q^{k} r$ for some $k \geq 2, p<q$, and $p q^{k}<r$.
(S3) $N=p^{k} q r$ for some $k \geq 2$, some prime $r>p^{k} q$, and $\sqrt{q}<p<q$.
(S4) $N=p^{k} q$ for some $k \geq 2$ and $\sqrt{q}<p<q$.
(S5) $N=p^{2} q^{2}$ for some $p<q<p^{2}$.
(S6) $N=p^{3} q^{2}$ for some $p^{3 / 2}<q<p^{2}$.
(S7) $N=p^{2} q r$, where the first four numbers in S_{N}^{\prime} are $p<q<p^{2}<r$.

We see the above list forms a necessary condition, so we now refine these forms to get a necssary and sufficient condition.

We see the above list forms a necessary condition, so we now refine these forms to get a necssary and sufficient condition.

Proposition 6

A positive integer N is small recurrent with $\left|S_{N}^{\prime}\right| \geq 4$ if and only if N belongs to one of the following forms.

We see the above list forms a necessary condition, so we now refine these forms to get a necssary and sufficient condition.

Proposition 6

A positive integer N is small recurrent with $\left|S_{N}^{\prime}\right| \geq 4$ if and only if N belongs to one of the following forms.
(S1) $N=p^{k}$ for some $k \geq 9$. In this case, $S_{N}^{\prime}=\left\{p, p^{2}, p^{3}, \ldots, p^{\lfloor(k-1) / 2\rfloor}\right\}$ satisfies $U\left(p, p^{2}, p, 0\right)$.
(S2) $N=p^{k} q$ for some $k \geq 4$ and $q>p^{k}$. In this case, $S_{N}^{\prime}=\left\{p, p^{2}, p^{3}, \ldots, p^{k}\right\}$ satisfies $U\left(p, p^{2}, p, 0\right)$.
(S3) $N=p q^{k}$ for some $k \geq 4$ and $p<q$. In this case, $S_{N}^{\prime}=\left\{p, q, p q, q^{2}, \ldots\right\}$ satisfies $U(p, q, 0, q)$.
(S4) $N=p q^{k} r$ for some $k \geq 2, p<q$, and $r>p q^{k}$. In this case, $S_{N}^{\prime}=\left\{p, q, p q, q^{2}, \ldots, p q^{k-1}, q^{k}, p q^{k}\right\}$ satisfies $U(p, q, 0, q)$.
(S5) $N=p^{k} q$ for some $k \geq 4$ and $\sqrt{q}<p<q$. In this case, $S_{N}^{\prime}=\left\{p, q, p^{2}, p q, \ldots\right\}$ satisfies $U(p, q, 0, p)$.
(S6) $N=p^{3} q^{2}$ for some $p^{3 / 2}<q<p^{2}$. In this case, $S_{N}^{\prime}=\left\{p, q, p^{2}, p q, p^{3}\right\}$ satisfies $U(p, q, 0, p)$.
(S7) $N=p^{2} q r$, where $p<q<p^{2}<r<p q,\left(q^{2}-p^{3}\right) \mid(p q-r)$, $\left(q^{2}-p^{3}\right) \mid\left(r q-p^{4}\right)$, and $r=p q-\sqrt{\left(q^{2}-p^{3}\right)\left(p^{2}-q\right)}$. In this case, $S_{N}^{\prime}=\left\{p, q, p^{2}, r, p q\right\}$ satisfies $U\left(p, q, \frac{p(p q-r)}{q^{2}-p^{3}}, \frac{r q-p^{4}}{q^{2}-p^{3}}\right)$.
(S6) $N=p^{3} q^{2}$ for some $p^{3 / 2}<q<p^{2}$. In this case, $S_{N}^{\prime}=\left\{p, q, p^{2}, p q, p^{3}\right\}$ satisfies $U(p, q, 0, p)$.
(S7) $N=p^{2} q r$, where $p<q<p^{2}<r<p q,\left(q^{2}-p^{3}\right) \mid(p q-r)$, $\left(q^{2}-p^{3}\right) \mid\left(r q-p^{4}\right)$, and $r=p q-\sqrt{\left(q^{2}-p^{3}\right)\left(p^{2}-q\right)}$. In this case, $S_{N}^{\prime}=\left\{p, q, p^{2}, r, p q\right\}$ satisfies $U\left(p, q, \frac{p(p q-r)}{q^{2}-p^{3}}, \frac{r q-p^{4}}{q^{2}-p^{3}}\right)$.

In our paper, we also characterize all the large recurrent numbers in a similar way. Here we just give the list:
(S6) $N=p^{3} q^{2}$ for some $p^{3 / 2}<q<p^{2}$. In this case, $S_{N}^{\prime}=\left\{p, q, p^{2}, p q, p^{3}\right\}$ satisfies $U(p, q, 0, p)$.
(S7) $N=p^{2} q r$, where $p<q<p^{2}<r<p q,\left(q^{2}-p^{3}\right) \mid(p q-r)$, $\left(q^{2}-p^{3}\right) \mid\left(r q-p^{4}\right)$, and $r=p q-\sqrt{\left(q^{2}-p^{3}\right)\left(p^{2}-q\right)}$. In this case, $S_{N}^{\prime}=\left\{p, q, p^{2}, r, p q\right\}$ satisfies $U\left(p, q, \frac{p(p q-r)}{q^{2}-p^{3}}, \frac{r q-p^{4}}{q^{2}-p^{3}}\right)$.

In our paper, we also characterize all the large recurrent numbers in a similar way. Here we just give the list:

Proposition 7

A number N is large recurrent with $\left|L_{N}^{\prime}\right| \geq 4$ if and only if N belongs to one of the following forms.
(L1) $N=p^{k}$ for some $k \geq 9$. In this case, $L_{N}^{\prime}=\left\{p^{\lceil(k-1) / 2\rceil+1}, p^{\lceil(k-1) / 2\rceil+2}, \ldots, p^{k-1}\right\}$ satisfies $U\left(p^{\lceil(k-1) / 2\rceil+1}, p^{\lceil(k-1) / 2\rceil+2}, p, 0\right)$.
(L2) $N=p^{k} q$ for some $k \geq 4$ and $q>p^{k}$. In this case, $L_{N}^{\prime}=\left\{q, p q, p^{2} q, \ldots, p^{k-1} q\right\}$ satisfies $U(q, p q, p, 0)$.
(L3) $N=p^{k} q$ for some $k \geq 4$ and $p^{k-1}<q<p^{k}$. Then

$$
L_{N}^{\prime}=\left\{p^{k}, p q, p^{2} q, \ldots, p^{k-1} q\right\}
$$

satisfies $U\left(p^{k}, p q, p, 0\right)$.
(L4) $N=p^{k} q$ some for $k \geq 4$ and $p<q<p^{2}$. In this case,
$L_{N}^{\prime}= \begin{cases}\left\{p^{k / 2+1}, p^{k / 2} q, p^{k / 2+2}, \ldots, p^{k-1} q\right\} & \text { if } 2 \mid k, \\ \left\{p^{(k-1) / 2} q, p^{(k+3) / 2}, p^{(k+1) / 2} q, \ldots, p^{k-1} q\right\} & \text { if } 2 \nmid k .\end{cases}$
Observe that L_{N}^{\prime} satisfies $U\left(p^{k / 2+1}, p^{k / 2} q, 0, p\right)$ and $U\left(p^{(k-1) / 2} q, p^{(k+3) / 2}, 0, p\right)$ for even and odd k, respectively.
(L5) $N=p^{4} q$ with $p^{2}<q<p^{3},\left(p^{5}-q^{2}\right) \mid\left(p^{2}-q\right)$, and $\left(p^{5}-q^{2}\right) \mid\left(p^{3}-q\right)$. In this case, $L_{N}^{\prime}=\left\{p q, p^{4}, p^{2} q, p^{3} q\right\}$.
(L6) $N=p^{3} q^{2}$ for $p<q<p^{2}$. In this case, $L_{N}^{\prime}=\left\{q^{2}, p^{2} q, p q^{2}, p^{3} q, p^{2} q^{2}\right\}$ satisfies $U\left(q^{2}, p^{2} q, 0, p\right)$.
(L7) $N=p q^{k}$ for some $k \geq 4$ and $p<q$. In this case,

$$
L_{N}^{\prime}= \begin{cases}\left\{p q^{\frac{k}{2}}, q^{\frac{k}{2}+1}, \ldots, q^{k}\right\} & \text { if } 2 \mid k, \\ \left\{q^{\frac{k+1}{2}}, p q^{\frac{k+1}{2}}, \ldots, q^{k}\right\} & \text { if } 2 \nmid k .\end{cases}
$$

Observe that L_{N}^{\prime} satisfies $U\left(p q^{k / 2}, q^{k / 2+1}, 0, q\right)$ and $U\left(q^{(k+1) / 2}, p q^{(k+1) / 2}, 0, q\right)$ for even and odd k, respectively.
(L8) $N=p q^{k} r$ for some $k \geq 2$ and $p<q<p q^{k}<r$. In this case, $L_{N}^{\prime}=\left\{r, p r, q r, p q r, q^{2} r, \ldots, q^{k} r\right\}$ satisfies $U(r, p r, 0, q)$.

References

(1) A. A Chentouf, Linear recurrences of order at most two in small divisors, J. Integer Seq. 25 (2022).
(2) H. V. Chu, When the large divisors of a natural number are in arithmetic progression, J. Integer Seq. 23 (2020).
(3) H. V. Chu, When the nontrivial, small divisors of a natural number are in arithmetic progression, Quaest. Math. 45 (2022), 969-977.
(9) D. E. lannucci, When the small divisors of a natural number are in arithmetic progression, Integers 18 (2018).

