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Introduction

Definition 1

The set of small divisors of N is

SN := {d : 1 ≤ d ≤
√
N, d divides N}.

There is a related definition:

S ′
N := {d : 1 < d <

√
N, d divides N}

Definition 2

A positive integer N is said to be small recurrent if S ′
N satisfies a

linear recurrence of order at most two. When |S ′
N | ≤ 2, N is

vacuously small recurrent.
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▶ In 2018, Iannucci characterized all positive integers N whose
SN forms an arithmetic progression (or AP, for short).

▶ Iannucci’s key idea was to show that if SN forms an AP, then
the size |SN | cannot exceed 6. The trivial divisor 1 plays an
important role in Iannucci’s proofs.

▶ Recently, Chentouf generalized Iannucci’s result from a
different perspective by characterizing all N whose SN satisfies
a linear recurrence of order at most two.

▶ In particular, for each tuple (u, v , a, b) ∈ Z4, there is an
integral linear recurrence, denoted by U(u, v , a, b), of order at
most two, given by

ni =


u if i = 1,

v if i = 2,

ani−1 + bni−2 if i ≥ 3.
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▶ Noting that the appearance of the trivial divisor 1 contributes
nontrivially to Chentouf’s proof, we generalize his result: we
characterize all positive integers N whose S ′

N satisfies a linear
recurrence of order at most two without the help of the trivial
divisor.
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Properties of S ′
N

Proposition 1

If |S ′
N | ≥ 2, then N cannot have two (not necessarily distinct)

prime factors p1 and p2 at least
√
N.

Proposition 2

If all elements of S ′
N are divisible by some prime p and |S ′

N | ≥ 4,
then either N = pk or N = pkq for some k ≥ 1 and some prime
q > pk .

Proof: If all divisors (except 1) of N are divisible by p, then N = pk

for some k ≥ 1. Assume that N has a prime factor q ̸= p. Then
q ≥

√
N. Proposition 1 implies that N cannot have another prime

factor at least
√
N. Hence, N = pkq for some k ≥ 1 and q > pk .

Liyang Shen (joint work with Hung Chu, Kevin Le, Steven J. Miller, and Yuan Qiu)



1. Introduction 2. Properties of S′
N 3. Small recurrent numbers

Properties of S ′
N

Proposition 1

If |S ′
N | ≥ 2, then N cannot have two (not necessarily distinct)

prime factors p1 and p2 at least
√
N.

Proposition 2

If all elements of S ′
N are divisible by some prime p and |S ′

N | ≥ 4,
then either N = pk or N = pkq for some k ≥ 1 and some prime
q > pk .

Proof: If all divisors (except 1) of N are divisible by p, then N = pk

for some k ≥ 1. Assume that N has a prime factor q ̸= p. Then
q ≥

√
N. Proposition 1 implies that N cannot have another prime

factor at least
√
N. Hence, N = pkq for some k ≥ 1 and q > pk .

Liyang Shen (joint work with Hung Chu, Kevin Le, Steven J. Miller, and Yuan Qiu)



1. Introduction 2. Properties of S′
N 3. Small recurrent numbers

Properties of S ′
N

Proposition 1

If |S ′
N | ≥ 2, then N cannot have two (not necessarily distinct)

prime factors p1 and p2 at least
√
N.

Proposition 2

If all elements of S ′
N are divisible by some prime p and |S ′

N | ≥ 4,
then either N = pk or N = pkq for some k ≥ 1 and some prime
q > pk .

Proof: If all divisors (except 1) of N are divisible by p, then N = pk

for some k ≥ 1.

Assume that N has a prime factor q ̸= p. Then
q ≥

√
N. Proposition 1 implies that N cannot have another prime

factor at least
√
N. Hence, N = pkq for some k ≥ 1 and q > pk .

Liyang Shen (joint work with Hung Chu, Kevin Le, Steven J. Miller, and Yuan Qiu)



1. Introduction 2. Properties of S′
N 3. Small recurrent numbers

Properties of S ′
N

Proposition 1

If |S ′
N | ≥ 2, then N cannot have two (not necessarily distinct)

prime factors p1 and p2 at least
√
N.

Proposition 2

If all elements of S ′
N are divisible by some prime p and |S ′

N | ≥ 4,
then either N = pk or N = pkq for some k ≥ 1 and some prime
q > pk .

Proof: If all divisors (except 1) of N are divisible by p, then N = pk

for some k ≥ 1. Assume that N has a prime factor q ̸= p. Then
q ≥

√
N.

Proposition 1 implies that N cannot have another prime
factor at least

√
N. Hence, N = pkq for some k ≥ 1 and q > pk .

Liyang Shen (joint work with Hung Chu, Kevin Le, Steven J. Miller, and Yuan Qiu)



1. Introduction 2. Properties of S′
N 3. Small recurrent numbers

Properties of S ′
N

Proposition 1

If |S ′
N | ≥ 2, then N cannot have two (not necessarily distinct)

prime factors p1 and p2 at least
√
N.

Proposition 2

If all elements of S ′
N are divisible by some prime p and |S ′

N | ≥ 4,
then either N = pk or N = pkq for some k ≥ 1 and some prime
q > pk .

Proof: If all divisors (except 1) of N are divisible by p, then N = pk

for some k ≥ 1. Assume that N has a prime factor q ̸= p. Then
q ≥

√
N. Proposition 1 implies that N cannot have another prime

factor at least
√
N. Hence, N = pkq for some k ≥ 1 and q > pk .

Liyang Shen (joint work with Hung Chu, Kevin Le, Steven J. Miller, and Yuan Qiu)



1. Introduction 2. Properties of S′
N 3. Small recurrent numbers

First case of S ′
N

Notation

Write S ′
N = {d2, d3, d4, d5, . . .}. (We start with d2 since the

smallest divisor of N is usually denoted by d1 = 1, which is
excluded from S ′

N .)

Lemma 3

Suppose that the first 4 numbers in S ′
N are p < q < p2 < r . If N

is small recurrent with U(p, q, a, b), the following hold:

i) gcd(a, b) = 1.

ii) if d2i ∈ S ′
N , then p|d2i ; however, if d2i−1 ∈ S ′

N , then p ∤ d2i−1.

iii) for di , d2i−1 ∈ S ′
N , we have gcd(b, di ) = gcd(a, d2i−1) = 1.

iv) for di , di+1 ∈ S ′
N , we have gcd(di , di+1) = 1.

v) for d2i−1, d2i+1 ∈ S ′
N , we have gcd(d2i−1, d2i+1) = 1.
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An example

We first look at a simple example. Let N = 60, so
S ′
N = {d2 = 2, d3 = 3, d4 = 4, d5 = 5}.

we can check that 60 is
small recurrent with U(p = 2, q = 3, a = 2, b = −1).

i) gcd(a, b) = gcd(2,−1) = 1.

ii) p|d2 and p|d4, but p ∤ d3 and p ∤ d5.
iii) for di , d2i−1 ∈ S ′

N , we have gcd(b, di ) = gcd(a, d2i−1) = 1.

iv) for di , di+1 ∈ S ′
N , we have gcd(di , di+1) = 1.
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Small recurrent numbers

As we rely heavily on case analysis and there are many cases, we
only focus on two typical cases here.
Let d2 = p for some prime p. Then d3 is either p2 or q for some
prime q > p.

The case d2 = p, d3 = p2

If d3 = p2, according to Proposition 2, we know that N = pk or
N = pkq for some k ≥ 1 and q > pk .

The case d2 = p, d3 = q, d4 = p2, d5 = r

If d3 = q for some prime q > p, then d4 = pq, p2, r for some prime
r > q. In this talk, we will mainly focus on the case
d2 = p, d3 = q, d4 = p2, d5 = r .
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If d3 = p2, according to Proposition 2, we know that N = pk or
N = pkq for some k ≥ 1 and q > pk .

The case d2 = p, d3 = q, d4 = p2, d5 = r

If d3 = q for some prime q > p, then d4 = pq, p2, r for some prime
r > q. In this talk, we will mainly focus on the case
d2 = p, d3 = q, d4 = p2, d5 = r .
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The case where d2 = p, d3 = q, d4 = p2

When d5 = r , we show by induction the following proposition.

Proposition 4

Suppose that the first 4 numbers in S ′
N are p < q < p2 < r . Then

|SN | ≤ 7. As a result, |S ′
N | ≤ 6.

Proof.

Assume that |SN | ≥ 2i for some i ≥ 4. We obtain a contradiction
by showing that |SN | ≥ 2i + 2.

By Lemma 3 ii), p ∤ d2i−1, p|d2i−2, and p ∤ d2i−3. By Lemma 3 v),
gcd(d2i−1, d2i−3) = 1, so p2d2i−1d2i−3 divides N. Hence,
pd2i−3 ∈ S ′

N .

If pd2i−3 = d2i−2, then pd2i−3 = ad2i−3 + bd2i−4, so
d2i−3 | bd2i−4, which contradicts Lemma 3 iii) and iv).
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The case where d2 = p, d3 = q, d4 = p2

If pd2i−3 = d2i , then

pd2i−3 = ad2i−1 + bd2i−2 = a(ad2i−2 + bd2i−3) + bd2i−2

= (a2 + b)d2i−2 + abd2i−3.

Therefore, d2i−3 divides a2 + b.
It is easy to check that for dj ∈ S ′

N , the sequence dja
2 + b is

congruent to

1, p, q, p2, abp, abq, abp2, (ab)2p, (ab)2q, (ab)2p2, . . . mod (a2+b).

Hence, we can write

d2i−3 = (a2 + b)ℓ+ akbks,

for some ℓ ∈ Z, some k ≥ 1, and some s ∈ {p, q, p2}. Since
d2i−3|(a2 + b), we have d2i−3|akbks. By Lemma 3 iii), d2i−3|s;
that is, d2i−3 ≤ p2. However, d2i−3 ≥ d5 > d4 = p2, a
contradiction.
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We conclude that pd2i−3 ≥ d2i+2.

Since pd2i−3 ∈ S ′
N , we know

that d2i+2 ∈ S ′
N and |SN | ≥ 2i + 2. This completes the proof to

Proposition 4.

Next we exclude other two cases by showing the following
proposition.

Proposition 5

Suppose that the first 4 numbers in S ′
N are p < q < p2 < r . If N

is small recurrent, then |S ′
N | ≠ 4, 6.

Proof.

For each N ∈ N with the prime factorization
∏ℓ

i=1 p
ai
i , the

divisor-counting function is

τ(N) :=
∑
d |N

1 =
ℓ∏

i=1

(ai + 1). (1)
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It is easy to verify that for N > 1,

τ(N) :=

{
2|S ′

N |+ 3 if N is a square,

2|S ′
N |+ 2 otherwise.

(2)

If |S ′
N | = 4, then (2) gives τ(N) = 10 or 11. Note that N has three

distinct prime factors p, q, r and the power of p is at least 2. Since
23 · 3 > 11, N cannot have another prime factor besides p, q, r .

Write N = paqbr c , for some a ≥ 2, b ≥ 1, c ≥ 1. However, neither
(a+ 1)(b + 1)(c + 1) = 10 nor (a+ 1)(b + 1)(c + 1) = 11 has a
solution. Therefore, |S ′

N | ≠ 4. A similar argument gives |S ′
N | ≠ 6.

Conclusion

By Propositions 4 and 5, we know that |S ′
N | = 5; that is,

τ(N) = 12 or 13. Using the same reasoning as in the proof of
Proposition 5, we know that τ(N) = 12 and N = p2qr , where
p < q < p2 < r .
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N | ≠ 4. A similar argument gives |S ′

N | ≠ 6.
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distinct prime factors p, q, r and the power of p is at least 2. Since
23 · 3 > 11, N cannot have another prime factor besides p, q, r .

Write N = paqbr c , for some a ≥ 2, b ≥ 1, c ≥ 1. However, neither
(a+ 1)(b + 1)(c + 1) = 10 nor (a+ 1)(b + 1)(c + 1) = 11 has a
solution. Therefore, |S ′

N | ≠ 4. A similar argument gives |S ′
N | ≠ 6.

Conclusion

By Propositions 4 and 5, we know that |S ′
N | = 5; that is,

τ(N) = 12 or 13. Using the same reasoning as in the proof of
Proposition 5, we know that τ(N) = 12 and N = p2qr , where
p < q < p2 < r .
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Full list

Now we give the complete list of small recurrent numbers.

Complete list

If N is small recurrent and |S ′
N | ≥ 4, then N belongs to one of the

following forms.

(S1) N = pk or N = pkq for some k ≥ 1 and q > pk .

(S2) N = pqk or pqk r for some k ≥ 2, p < q, and pqk < r .

(S3) N = pkqr for some k ≥ 2, some prime r > pkq, and√
q < p < q.

(S4) N = pkq for some k ≥ 2 and
√
q < p < q.

(S5) N = p2q2 for some p < q < p2.

(S6) N = p3q2 for some p3/2 < q < p2.

(S7) N = p2qr , where the first four numbers in S ′
N are

p < q < p2 < r .
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We see the above list forms a necessary condition, so we now
refine these forms to get a necssary and sufficient condition.

Proposition 6

A positive integer N is small recurrent with |S ′
N | ≥ 4 if and only if

N belongs to one of the following forms.

(S1) N = pk for some k ≥ 9. In this case,
S ′
N = {p, p2, p3, . . . , p⌊(k−1)/2⌋} satisfies U(p, p2, p, 0).

(S2) N = pkq for some k ≥ 4 and q > pk . In this case,
S ′
N = {p, p2, p3, . . . , pk} satisfies U(p, p2, p, 0).

(S3) N = pqk for some k ≥ 4 and p < q. In this case,
S ′
N = {p, q, pq, q2, . . .} satisfies U(p, q, 0, q).

(S4) N = pqk r for some k ≥ 2, p < q, and r > pqk . In this case,
S ′
N = {p, q, pq, q2, . . . , pqk−1, qk , pqk} satisfies U(p, q, 0, q).

(S5) N = pkq for some k ≥ 4 and
√
q < p < q. In this case,

S ′
N = {p, q, p2, pq, . . .} satisfies U(p, q, 0, p).
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(S6) N = p3q2 for some p3/2 < q < p2. In this case,
S ′
N = {p, q, p2, pq, p3} satisfies U(p, q, 0, p).

(S7) N = p2qr , where p < q < p2 < r < pq, (q2 − p3)|(pq − r),
(q2−p3)|(rq−p4), and r = pq−

√
(q2 − p3)(p2 − q). In this

case, S ′
N = {p, q, p2, r , pq} satisfies U

(
p, q, p(pq−r)

q2−p3
, rq−p4

q2−p3

)
.

In our paper, we also characterize all the large recurrent numbers
in a similar way. Here we just give the list:

Proposition 7

A number N is large recurrent with |L′N | ≥ 4 if and only if N
belongs to one of the following forms.

(L1) N = pk for some k ≥ 9. In this case,
L′N = {p⌈(k−1)/2⌉+1, p⌈(k−1)/2⌉+2, . . . , pk−1} satisfies
U(p⌈(k−1)/2⌉+1, p⌈(k−1)/2⌉+2, p, 0).

(L2) N = pkq for some k ≥ 4 and q > pk . In this case,
L′N = {q, pq, p2q, . . . , pk−1q} satisfies U(q, pq, p, 0).
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(L3) N = pkq for some k ≥ 4 and pk−1 < q < pk . Then

L′N = {pk , pq, p2q, . . . , pk−1q}

satisfies U(pk , pq, p, 0).

(L4) N = pkq some for k ≥ 4 and p < q < p2. In this case,

L′N =

{
{pk/2+1, pk/2q, pk/2+2, . . . , pk−1q} if 2|k ,
{p(k−1)/2q, p(k+3)/2, p(k+1)/2q, . . . , pk−1q} if 2 ∤ k .

Observe that L′N satisfies U(pk/2+1, pk/2q, 0, p) and
U(p(k−1)/2q, p(k+3)/2, 0, p) for even and odd k, respectively.

(L5) N = p4q with p2 < q < p3, (p5 − q2)|(p2 − q), and
(p5 − q2)|(p3 − q). In this case, L′N = {pq, p4, p2q, p3q}.

(L6) N = p3q2 for p < q < p2. In this case,
L′N = {q2, p2q, pq2, p3q, p2q2} satisfies U(q2, p2q, 0, p).
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(L7) N = pqk for some k ≥ 4 and p < q. In this case,

L′N =

{
{pq

k
2 , q

k
2
+1, . . . , qk} if 2|k ,

{q
k+1
2 , pq

k+1
2 , . . . , qk} if 2 ∤ k.

Observe that L′N satisfies U(pqk/2, qk/2+1, 0, q) and
U(q(k+1)/2, pq(k+1)/2, 0, q) for even and odd k , respectively.

(L8) N = pqk r for some k ≥ 2 and p < q < pqk < r . In this case,
L′N = {r , pr , qr , pqr , q2r , . . . , qk r} satisfies U(r , pr , 0, q).
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