Linear Recurrences of Order at Most Two in Nontrivial Divisors

Liyang Shen (joint work with Hung Chu, Kevin Le, Steven J. Miller, and Yuan Qiu)

New York University Liyang.Shen@nyu.edu

New York Number Theory Seminar CANT 2023 May 23 2023

Liyang Shen (joint work with Hung Chu, Kevin Le, Steven J. Miller, and Yuan Qiu)

Introduction

Definition 1

The set of small divisors of N is

$$S_N := \{d : 1 \le d \le \sqrt{N}, d \text{ divides } N\}.$$

There is a related definition:

$$S'_N := \{d : 1 < d < \sqrt{N}, d \text{ divides } N\}$$

Introduction

Definition 1

The set of small divisors of N is

$$S_N := \{d : 1 \le d \le \sqrt{N}, d \text{ divides } N\}.$$

There is a related definition:

$$S'_N := \{d : 1 < d < \sqrt{N}, d \text{ divides } N\}$$

Definition 2

A positive integer N is said to be small recurrent if S'_N satisfies a linear recurrence of order at most two. When $|S'_N| \leq 2$, N is vacuously small recurrent.

1.	Introduction
0	0

In 2018, lannucci characterized all positive integers N whose S_N forms an arithmetic progression (or AP, for short). Introduction
 ○●○

- In 2018, lannucci characterized all positive integers N whose S_N forms an arithmetic progression (or AP, for short).
- ► lannucci's key idea was to show that if S_N forms an AP, then the size |S_N| cannot exceed 6. The trivial divisor 1 plays an important role in lannucci's proofs.

Introduction
 ○●○

- In 2018, lannucci characterized all positive integers N whose S_N forms an arithmetic progression (or AP, for short).
- ► lannucci's key idea was to show that if S_N forms an AP, then the size |S_N| cannot exceed 6. The trivial divisor 1 plays an important role in lannucci's proofs.
- Recently, Chentouf generalized lannucci's result from a different perspective by characterizing all N whose S_N satisfies a linear recurrence of order at most two.

Introduction
 ○●○

- In 2018, lannucci characterized all positive integers N whose S_N forms an arithmetic progression (or AP, for short).
- ► lannucci's key idea was to show that if S_N forms an AP, then the size |S_N| cannot exceed 6. The trivial divisor 1 plays an important role in lannucci's proofs.
- Recently, Chentouf generalized lannucci's result from a different perspective by characterizing all N whose S_N satisfies a linear recurrence of order at most two.
- In particular, for each tuple (u, v, a, b) ∈ Z⁴, there is an integral linear recurrence, denoted by U(u, v, a, b), of order at most two, given by

$$n_i = \begin{cases} u & \text{if } i = 1, \\ v & \text{if } i = 2, \\ an_{i-1} + bn_{i-2} & \text{if } i \ge 3. \end{cases}$$

Liyang Shen (joint work with Hung Chu, Kevin Le, Steven J. Miller, and Yuan Qiu)

► Noting that the appearance of the trivial divisor 1 contributes nontrivially to Chentouf's proof, we generalize his result: we characterize all positive integers N whose S'_N satisfies a linear recurrence of order at most two without the help of the trivial divisor.

	2. Properties of S'_N •00	
Properties of S'_N		

If $|S'_N| \ge 2$, then N cannot have two (not necessarily distinct) prime factors p_1 and p_2 at least \sqrt{N} .

If $|S'_N| \ge 2$, then N cannot have two (not necessarily distinct) prime factors p_1 and p_2 at least \sqrt{N} .

Proposition 2

If all elements of S'_N are divisible by some prime p and $|S'_N| \ge 4$, then either $N = p^k$ or $N = p^k q$ for some $k \ge 1$ and some prime $q > p^k$.

If $|S'_N| \ge 2$, then N cannot have two (not necessarily distinct) prime factors p_1 and p_2 at least \sqrt{N} .

Proposition 2

If all elements of S'_N are divisible by some prime p and $|S'_N| \ge 4$, then either $N = p^k$ or $N = p^k q$ for some $k \ge 1$ and some prime $q > p^k$.

Proof: If all divisors (except 1) of N are divisible by p, then $N = p^k$ for some $k \ge 1$.

If $|S'_N| \ge 2$, then N cannot have two (not necessarily distinct) prime factors p_1 and p_2 at least \sqrt{N} .

Proposition 2

If all elements of S'_N are divisible by some prime p and $|S'_N| \ge 4$, then either $N = p^k$ or $N = p^k q$ for some $k \ge 1$ and some prime $q > p^k$.

Proof: If all divisors (except 1) of N are divisible by p, then $N = p^k$ for some $k \ge 1$. Assume that N has a prime factor $q \ne p$. Then $q \ge \sqrt{N}$.

If $|S'_N| \ge 2$, then N cannot have two (not necessarily distinct) prime factors p_1 and p_2 at least \sqrt{N} .

Proposition 2

If all elements of S'_N are divisible by some prime p and $|S'_N| \ge 4$, then either $N = p^k$ or $N = p^k q$ for some $k \ge 1$ and some prime $q > p^k$.

Proof: If all divisors (except 1) of N are divisible by p, then $N = p^k$ for some $k \ge 1$. Assume that N has a prime factor $q \ne p$. Then $q \ge \sqrt{N}$. Proposition 1 implies that N cannot have another prime factor at least \sqrt{N} . Hence, $N = p^k q$ for some $k \ge 1$ and $q > p^k$.

	2. Properties of S' _N ○●○	
First case of S'_N		

Write $S'_N = \{d_2, d_3, d_4, d_5, \ldots\}$. (We start with d_2 since the smallest divisor of N is usually denoted by $d_1 = 1$, which is excluded from S'_N .)

	2. Properties of S' _N ○●○	
First case of S'_N		

Write $S'_N = \{d_2, d_3, d_4, d_5, \ldots\}$. (We start with d_2 since the smallest divisor of N is usually denoted by $d_1 = 1$, which is excluded from S'_N .)

Lemma 3

Suppose that the first 4 numbers in S'_N are $p < q < p^2 < r$. If N is small recurrent with U(p, q, a, b), the following hold:

	2. Properties of S' _N ○●○	
First case of S'_N		

Write $S'_N = \{d_2, d_3, d_4, d_5, \ldots\}$. (We start with d_2 since the smallest divisor of N is usually denoted by $d_1 = 1$, which is excluded from S'_N .)

Lemma 3

Suppose that the first 4 numbers in S'_N are $p < q < p^2 < r$. If N is small recurrent with U(p, q, a, b), the following hold:

i)
$$gcd(a, b) = 1$$
.

	2. Properties of S' _N ⊙●○	
First case of S'_N		

Write $S'_N = \{d_2, d_3, d_4, d_5, \ldots\}$. (We start with d_2 since the smallest divisor of N is usually denoted by $d_1 = 1$, which is excluded from S'_N .)

Lemma 3

Suppose that the first 4 numbers in S'_N are $p < q < p^2 < r$. If N is small recurrent with U(p, q, a, b), the following hold:

i)
$$gcd(a, b) = 1$$
.

ii) if $d_{2i} \in S'_N$, then $p | d_{2i}$; however, if $d_{2i-1} \in S'_N$, then $p \nmid d_{2i-1}$.

	2. Properties of S' _N ⊙●○	
First case of S'_N		

Write $S'_N = \{d_2, d_3, d_4, d_5, \ldots\}$. (We start with d_2 since the smallest divisor of N is usually denoted by $d_1 = 1$, which is excluded from S'_N .)

Lemma 3

Suppose that the first 4 numbers in S'_N are $p < q < p^2 < r$. If N is small recurrent with U(p, q, a, b), the following hold:

i)
$$gcd(a, b) = 1$$
.

ii) if $d_{2i} \in S'_N$, then $p | d_{2i}$; however, if $d_{2i-1} \in S'_N$, then $p \nmid d_{2i-1}$.

iii) for
$$d_i, d_{2i-1} \in S'_N$$
, we have $\operatorname{gcd}(b, d_i) = \operatorname{gcd}(a, d_{2i-1}) = 1$.

	2. Properties of S' _N ○●○	
First case of S'_N		

Write $S'_N = \{d_2, d_3, d_4, d_5, \ldots\}$. (We start with d_2 since the smallest divisor of N is usually denoted by $d_1 = 1$, which is excluded from S'_N .)

Lemma 3

Suppose that the first 4 numbers in S'_N are $p < q < p^2 < r$. If N is small recurrent with U(p, q, a, b), the following hold:

i)
$$gcd(a, b) = 1$$
.
ii) if $d_{2i} \in S'_N$, then $p | d_{2i}$; however, if $d_{2i-1} \in S'_N$, then $p \nmid d_{2i-1}$.
iii) for $d_i, d_{2i-1} \in S'_N$, we have $gcd(b, d_i) = gcd(a, d_{2i-1}) = 1$.
iv) for $d_i, d_{i+1} \in S'_N$, we have $gcd(d_i, d_{i+1}) = 1$.

	2. Properties of S' _N ⊙●○	
First case of S'_N		

Write $S'_N = \{d_2, d_3, d_4, d_5, \ldots\}$. (We start with d_2 since the smallest divisor of N is usually denoted by $d_1 = 1$, which is excluded from S'_N .)

Lemma 3

Suppose that the first 4 numbers in S'_N are $p < q < p^2 < r$. If N is small recurrent with U(p, q, a, b), the following hold:

i)
$$gcd(a, b) = 1$$
.
ii) if $d_{2i} \in S'_N$, then $p|d_{2i}$; however, if $d_{2i-1} \in S'_N$, then $p \nmid d_{2i-1}$.
iii) for $d_i, d_{2i-1} \in S'_N$, we have $gcd(b, d_i) = gcd(a, d_{2i-1}) = 1$.
iv) for $d_i, d_{i+1} \in S'_N$, we have $gcd(d_i, d_{i+1}) = 1$.
v) for $d_{2i-1}, d_{2i+1} \in S'_N$, we have $gcd(d_{2i-1}, d_{2i+1}) = 1$.

We first look at a simple example. Let N = 60, so $S'_N = \{d_2 = 2, d_3 = 3, d_4 = 4, d_5 = 5\}.$

i)
$$gcd(a, b) = gcd(2, -1) = 1$$
.

i)
$$gcd(a, b) = gcd(2, -1) = 1$$
.

ii)
$$p|d_2$$
 and $p|d_4$, but $p \nmid d_3$ and $p \nmid d_5$.

We first look at a simple example. Let N = 60, so $S'_N = \{d_2 = 2, d_3 = 3, d_4 = 4, d_5 = 5\}$. we can check that 60 is small recurrent with U(p = 2, q = 3, a = 2, b = -1).

i)
$$gcd(a, b) = gcd(2, -1) = 1$$
.

ii) $p|d_2$ and $p|d_4$, but $p \nmid d_3$ and $p \nmid d_5$.

iii) for $d_i, d_{2i-1} \in S'_N$, we have $gcd(b, d_i) = gcd(a, d_{2i-1}) = 1$.

i)
$$gcd(a, b) = gcd(2, -1) = 1$$
.
ii) $p|d_2$ and $p|d_4$, but $p \nmid d_3$ and $p \nmid d_5$.
iii) for $d_i, d_{2i-1} \in S'_N$, we have $gcd(b, d_i) = gcd(a, d_{2i-1}) = 1$.
iv) for $d_i, d_{i+1} \in S'_N$, we have $gcd(d_i, d_{i+1}) = 1$.

i)
$$gcd(a, b) = gcd(2, -1) = 1.$$

ii) $p|d_2$ and $p|d_4$, but $p \nmid d_3$ and $p \nmid d_5$.
iii) for $d_i, d_{2i-1} \in S'_N$, we have $gcd(b, d_i) = gcd(a, d_{2i-1}) = 1.$
iv) for $d_i, d_{i+1} \in S'_N$, we have $gcd(d_i, d_{i+1}) = 1.$
v) for $d_{2i-1}, d_{2i+1} \in S'_N$, we have $gcd(d_{2i-1}, d_{2i+1}) = 1.$

Small recurrent numbers

	3. Small recurrent numbers

Small recurrent numbers

As we rely heavily on case analysis and there are many cases, we only focus on two typical cases here.

	3. Small recurrent numbers
Small recurrent numbers	

The case $d_2 = p$, $d_3 = p^2$

If $d_3 = p^2$, according to Proposition 2, we know that $N = p^k$ or $N = p^k q$ for some $k \ge 1$ and $q > p^k$.

The case
$$d_2 = p, \ d_3 = p^2$$

If $d_3 = p^2$, according to Proposition 2, we know that $N = p^k$ or $N = p^k q$ for some $k \ge 1$ and $q > p^k$.

The case $d_2 = p$, $d_3 = q$, $d_4 = p^2$, $d_5 = r$ If $d_3 = q$ for some prime q > p, then $d_4 = pq$, p^2 , r for some prime r > q.

The case
$$d_2 = p$$
, $d_3 = p^2$

If $d_3 = p^2$, according to Proposition 2, we know that $N = p^k$ or $N = p^k q$ for some $k \ge 1$ and $q > p^k$.

The case $d_2 = p$, $d_3 = q$, $d_4 = p^2$, $d_5 = r$

If $d_3 = q$ for some prime q > p, then $d_4 = pq$, p^2 , r for some prime r > q. In this talk, we will mainly focus on the case $d_2 = p$, $d_3 = q$, $d_4 = p^2$, $d_5 = r$.

		3. Small recurrent numbers ○●○○○○○○○○
The case where $d_2 =$	$= p_1 d_2 = q_1 d_4 = p^2$	

Proposition 4

Suppose that the first 4 numbers in S'_N are $p < q < p^2 < r$. Then $|S_N| \le 7$. As a result, $|S'_N| \le 6$.

		3. Small recurrent numbers ○●○○○○○○○○
The case where d_{2} =	$= p d_2 = a d_4 = p^2$	

Proposition 4

Suppose that the first 4 numbers in S'_N are $p < q < p^2 < r$. Then $|S_N| \le 7$. As a result, $|S'_N| \le 6$.

Proof.

Assume that $|S_N| \ge 2i$ for some $i \ge 4$. We obtain a contradiction by showing that $|S_N| \ge 2i + 2$.

Proposition 4

Suppose that the first 4 numbers in S'_N are $p < q < p^2 < r$. Then $|S_N| \le 7$. As a result, $|S'_N| \le 6$.

Proof.

Assume that $|S_N| \ge 2i$ for some $i \ge 4$. We obtain a contradiction by showing that $|S_N| \ge 2i + 2$.

By Lemma 3 ii), $p \nmid d_{2i-1}$, $p \mid d_{2i-2}$, and $p \nmid d_{2i-3}$. By Lemma 3 v), $gcd(d_{2i-1}, d_{2i-3}) = 1$, so $p^2d_{2i-1}d_{2i-3}$ divides N.

Proposition 4

Suppose that the first 4 numbers in S'_N are $p < q < p^2 < r$. Then $|S_N| \le 7$. As a result, $|S'_N| \le 6$.

Proof.

Assume that $|S_N| \ge 2i$ for some $i \ge 4$. We obtain a contradiction by showing that $|S_N| \ge 2i + 2$.

By Lemma 3 ii), $p \nmid d_{2i-1}$, $p \mid d_{2i-2}$, and $p \nmid d_{2i-3}$. By Lemma 3 v), $gcd(d_{2i-1}, d_{2i-3}) = 1$, so $p^2d_{2i-1}d_{2i-3}$ divides N. Hence, $pd_{2i-3} \in S'_N$.

Proposition 4

Suppose that the first 4 numbers in S'_N are $p < q < p^2 < r$. Then $|S_N| \le 7$. As a result, $|S'_N| \le 6$.

Proof.

Assume that $|S_N| \ge 2i$ for some $i \ge 4$. We obtain a contradiction by showing that $|S_N| \ge 2i + 2$.

By Lemma 3 ii), $p \nmid d_{2i-1}$, $p \mid d_{2i-2}$, and $p \nmid d_{2i-3}$. By Lemma 3 v), $gcd(d_{2i-1}, d_{2i-3}) = 1$, so $p^2d_{2i-1}d_{2i-3}$ divides N. Hence, $pd_{2i-3} \in S'_N$.

If $pd_{2i-3} = d_{2i-2}$, then $pd_{2i-3} = ad_{2i-3} + bd_{2i-4}$,

Proposition 4

Suppose that the first 4 numbers in S'_N are $p < q < p^2 < r$. Then $|S_N| \le 7$. As a result, $|S'_N| \le 6$.

Proof.

Assume that $|S_N| \ge 2i$ for some $i \ge 4$. We obtain a contradiction by showing that $|S_N| \ge 2i + 2$.

By Lemma 3 ii), $p \nmid d_{2i-1}$, $p \mid d_{2i-2}$, and $p \nmid d_{2i-3}$. By Lemma 3 v), $gcd(d_{2i-1}, d_{2i-3}) = 1$, so $p^2d_{2i-1}d_{2i-3}$ divides N. Hence, $pd_{2i-3} \in S'_N$.

If $pd_{2i-3} = d_{2i-2}$, then $pd_{2i-3} = ad_{2i-3} + bd_{2i-4}$, so $d_{2i-3} \mid bd_{2i-4}$, which contradicts Lemma 3 iii) and iv).

	3. Small recurrent numbers 00●00000000

If
$$pd_{2i-3} = d_{2i}$$
, then
 $pd_{2i-3} = ad_{2i-1} + bd_{2i-2} = a(ad_{2i-2} + bd_{2i-3}) + bd_{2i-2}$
 $= (a^2 + b)d_{2i-2} + abd_{2i-3}$.

	3. Small recurrent numbers
The case where $d_{i} = n$	

If
$$pd_{2i-3} = d_{2i}$$
, then
 $pd_{2i-3} = ad_{2i-1} + bd_{2i-2} = a(ad_{2i-2} + bd_{2i-3}) + bd_{2i-2}$
 $= (a^2 + b)d_{2i-2} + abd_{2i-3}.$

Therefore, d_{2i-3} divides $a^2 + b$.

If
$$pd_{2i-3} = d_{2i}$$
, then
 $pd_{2i-3} = ad_{2i-1} + bd_{2i-2} = a(ad_{2i-2} + bd_{2i-3}) + bd_{2i-2}$
 $= (a^2 + b)d_{2i-2} + abd_{2i-3}.$

Therefore, d_{2i-3} divides $a^2 + b$. It is easy to check that for $d_j \in S'_N$, the sequence $d_j a^2 + b$ is congruent to

 $1, p, q, p^2, abp, abq, abp^2, (ab)^2 p, (ab)^2 q, (ab)^2 p^2, \dots \mod (a^2+b).$

If
$$pd_{2i-3} = d_{2i}$$
, then
 $pd_{2i-3} = ad_{2i-1} + bd_{2i-2} = a(ad_{2i-2} + bd_{2i-3}) + bd_{2i-2}$
 $= (a^2 + b)d_{2i-2} + abd_{2i-3}.$

Therefore, d_{2i-3} divides $a^2 + b$. It is easy to check that for $d_j \in S'_N$, the sequence $d_j a^2 + b$ is congruent to

1, p, q, p^2 , abp, abq, abp^2 , $(ab)^2p$, $(ab)^2q$, $(ab)^2p^2$, ... mod (a^2+b) . Hence, we can write

$$d_{2i-3} = (a^2 + b)\ell + a^k b^k s,$$

for some $\ell \in \mathbb{Z}$, some $k \ge 1$, and some $s \in \{p, q, p^2\}$.

If
$$pd_{2i-3} = d_{2i}$$
, then
 $pd_{2i-3} = ad_{2i-1} + bd_{2i-2} = a(ad_{2i-2} + bd_{2i-3}) + bd_{2i-2}$
 $= (a^2 + b)d_{2i-2} + abd_{2i-3}.$

Therefore, d_{2i-3} divides $a^2 + b$. It is easy to check that for $d_j \in S'_N$, the sequence $d_j a^2 + b$ is congruent to

1, p, q, p^2 , abp, abq, abp^2 , $(ab)^2p$, $(ab)^2q$, $(ab)^2p^2$, ... mod (a^2+b) . Hence, we can write

$$d_{2i-3} = (a^2 + b)\ell + a^k b^k s,$$

for some $\ell \in \mathbb{Z}$, some $k \ge 1$, and some $s \in \{p, q, p^2\}$. Since $d_{2i-3}|(a^2+b)$, we have $d_{2i-3}|a^k b^k s$.

If
$$pd_{2i-3} = d_{2i}$$
, then
 $pd_{2i-3} = ad_{2i-1} + bd_{2i-2} = a(ad_{2i-2} + bd_{2i-3}) + bd_{2i-2}$
 $= (a^2 + b)d_{2i-2} + abd_{2i-3}.$

Therefore, d_{2i-3} divides $a^2 + b$. It is easy to check that for $d_j \in S'_N$, the sequence $d_j a^2 + b$ is congruent to

1, p, q, p^2 , abp, abq, abp^2 , $(ab)^2p$, $(ab)^2q$, $(ab)^2p^2$, ... mod (a^2+b) . Hence, we can write

$$d_{2i-3} = (a^2 + b)\ell + a^k b^k s,$$

for some $\ell \in \mathbb{Z}$, some $k \ge 1$, and some $s \in \{p, q, p^2\}$. Since $d_{2i-3}|(a^2+b)$, we have $d_{2i-3}|a^kb^ks$. By Lemma 3 iii), $d_{2i-3}|s$; that is, $d_{2i-3} \le p^2$.

If
$$pd_{2i-3} = d_{2i}$$
, then
 $pd_{2i-3} = ad_{2i-1} + bd_{2i-2} = a(ad_{2i-2} + bd_{2i-3}) + bd_{2i-2}$
 $= (a^2 + b)d_{2i-2} + abd_{2i-3}.$

Therefore, d_{2i-3} divides $a^2 + b$. It is easy to check that for $d_j \in S'_N$, the sequence $d_j a^2 + b$ is congruent to

1, p, q, p^2 , abp, abq, abp^2 , $(ab)^2p$, $(ab)^2q$, $(ab)^2p^2$, ... mod (a^2+b) . Hence, we can write

$$d_{2i-3} = (a^2 + b)\ell + a^k b^k s,$$

for some $\ell \in \mathbb{Z}$, some $k \ge 1$, and some $s \in \{p, q, p^2\}$. Since $d_{2i-3}|(a^2+b)$, we have $d_{2i-3}|a^kb^ks$. By Lemma 3 iii), $d_{2i-3}|s$; that is, $d_{2i-3} \le p^2$. However, $d_{2i-3} \ge d_5 > d_4 = p^2$, a contradiction.

We conclude that $pd_{2i-3} \ge d_{2i+2}$.

We conclude that $pd_{2i-3} \ge d_{2i+2}$. Since $pd_{2i-3} \in S'_N$, we know that $d_{2i+2} \in S'_N$ and $|S_N| \ge 2i+2$. This completes the proof to Proposition 4.

We conclude that $pd_{2i-3} \ge d_{2i+2}$. Since $pd_{2i-3} \in S'_N$, we know that $d_{2i+2} \in S'_N$ and $|S_N| \ge 2i+2$. This completes the proof to Proposition 4.

Next we exclude other two cases by showing the following proposition.

Proposition 5

Suppose that the first 4 numbers in S'_N are $p < q < p^2 < r$. If N is small recurrent, then $|S'_N| \neq 4, 6$.

We conclude that $pd_{2i-3} \ge d_{2i+2}$. Since $pd_{2i-3} \in S'_N$, we know that $d_{2i+2} \in S'_N$ and $|S_N| \ge 2i+2$. This completes the proof to Proposition 4.

Next we exclude other two cases by showing the following proposition.

Proposition 5

Suppose that the first 4 numbers in S'_N are $p < q < p^2 < r$. If N is small recurrent, then $|S'_N| \neq 4, 6$.

Proof.

For each $N \in \mathbb{N}$ with the prime factorization $\prod_{i=1}^{\ell} p_i^{a_i}$, the divisor-counting function is

$$au(N) := \sum_{d|N} 1 = \prod_{i=1}^{\ell} (a_i + 1).$$
 (1)

Liyang Shen (joint work with Hung Chu, Kevin Le, Steven J. Miller, and Yuan Qiu)

(2)

It is easy to verify that for N > 1,

$$\tau(N) := \begin{cases} 2|S'_N| + 3 & \text{if } N \text{ is a square,} \\ 2|S'_N| + 2 & \text{otherwise.} \end{cases}$$

Liyang Shen (joint work with Hung Chu, Kevin Le, Steven J. Miller, and Yuan Qiu)

(2)

It is easy to verify that for N > 1,

$$au(N) := \begin{cases} 2|S'_N| + 3 & \text{ if } N \text{ is a square,} \\ 2|S'_N| + 2 & \text{ otherwise.} \end{cases}$$

If $|S_N'|=$ 4, then (2) gives au(N)= 10 or 11.

$$\tau(N) := \begin{cases} 2|S'_N| + 3 & \text{if } N \text{ is a square,} \\ 2|S'_N| + 2 & \text{otherwise.} \end{cases}$$
(2)

If $|S'_N| = 4$, then (2) gives $\tau(N) = 10$ or 11. Note that N has three distinct prime factors p, q, r and the power of p is at least 2. Since $2^3 \cdot 3 > 11$, N cannot have another prime factor besides p, q, r.

$$\tau(N) := \begin{cases} 2|S'_N| + 3 & \text{if } N \text{ is a square,} \\ 2|S'_N| + 2 & \text{otherwise.} \end{cases}$$
(2)

If $|S'_N| = 4$, then (2) gives $\tau(N) = 10$ or 11. Note that N has three distinct prime factors p, q, r and the power of p is at least 2. Since $2^3 \cdot 3 > 11$, N cannot have another prime factor besides p, q, r.

Write $N = p^a q^b r^c$, for some $a \ge 2, b \ge 1, c \ge 1$. However, neither (a+1)(b+1)(c+1) = 10 nor (a+1)(b+1)(c+1) = 11 has a solution.

$$\tau(N) := \begin{cases} 2|S'_N| + 3 & \text{if } N \text{ is a square,} \\ 2|S'_N| + 2 & \text{otherwise.} \end{cases}$$
(2)

If $|S'_N| = 4$, then (2) gives $\tau(N) = 10$ or 11. Note that N has three distinct prime factors p, q, r and the power of p is at least 2. Since $2^3 \cdot 3 > 11$, N cannot have another prime factor besides p, q, r.

Write $N = p^a q^b r^c$, for some $a \ge 2, b \ge 1, c \ge 1$. However, neither (a+1)(b+1)(c+1) = 10 nor (a+1)(b+1)(c+1) = 11 has a solution. Therefore, $|S'_N| \ne 4$. A similar argument gives $|S'_N| \ne 6$.

$$\tau(N) := \begin{cases} 2|S'_N| + 3 & \text{if } N \text{ is a square,} \\ 2|S'_N| + 2 & \text{otherwise.} \end{cases}$$
(2)

If $|S'_N| = 4$, then (2) gives $\tau(N) = 10$ or 11. Note that N has three distinct prime factors p, q, r and the power of p is at least 2. Since $2^3 \cdot 3 > 11$, N cannot have another prime factor besides p, q, r.

Write $N = p^a q^b r^c$, for some $a \ge 2, b \ge 1, c \ge 1$. However, neither (a+1)(b+1)(c+1) = 10 nor (a+1)(b+1)(c+1) = 11 has a solution. Therefore, $|S'_N| \ne 4$. A similar argument gives $|S'_N| \ne 6$.

Conclusion

By Propositions 4 and 5, we know that $|S'_N| = 5$; that is, $\tau(N) = 12$ or 13. Using the same reasoning as in the proof of Proposition 5, we know that $\tau(N) = 12$ and $N = p^2 qr$, where $p < q < p^2 < r$.

	3. Small recurrent numbers 00000●00000
Full list	

Now we give the complete list of small recurrent numbers.

Full list

Now we give the complete list of small recurrent numbers.

Complete list

If N is small recurrent and $|S'_N| \ge 4$, then N belongs to one of the following forms.

Full list

Now we give the complete list of small recurrent numbers.

Complete list

If N is small recurrent and $|S'_N| \ge 4$, then N belongs to one of the following forms.

$$\begin{array}{ll} (S1) & N=p^k \mbox{ or } N=p^k q \mbox{ for some } k\geq 1 \mbox{ and } q>p^k. \\ (S2) & N=pq^k \mbox{ or } pq^k r \mbox{ for some } k\geq 2, \ pp^k q, \ \mbox{and } \sqrt{q}$$

2. Properties of S'_N	3. Small recurrent numbers
	00000000000

We see the above list forms a necessary condition, so we now refine these forms to get a necessary and sufficient condition.

We see the above list forms a necessary condition, so we now refine these forms to get a necessary and sufficient condition.

Proposition 6

A positive integer N is small recurrent with $|S'_N| \ge 4$ if and only if N belongs to one of the following forms.

We see the above list forms a necessary condition, so we now refine these forms to get a necessary and sufficient condition.

Proposition 6

A positive integer N is small recurrent with $|S'_N| \ge 4$ if and only if N belongs to one of the following forms.

(S1)
$$N = p^k$$
 for some $k \ge 9$. In this case,
 $S'_N = \{p, p^2, p^3, \dots, p^{\lfloor (k-1)/2 \rfloor}\}$ satisfies $U(p, p^2, p, 0)$.
(S2) $N = p^k q$ for some $k \ge 4$ and $q > p^k$. In this case,
 $S'_N = \{p, p^2, p^3, \dots, p^k\}$ satisfies $U(p, p^2, p, 0)$.
(S3) $N = pq^k$ for some $k \ge 4$ and $p < q$. In this case,
 $S'_N = \{p, q, pq, q^2, \dots\}$ satisfies $U(p, q, 0, q)$.
(S4) $N = pq^k r$ for some $k \ge 2$, $p < q$, and $r > pq^k$. In this case,
 $S'_N = \{p, q, pq, q^2, \dots, pq^{k-1}, q^k, pq^k\}$ satisfies $U(p, q, 0, q)$.
(S5) $N = p^k q$ for some $k \ge 4$ and $\sqrt{q} . In this case,
 $S'_N = \{p, q, p^2, pq, \dots\}$ satisfies $U(p, q, 0, p)$.$

$$\begin{array}{ll} (\text{S6}) & N = p^3 q^2 \text{ for some } p^{3/2} < q < p^2. \text{ In this case,} \\ & S_N' = \{p,q,p^2,pq,p^3\} \text{ satisfies } U(p,q,0,p). \\ (\text{S7}) & N = p^2 qr, \text{ where } p < q < p^2 < r < pq, \ (q^2 - p^3)|(pq - r), \\ & (q^2 - p^3)|(rq - p^4), \text{ and } r = pq - \sqrt{(q^2 - p^3)(p^2 - q)}. \text{ In this case, } S_N' = \{p,q,p^2,r,pq\} \text{ satisfies } U\left(p,q,\frac{p(pq-r)}{q^2 - p^3},\frac{rq - p^4}{q^2 - p^3}\right). \end{array}$$

$$\begin{array}{ll} (\text{S6}) & N = p^3 q^2 \text{ for some } p^{3/2} < q < p^2. \text{ In this case,} \\ & S'_N = \{p,q,p^2,pq,p^3\} \text{ satisfies } U(p,q,0,p). \\ (\text{S7}) & N = p^2 qr, \text{ where } p < q < p^2 < r < pq, \ (q^2 - p^3)|(pq - r), \\ & (q^2 - p^3)|(rq - p^4), \text{ and } r = pq - \sqrt{(q^2 - p^3)(p^2 - q)}. \text{ In this case, } S'_N = \{p,q,p^2,r,pq\} \text{ satisfies } U\left(p,q,\frac{p(pq-r)}{q^2 - p^3},\frac{rq - p^4}{q^2 - p^3}\right). \end{array}$$

In our paper, we also characterize all the large recurrent numbers in a similar way. Here we just give the list:

$$\begin{array}{ll} (\text{S6}) & N = p^3 q^2 \text{ for some } p^{3/2} < q < p^2. \text{ In this case,} \\ & S'_N = \{p,q,p^2,pq,p^3\} \text{ satisfies } U(p,q,0,p). \\ (\text{S7}) & N = p^2 qr, \text{ where } p < q < p^2 < r < pq, \ (q^2 - p^3)|(pq - r), \\ & (q^2 - p^3)|(rq - p^4), \text{ and } r = pq - \sqrt{(q^2 - p^3)(p^2 - q)}. \text{ In this case, } S'_N = \{p,q,p^2,r,pq\} \text{ satisfies } U\left(p,q,\frac{p(pq-r)}{q^2 - p^3},\frac{rq - p^4}{q^2 - p^3}\right). \end{array}$$

In our paper, we also characterize all the large recurrent numbers in a similar way. Here we just give the list:

Proposition 7

A number N is large recurrent with $|L'_N| \ge 4$ if and only if N belongs to one of the following forms.

$$\begin{array}{ll} (\text{L1}) & N = p^k \text{ for some } k \geq 9. \text{ In this case,} \\ & L'_N = \{p^{\lceil (k-1)/2 \rceil + 1}, p^{\lceil (k-1)/2 \rceil + 2}, \dots, p^{k-1}\} \text{ satisfies } \\ & U(p^{\lceil (k-1)/2 \rceil + 1}, p^{\lceil (k-1)/2 \rceil + 2}, p, 0). \\ (\text{L2}) & N = p^k q \text{ for some } k \geq 4 \text{ and } q > p^k. \text{ In this case,} \\ & L'_N = \{q, pq, p^2 q, \dots, p^{k-1}q\} \text{ satisfies } U(q, pq, p, 0). \end{array}$$

Liyang Shen (joint work with Hung Chu, Kevin Le, Steven J. Miller, and Yuan Qiu)

(L3)
$$N = p^k q$$
 for some $k \ge 4$ and $p^{k-1} < q < p^k$. Then

$$L'_N = \{p^k, pq, p^2q, \dots, p^{k-1}q\}$$

satisfies $U(p^k, pq, p, 0)$. (L4) $N = p^k q$ some for $k \ge 4$ and $p < q < p^2$. In this case,

$$L'_{N} = \begin{cases} \{p^{k/2+1}, p^{k/2}q, p^{k/2+2}, \dots, p^{k-1}q\} & \text{if } 2|k, \\ \{p^{(k-1)/2}q, p^{(k+3)/2}, p^{(k+1)/2}q, \dots, p^{k-1}q\} & \text{if } 2 \nmid k. \end{cases}$$

Observe that L'_N satisfies $U(p^{k/2+1}, p^{k/2}q, 0, p)$ and $U(p^{(k-1)/2}q, p^{(k+3)/2}, 0, p)$ for even and odd k, respectively. (L5) $N = p^4 q$ with $p^2 < q < p^3$, $(p^5 - q^2)|(p^2 - q)$, and $(p^5 - q^2)|(p^3 - q)$. In this case, $L'_N = \{pq, p^4, p^2q, p^3q\}$. (L6) $N = p^3 q^2$ for $p < q < p^2$. In this case, $L'_N = \{q^2, p^2q, pq^2, p^3q, p^2q^2\}$ satisfies $U(q^2, p^2q, 0, p)$. (L7) $N = pq^k$ for some $k \ge 4$ and p < q. In this case,

$$L'_{N} = \begin{cases} \{pq^{\frac{k}{2}}, q^{\frac{k}{2}+1}, \dots, q^{k}\} & \text{ if } 2|k, \\ \{q^{\frac{k+1}{2}}, pq^{\frac{k+1}{2}}, \dots, q^{k}\} & \text{ if } 2 \nmid k. \end{cases}$$

Observe that L'_N satisfies $U(pq^{k/2}, q^{k/2+1}, 0, q)$ and $U(q^{(k+1)/2}, pq^{(k+1)/2}, 0, q)$ for even and odd k, respectively. (L8) $N = pq^k r$ for some $k \ge 2$ and $p < q < pq^k < r$. In this case, $L'_N = \{r, pr, qr, pqr, q^2r, \dots, q^kr\}$ satisfies U(r, pr, 0, q).

References

- A. A Chentouf, Linear recurrences of order at most two in small divisors, J. Integer Seq. 25 (2022).
- H. V. Chu, When the large divisors of a natural number are in arithmetic progression, J. Integer Seq. 23 (2020).
- H. V. Chu, When the nontrivial, small divisors of a natural number are in arithmetic progression, *Quaest. Math.* 45 (2022), 969–977.
- D. E. lannucci, When the small divisors of a natural number are in arithmetic progression, *Integers* 18 (2018).